福建农林大学数字逻辑实验报告一

合集下载

数字逻辑实验报告实验

数字逻辑实验报告实验

一、实验目的1. 理解数字逻辑的基本概念和基本原理。

2. 掌握数字逻辑电路的基本分析方法,如真值表、逻辑表达式等。

3. 熟悉常用数字逻辑门电路的功能和应用。

4. 提高数字电路实验技能,培养动手能力和团队协作精神。

二、实验原理数字逻辑电路是现代电子技术的基础,它主要研究如何用数字逻辑门电路实现各种逻辑功能。

数字逻辑电路的基本元件包括与门、或门、非门、异或门等,这些元件可以通过组合和连接实现复杂的逻辑功能。

1. 与门:当所有输入端都为高电平时,输出端才为高电平。

2. 或门:当至少有一个输入端为高电平时,输出端为高电平。

3. 非门:将输入端的高电平变为低电平,低电平变为高电平。

4. 异或门:当输入端两个高电平或两个低电平时,输出端为低电平,否则输出端为高电平。

三、实验内容1. 实验一:基本逻辑门电路的识别与测试(1)认识实验仪器:数字电路实验箱、逻辑笔、示波器等。

(2)识别与测试与门、或门、非门、异或门。

(3)观察并记录实验现象,分析实验结果。

2. 实验二:组合逻辑电路的设计与分析(1)设计一个简单的组合逻辑电路,如加法器、减法器等。

(2)根据真值表列出输入输出关系,画出逻辑电路图。

(3)利用逻辑门电路搭建电路,进行实验验证。

(4)观察并记录实验现象,分析实验结果。

3. 实验三:时序逻辑电路的设计与分析(1)设计一个简单的时序逻辑电路,如触发器、计数器等。

(2)根据电路功能,列出状态表和状态方程。

(3)利用触发器搭建电路,进行实验验证。

(4)观察并记录实验现象,分析实验结果。

四、实验步骤1. 实验一:(1)打开实验箱,检查各电路元件是否完好。

(2)根据电路图连接实验电路,包括与门、或门、非门、异或门等。

(3)使用逻辑笔和示波器测试各逻辑门电路的输出,观察并记录实验现象。

2. 实验二:(1)根据实验要求,设计组合逻辑电路。

(2)列出真值表,画出逻辑电路图。

(3)根据逻辑电路图连接实验电路,包括所需逻辑门电路等。

数字逻辑设计实验报告

数字逻辑设计实验报告

一、实验目的1. 理解和掌握数字逻辑设计的基本原理和方法。

2. 熟悉数字电路的基本门电路和组合逻辑电路。

3. 培养动手能力和实验技能,提高逻辑思维和解决问题的能力。

4. 熟悉数字电路实验设备和仪器。

二、实验原理数字逻辑设计是计算机科学与技术、电子工程等领域的基础课程。

本实验旨在通过实际操作,让学生掌握数字逻辑设计的基本原理和方法,熟悉数字电路的基本门电路和组合逻辑电路。

数字逻辑电路主要由逻辑门组成,逻辑门是数字电路的基本单元。

常见的逻辑门有与门、或门、非门、异或门等。

根据逻辑门的功能,可以将数字电路分为组合逻辑电路和时序逻辑电路。

组合逻辑电路的输出只与当前输入有关,而时序逻辑电路的输出不仅与当前输入有关,还与之前的输入有关。

三、实验内容1. 逻辑门实验(1)实验目的:熟悉逻辑门的功能和特性,掌握逻辑门的测试方法。

(2)实验步骤:① 将实验箱中的逻辑门连接到测试板上。

② 根据实验要求,将输入端分别连接高电平(+5V)和低电平(0V)。

③ 观察输出端的变化,记录实验数据。

④ 分析实验结果,验证逻辑门的功能。

2. 组合逻辑电路实验(1)实验目的:掌握组合逻辑电路的设计方法,熟悉常用组合逻辑电路。

(2)实验步骤:① 根据实验要求,设计组合逻辑电路。

② 将电路连接到实验箱中。

③ 根据输入端的不同组合,观察输出端的变化,记录实验数据。

④ 分析实验结果,验证电路的功能。

3. 时序逻辑电路实验(1)实验目的:掌握时序逻辑电路的设计方法,熟悉常用时序逻辑电路。

(2)实验步骤:① 根据实验要求,设计时序逻辑电路。

② 将电路连接到实验箱中。

③ 观察电路的输出变化,记录实验数据。

④ 分析实验结果,验证电路的功能。

四、实验结果与分析1. 逻辑门实验结果:通过实验,验证了逻辑门的功能和特性,掌握了逻辑门的测试方法。

2. 组合逻辑电路实验结果:通过实验,掌握了组合逻辑电路的设计方法,熟悉了常用组合逻辑电路。

3. 时序逻辑电路实验结果:通过实验,掌握了时序逻辑电路的设计方法,熟悉了常用时序逻辑电路。

数字逻辑实验报告

数字逻辑实验报告

数字逻辑实验报告一、引言数字逻辑实验是电子信息类专业的一门重要实践课程。

本实验报告旨在记录和总结我在数字逻辑实验中的学习和实践经验,分享我对数字逻辑的理解和应用。

二、实验概述本次数字逻辑实验的主题是设计一个简单的加法器电路。

实验目的是通过实践操作和设计,加深对数字逻辑电路的理解,并掌握逻辑门的使用和联接方式。

三、实验步骤1. 学习并熟悉逻辑门的基本原理和真值表。

2. 根据加法器的要求,确定所需的逻辑门类型和数量。

3. 使用逻辑门芯片进行电路设计和布线。

4. 连接电路连接线,确保电路的正常工作。

5. 使用示波器验证电路的正确性。

6. 总结实验过程中的问题和解决方法。

四、实验结果经过设计和调试,成功实现了一个4位全加器电路。

通过输入不同的二进制数值,成功实现了两个四位数的相加运算,并正确输出结果。

实验结果表明,逻辑门的正确使用和连接方式能够实现复杂的算术运算。

五、实验心得数字逻辑实验是一门非常实用的实践课程。

通过本次实验,我深刻理解了数字逻辑的基本原理和应用方法。

实验中,我了解了逻辑门的分类和功能,并学会了逐级联接逻辑芯片的技巧。

同时,实验还培养了我解决问题的能力和动手操作的实践技能。

在实验过程中,我遇到了一些问题,如逻辑门连接不正确、芯片损坏等。

但通过仔细检查和重新设计,最终找到了解决问题的方法。

这使得我更加珍惜实验中出现的错误和挑战,因为它们实际上是对我们思维和创造力的锻炼和考验。

通过本次实验,我还意识到数字逻辑的应用范围非常广泛。

数字逻辑不仅仅应用于电子电路中,还可以用于计算机设计、数字通信、自动控制等领域。

数字逻辑的深入学习对我们今后的专业发展非常重要。

总之,数字逻辑实验是一门非常有意义和实践性的课程。

通过实验,我不仅加深了对数字逻辑的理解,还培养了动手操作和解决问题的能力。

我相信通过持续的实践和学习,我将进一步提高数字逻辑的应用水平,为未来的专业发展打下坚实基础。

六、结语通过本次数字逻辑实验的学习和实践,我对数字逻辑有了更深的了解和认识。

数字逻辑实验报告

数字逻辑实验报告

数字逻辑实验报告数字逻辑实验报告引言数字逻辑是计算机科学中的重要基础知识,通过对数字信号的处理和转换,实现了计算机的高效运算和各种复杂功能。

本实验旨在通过实际操作,加深对数字逻辑电路的理解和应用。

实验一:二进制加法器设计与实现在这个实验中,我们需要设计一个二进制加法器,实现两个二进制数的加法运算。

通过对二进制数的逐位相加,我们可以得到正确的结果。

首先,我们需要将两个二进制数输入到加法器中,然后通过逻辑门的组合,实现逐位相加的操作。

最后,将得到的结果输出。

实验二:数字比较器的应用在这个实验中,我们将学习数字比较器的应用。

数字比较器可以比较两个数字的大小,并输出比较结果。

通过使用数字比较器,我们可以实现各种判断和选择的功能。

比如,在一个电子秤中,通过将待测物品的重量与设定的标准重量进行比较,可以判断物品是否符合要求。

实验三:多路选择器的设计与实现在这个实验中,我们需要设计一个多路选择器,实现多个输入信号中的一路信号的选择输出。

通过使用多路选择器,我们可以实现多种条件下的信号选择,从而实现复杂的逻辑控制。

比如,在一个多功能遥控器中,通过选择不同的按钮,可以控制不同的家电设备。

实验四:时序电路的设计与实现在这个实验中,我们将学习时序电路的设计与实现。

时序电路是数字逻辑电路中的一种重要类型,通过控制时钟信号的输入和输出,实现对数据的存储和处理。

比如,在计数器中,通过时序电路的设计,可以实现对数字的逐位计数和显示。

实验五:状态机的设计与实现在这个实验中,我们将学习状态机的设计与实现。

状态机是一种特殊的时序电路,通过对输入信号和当前状态的判断,实现对输出信号和下一个状态的控制。

状态机广泛应用于各种自动控制系统中,比如电梯控制系统、交通信号灯控制系统等。

实验六:逻辑门电路的优化与设计在这个实验中,我们将学习逻辑门电路的优化与设计。

通过对逻辑门电路的布局和连接方式进行优化,可以减少电路的复杂性和功耗,提高电路的性能和可靠性。

数字逻辑实习报告

数字逻辑实习报告

一、实习目的本次数字逻辑实习的主要目的是通过实际操作和理论学习,加深对数字逻辑电路基本原理的理解,掌握数字逻辑电路的设计、分析和仿真方法,提高解决实际问题的能力。

二、实习内容1. 数字逻辑电路基本原理的学习在实习过程中,我们首先学习了数字逻辑电路的基本原理,包括逻辑门、触发器、计数器、寄存器等基本逻辑元件及其组合逻辑和时序逻辑电路的设计方法。

2. 逻辑门电路的设计与仿真通过Logisim软件,我们设计并仿真了各种逻辑门电路,如与门、或门、非门、异或门等。

通过实验,我们验证了所设计的逻辑门电路的正确性。

3. 触发器电路的设计与仿真我们学习了D触发器、JK触发器、T触发器等基本触发器电路的设计方法,并利用Logisim软件进行仿真,验证了所设计的触发器电路的功能。

4. 计数器电路的设计与仿真我们学习了同步计数器、异步计数器等计数器电路的设计方法,并利用Logisim软件进行仿真,验证了所设计的计数器电路的正确性。

5. 寄存器电路的设计与仿真我们学习了移位寄存器、同步寄存器等寄存器电路的设计方法,并利用Logisim软件进行仿真,验证了所设计的寄存器电路的功能。

三、实习过程1. 实验准备在实习开始前,我们查阅了相关资料,了解了数字逻辑电路的基本原理和设计方法。

同时,我们预习了实验指导书,明确了实验目的、内容和步骤。

2. 实验操作在实验过程中,我们按照实验指导书的要求,利用Logisim软件设计并仿真了各种数字逻辑电路。

在实验过程中,我们遇到了一些问题,通过查阅资料、请教老师等方式解决了这些问题。

3. 结果分析通过对所设计的数字逻辑电路进行仿真,我们验证了电路的正确性。

同时,我们分析了电路的性能,如速度、功耗等。

四、实习收获1. 提高了数字逻辑电路设计能力通过本次实习,我们掌握了数字逻辑电路的设计方法,提高了数字逻辑电路的设计能力。

2. 增强了实践操作能力在实习过程中,我们学会了使用Logisim软件进行数字逻辑电路的仿真,提高了实践操作能力。

数字逻辑实验报告1

数字逻辑实验报告1

姓名 xxx 学号 xxxxxxxx 教师 xxx时间 xxx 地点xxx楼xxx机房机位一.与非门逻辑功能测试实验1.实验目的1)熟悉TTL中、小规模集成电路的外形、管脚和使用方法。

2)了解和掌握基本逻辑门电路的输入与输出之间的逻辑关系及使用规则。

3)测试与非门74LS00芯片的逻辑功能。

4)根据测试结果完成74LS00的真值表1-4。

2.原理实现基本逻辑运算和常用逻辑运算的单元电路通称为逻辑门电路。

实现“与非”运算的电子电路称为与非门。

根据制造工艺不同,逻辑门电路有两大类,一类是以晶体三极管为主要元件的双极型逻辑门电路,另一类是MOS场效应管为主要元件的MOSx型逻辑门电路。

根据门电路输出端结构不同,又分为基本输出门电路、开路输出门电路、三台门电路。

门电路用高电平表示逻辑值“1”,低电平表示逻辑值“0”。

只有相同类型的门电路,其电平才相匹配。

参照74LS00芯片的引脚,将引脚1、2(A、B)分别连接到任意一个小开关插孔上,引脚3(F)连接到任意一个发光二极管电平指示灯插孔,引脚7连接接地插孔,引脚14连接+5V电源插孔,这样就构成了一个与非门电路。

拨动开关(开关拨向下方为0,拨向上方为1)组合A、B的值,观察F(上方的发光二极管指示0,下方的发光二极管指示1)的结果。

3.实验步骤1)将74LS00的输入引脚连接到任一开关,输出连接到任一对发光二极管。

引脚7连接“接地插孔”;引脚14连接+5V电源插孔。

2)拨动开关,观察二极管的变化,填表1-4。

4.实验数据5.实验现象在与非门中,只有当A和B的输入都为1时,输出才为0。

由于上方的灯亮说明输出为0,下方的灯亮说明是1,所以只有在A和B的输入都为1时(即开关打在上方时),上方的等才会亮,其余时候都是下方的灯亮。

6.体会通过学习、操作与非门逻辑功能测试实验,我初步体会到了数字逻辑电路的基本连接和测试方法,对测试了与非门的逻辑功能,且此元件工作正常。

数字逻辑第1次实验报告-模板

数字逻辑第1次实验报告-模板

数字逻辑实验报告(1)团队成员:报告人:实验指导教师:报告批阅教师:计算机科学与技术学院20 年月日学生姓名:学号:所在班级:一、实验内容组合逻辑电路的设计二、实验目的1.熟悉DICE-SEM数字逻辑实验箱的使用方法;2.掌握逻辑门功能的测试方法;3.掌握组合逻辑电路的分析和设计方法;4.掌握组合逻辑电路的功能测试方法。

三、实验所用组件四、实验要求1.一位全加/全减法器的实现(必选)设计一个全加全减法器,电路有四个输入M、A、B、和C in,两个输出S和C o。

要求如下:(1)M=0时,电路实现加法运算。

输入端A、B、和C in分别为被加数、加数和来自低位的进位,输出S和C o为本位和和向高位的进位;(2)M=1时,电路实现减法运算。

输入端A、B、和C in分别为被减数、减数和来自低位的借位,输出S和C o为本位差和向高位的借位。

2.舍入与奇偶检测电路的设计(必选)设计一个舍入与奇偶检测电路,该电路输入为8421码,输出为F1和F2。

要求如下:F1为四舍五入的输出信号,F2为奇偶检测输出信号。

当电路检测到输入的代码大于或等于(5)10时,输出F1=1,否则F1=0;当输入代码中的1的个数为奇数个时,输出F2=1,否则F2=0。

3.四路选择器的实现(可选)设计一个四路选择器,电路有6个输入端A1,A0,OE,D0,D1,D2,D3,一个输出学生姓名:学号:所在班级:端Y 。

要求如下:OE 为使能控制端,A 1,A 0为数据选择控制端,D 0,D 1,D 2,D 3为数据输入端。

当1=OE 时,电路不工作,输出为高阻状态; 当0=OE 时,电路工作,输出Y 由A 1,A 0决定,即: 当A 1A 0=00时,Y= D 0; 当A 1A 0=01时,Y= D 1; 当A 1A 0=10时,Y= D 2; 当A 1A 0=11时,Y= D 3。

附:三态、六总线驱动器74LS244的管脚图和逻辑表达式如图1和表1所示。

数字逻辑综合实验报告

数字逻辑综合实验报告

一、实验目的本次实验旨在通过实际操作,加深对数字逻辑基本原理和设计方法的理解,提高学生在数字电路设计、仿真和调试方面的实践能力。

通过完成以下实验任务,使学生掌握以下技能:1. 理解数字逻辑电路的基本概念和原理。

2. 掌握数字逻辑电路的设计方法和步骤。

3. 学会使用仿真软件进行电路设计和仿真测试。

4. 掌握数字逻辑电路的调试和优化方法。

二、实验内容本次实验主要包含以下三个部分:1. 组合逻辑电路设计:设计一个四位加法器,并使用Logisim软件进行仿真测试。

2. 时序逻辑电路设计:设计一个简单的计数器,并使用Verilog语言进行描述和仿真。

3. 数字逻辑电路综合应用:设计一个简单的数字信号处理器,实现基本的算术运算。

三、实验步骤1. 组合逻辑电路设计(1)分析题目要求,确定设计目标和输入输出关系。

(2)根据输入输出关系,设计四位加法器的逻辑电路。

(3)使用Logisim软件搭建电路,并设置输入信号。

(4)观察仿真结果,验证电路功能是否正确。

2. 时序逻辑电路设计(1)分析题目要求,确定设计目标和状态转移图。

(2)使用Verilog语言描述计数器电路,包括模块定义、输入输出定义、状态定义和状态转移逻辑。

(3)使用仿真软件进行测试,观察电路在不同状态下的输出波形。

3. 数字逻辑电路综合应用(1)分析题目要求,确定设计目标和功能模块。

(2)设计数字信号处理器电路,包括算术运算单元、控制单元和存储单元等。

(3)使用仿真软件进行测试,验证电路能否实现基本算术运算。

四、实验结果与分析1. 组合逻辑电路设计实验结果:通过仿真测试,四位加法器电路功能正常,能够实现两个四位二进制数的加法运算。

分析:在设计过程中,遵循了组合逻辑电路设计的基本原则,确保了电路的正确性。

2. 时序逻辑电路设计实验结果:通过仿真测试,计数器电路功能正常,能够实现从0到9的计数功能。

分析:在设计过程中,正确描述了状态转移图,并使用Verilog语言实现了电路的功能。

计算机组成原理算术逻辑运算实验报告1

计算机组成原理算术逻辑运算实验报告1

福建农林大学计算机与信息学院信息工程类实验报告课程名称:《计算机组成原理》名:姓系:计算机系计算机科学与技术业:专年2007级:级学号:指导教师:讲师职称:日25 月5 年2009.附件二:实验报告实验项目列表格式实验项目列表福建农林大学计算机与信息学院信息工程类实验报告级系:计算机科学与技术 2007计算机系专业:年级:姓名:学号:实验课程:计算机组成原理实验室号:___田实验设备号: 1 实验时间: 2009年5月 4日指导教师签字:成绩:算术逻辑运算实验实验一1.实验目的和要求(1)掌握简单运算器的组成以及数据传送通路;(2)验证运算功能发生器(74LS181)的组合功能。

2.实验原理图1-l 运算器数据通路图实验中所用的运算器数据通路如图1-1所示。

其中运算器由两片74LS181以并/串形式构成8位字长的ALU。

运算器的两个数据输入端分别由两个锁存器(74LS273)锁存,锁存器的输入连至数据总线,数据输入开关用来给出参与运算的数据,并经过一三态门.(74LS245)和数据总线相连。

运算器的输出经过一个三态门(74LS245)和数据总线相连。

数据显示灯已和数据总线相连,用来显示数据总线内容。

图1-2中已将实验需要连接的控制信号用箭头标明(其他实验相同,不再说明)。

其中除T4为脉冲信号,其它均为电平控制信号。

实验电路中的控制时序信号均已内部连至相应时序信号引出端,进行实验时,还需将S3、S2、S1、S0、Cn、M、LDDR1、LDDR2、ALU_G、SW_G各电平控制信号与开关单元中的二进制数据开关进行跳线连接。

其中ALU_G、SW_G为低电平有效,LDDR1、LDDR2为低电平有效。

3.主要仪器设备ZYE1603B计算机组成原理及系统结构教学实验箱一台,排线若干。

4.操作方法与实验步骤1.按图1-2连接实验线路,仔细检查无误后,接通电源。

(图中箭头表示需要接线的地方,接总线和控制信号时要注意高低位一一对应,可用彩排线的颜色来进行区分).图1-2 算术逻辑运算实验接线图2.用输入单元的二进制数据开关向寄存器DR1和DR2置数,数据开关的内容可以用与开关对应的指示灯来观察,灯亮表示开关量为“1”,灯灭表示开关量为“0”。

数字逻辑实验报告百度文库

数字逻辑实验报告百度文库

竭诚为您提供优质文档/双击可除数字逻辑实验报告百度文库篇一:数字逻辑实验报告哈尔滨师范大学数字逻辑实验报告姓名:学号:年级:班级:专业:学期:计算机科学与信息工程学院实验报告学生姓名:学号:指导教师:实验1基本门电路的功能和特性及组合逻辑电路实验【实验名称】基本门电路的功能和特性及组合逻辑电路实验【实验学时】4学时【实验目的】掌握常用集成门电路的逻辑功能与特性掌握各种门电路的逻辑符号了解集成电路的外引线排列及其使用方法学习组合逻辑电路的设计及测试方法【实验内容】部分TTL门电路逻辑功能验证组合逻辑设计之全加器或全减器【实验设备】数字逻辑实验箱双踪示波器(记录波形时,应注意输入、输出波形的时间相位关系,在座标中上下对齐。

)集成电路:7400、7404、7432、7486【实验步骤】1)在实验箱上插入相应的门电路,并把输入端接实验箱的逻辑开关,输出端接发光二极管,接好电源正负极,即可进行逻辑特性验证实验。

将其逻辑特性制成表格。

2)用7400连接的电路如图1.1所示,其中m端输入hZ 级的连续脉冲,n端输入KhZ级的连续脉冲,x和Y接逻辑开关,在xY的四种输入组合下,用示波器观测A、b及F点的波形,并记录下来,写出F=f(m、n、x、Y)的逻辑表达式。

3)实验电路如图1.2所示,在x端加入KhZ级的数字信号,逻辑开关Ab为00、01、10、11四种组合下,用示波器观察输入输出波形,解释Ab对信号的控制作用。

4)用7486和7400搭出全加器或全减器电路,画出其电路图,并按照其真值表输入不同的逻辑电平信号,观察输出结果和进位/借位电平,记录下来。

思考题:第二题用7486和7400设计一个可控制的半加/半减电路,控制端x=0时,为半加器,x=1时为半减器。

搭出电路并验证其运算是否正确。

【实验原理】1)组合逻辑电路的分析:对已给定的组合逻辑电路分析其逻辑功能。

步骤:(1)由给定的组合逻辑电路写函数式;(2)对函数式进行化简或变换;(3)根据最简式列真值表;(4)确认逻辑功能。

数字逻辑实验报告

数字逻辑实验报告

一、实验目的1. 理解数字逻辑的基本概念和原理。

2. 掌握逻辑门电路的基本功能和应用。

3. 学会使用逻辑门电路设计简单的组合逻辑电路。

4. 培养实际动手能力和分析问题、解决问题的能力。

二、实验原理数字逻辑是研究数字电路的基本原理和设计方法的一门学科。

数字电路是由逻辑门电路组成的,逻辑门电路是实现逻辑运算的基本单元。

常见的逻辑门电路有与门、或门、非门、异或门等。

组合逻辑电路是由逻辑门电路组成的,其输出仅与当前的输入有关,而与电路的历史状态无关。

组合逻辑电路的设计方法主要有真值表法、逻辑函数法、卡诺图法等。

三、实验仪器与设备1. 数字逻辑实验箱2. 移动电源3. 连接线4. 逻辑门电路模块5. 计算器四、实验内容1. 逻辑门电路测试(1)测试与门、或门、非门、异或门的功能。

(2)测试逻辑门电路的输出波形。

2. 组合逻辑电路设计(1)设计一个4位二进制加法器。

(2)设计一个4位二进制减法器。

(3)设计一个4位二进制乘法器。

(4)设计一个4位二进制除法器。

五、实验步骤1. 逻辑门电路测试(1)将实验箱上相应的逻辑门电路模块插入实验板。

(2)根据实验要求,连接输入端和输出端。

(3)打开移动电源,将输入端接入逻辑信号发生器。

(4)观察输出波形,记录实验结果。

2. 组合逻辑电路设计(1)根据实验要求,设计组合逻辑电路的原理图。

(2)根据原理图,将逻辑门电路模块插入实验板。

(3)连接输入端和输出端。

(4)打开移动电源,将输入端接入逻辑信号发生器。

(5)观察输出波形,记录实验结果。

六、实验结果与分析1. 逻辑门电路测试实验结果如下:(1)与门:当两个输入端都为高电平时,输出为高电平。

(2)或门:当两个输入端至少有一个为高电平时,输出为高电平。

(3)非门:输入端为高电平时,输出为低电平;输入端为低电平时,输出为高电平。

(4)异或门:当两个输入端不同时,输出为高电平。

2. 组合逻辑电路设计实验结果如下:(1)4位二进制加法器:能够实现两个4位二进制数的加法运算。

数字逻辑实验报告学生

数字逻辑实验报告学生

数字逻辑实验报告姓名:学号:专业:实验一:SSI 组合逻辑电路分析与设计一、实验目的1. 掌握用SSI ( 小规模数字集成电路) 构成的组合逻辑电路的分析与测试方法;2. 掌握组合逻辑电路的设计方法。

二、预习要求1. 熟悉门电路工作原理及相应的逻辑表达式;2. 熟悉数字集成块的引线位置及引线用途;3. 预习组合逻辑电路的分析与设计步骤。

三、实验原理组合逻辑电路是最常见的逻辑电路之一, 其特点是在任一时刻的输出信号仅取决于该时刻的输入信号, 而与信号作用前电路原来所处的状态无关。

组合逻辑电路的设计步骤如图1所示。

图1 组合逻辑电路的设计步骤四、实验内容1、设有一个监视交通信号灯工作状态的逻辑电路如表1 表1 交通灯真值表所示,图中用R 、Y 、G 分别表示红、黄、绿三个灯,并规定灯亮时为1,不亮时为0 。

用L表示故障信号,正常工作时L 为0, 发生故障时L 为 1 。

按图2接线,验证理论分析结果, 并记入表1中。

五、仿真数据表2 在线仿真结果图2 电路原理图仿真结果如下图2所示。

六、仿真实验现象分析附:所用芯片引脚图7404引脚图7400引脚图7420引脚图实验二:集成触发器一、实验目的1. 熟悉并验证触发器的逻辑功能及相互转换的方法。

2.掌握集成JK 触发器逻辑功能的测试方法。

3. 复习触发器的基本类型及其逻辑功能。

4. 进一步熟悉用双踪示波器测量多个波形的方法。

二、预习要求1.复习触发器的基本类型及其逻辑功能。

2. 掌握JK触发器的逻辑功能及相互转换的方法。

三、实验原理按触发器的逻辑功能分,有RS触发器,JK触发器,D触发器,T触发器,T‘触发器。

按触发脉冲的触发形式分, 有高电平触发、低电平触发、上升沿触发和下降沿触发以及主从触发器的脉冲触发等。

各种触发器之间的转换:四、实验内容及原理图1. 验证触发器的逻辑功能。

2. 将JK触发器转换成D触发器,并验证功能3. 将两个JK触发器连接起来, 即第二个触发器的J K 端连接在一起, 接到第一个触发器的输出端,输入分别观察和记录CP,1Q,2Q的波形, 理解二分频, 四分频的概念。

数字逻辑实习报告 (1)

数字逻辑实习报告 (1)

课程实习报告课程名称:数字逻辑实习题目:交通灯控制、自动售票机、数字钟姓名:陈权专业:电子信息工程年级:2010级学号:090410004指导教师:颜德强职称:讲师2011年 1 月16日课程实习评分表评价内容评价指标分值评定成绩查阅、收集资料查阅一些相关资料,收集素材,进行参考。

8构思、主见综合分析正确,论证充分,构思全面,对问题有较深刻的认识,有一定独特见解。

8学过知识的运用能结合学过、了解到的知识正确设计实习项目方案或建立模型;能独立进行实验工作;能运用所学知识和技能去发现与解决实际问题;能正确处理实验数据;能对实习项目进行理论分析,得出有价值的结论。

24逻辑结构结构合理,层次分明,条理清晰,逻辑性强。

8分析与阐述问题的能力所阐述问题清楚,突出重点,有见解;实习报告表现出对实际问题有较强的分析能力和概括能力。

10撰写质量语句通顺,语言准确,书写工整,达到实习报告要求的字数,实习报告书写格式符合要求。

10实习质量实验正确,分析处理科学;实习报告结果有价值;电路绘制符合国家标准,质量符合要求;计算及测试结果准确。

24撰写报告的态度及完成情况工作努力,遵守纪律;作风严谨务实;积极、主动查阅有关资料,按期完成规定的任务,工作量饱满。

8 合计错误!未指定书签。

实习指导教师签名:评定日期:目录1.实习的目的和任务 (1)1.1交通灯控制 (1)1.2自动售票机 (1)1.3数字钟 (1)2.实习要求 (1)3.实习地点 (1)4.主要仪器设备 (1)5.实习内容 (2)5.1交通灯控制 (2)5.1.1设计原理: (2)5.1.2总电路设计及说明 (2)5.1.3测试结果 (4)5.2自动售票机 (4)5.2.1设计原理: (4)5.2.2总电路设计及说明 (5)5.2.3测试结果 (9)5.3数字钟 (9)5.3.1设计原理: (9)5.3.2.总电路设计及说明 (9)5.3.3.测试结果 (10)7.结束语 (11)8.参考文献 (11)1.实习的目的和任务1.1交通灯控制目的:运用和掌握所学的《数字电子技术基础》(第五版)的基本知识,使用Multisim 7、EWB软件来实现电路的仿真技术,独立完整地设计交通灯电路,以及仿真和调试等的综合能力。

数字逻辑实验报告

数字逻辑实验报告

数字逻辑实验报告本次实验旨在通过数字逻辑实验的设计和实现,加深对数字逻辑电路原理的理解,并通过实际操作提高动手能力和解决问题的能力。

在本次实验中,我们将学习数字逻辑实验的基本原理和方法,掌握数字逻辑实验的设计与调试技巧,提高实验操作的熟练程度。

首先,我们进行了数字逻辑实验的准备工作,包括熟悉实验设备和器材的使用方法,了解实验电路的基本原理和设计要求。

在实验过程中,我们按照实验指导书上的要求,逐步完成了数字逻辑实验电路的设计、搭建和调试。

在实验过程中,我们遇到了一些问题,但通过分析问题的原因并进行逐步排除,最终成功完成了实验。

其次,我们进行了数字逻辑实验电路的测试和验证。

通过使用示波器、逻辑分析仪等测试设备,我们对搭建好的数字逻辑电路进行了测试,验证了实验电路的正确性和稳定性。

在测试过程中,我们发现了一些问题,但通过仔细观察和分析,最终找到了解决问题的方法,并取得了满意的测试结果。

最后,我们总结了本次实验的经验和教训。

通过本次实验,我们深刻理解了数字逻辑电路的原理和实现方法,提高了实验操作的技能和水平,增强了动手能力和解决问题的能力。

在今后的学习和工作中,我们将继续努力,不断提高自己的专业能力和实践能力,为将来的发展打下坚实的基础。

通过本次实验,我们对数字逻辑实验有了更深入的了解,对数字逻辑电路的设计和实现有了更加丰富的经验,相信在今后的学习和工作中,我们能够更加熟练地运用数字逻辑知识,为实际工程问题的解决提供有力的支持。

总之,本次实验不仅增强了我们对数字逻辑实验的理解和掌握,也提高了我们的实验操作能力和解决问题的能力。

希望通过今后的学习和实践,我们能够不断提高自己的专业水平,为将来的发展打下坚实的基础。

数字逻辑实验报告1

数字逻辑实验报告1

数字逻辑实验报告1篇一:数字逻辑实验报告实验一 TTL门电路的逻辑功能测试一、实验目的1、掌握TTL器件的使用规则。

2、掌握TTL集成与非门的逻辑功能。

3、掌握TTL集成与非门的测试方法。

二、实验原理TTL集成电路的输入端和输出端均为三极管结构,所以称作三极管、三极管逻辑电路(Transistor -Transistor Logic )简称TTL电路。

54 系列的TTL电路和74 系列的TTL电路具有完全相同的电路结构和电气性能参数。

所不同的是54 系列比74 系列的工作温度范围更宽,电源允许的范围也更大。

74 系列的工作环境温度规定为0—700C,电源电压工作范围为5V±5%V,而54 系列工作环境温度规定为-55—±1250C,电源电压工作范围为5V±10%V。

54H 与74H,54S 与74S 以及54LS 与74LS 系列的区别也仅在于工作环境温度与电源电压工作范围不同,就像54 系列和74 系列的区别那样。

在不同系列的TTL 器件中,只要器件型号的后几位数码一样,则它们的逻辑功能、外形尺寸、引脚排列就完全相同。

TTL 集成电路由于工作速度高、输出幅度较大、种类多、不易损坏而使用较广,特别对我们进行实验论证,选用TTL电路比较合适。

因此,本实训教材大多采用74LS(或74)系列TTL 集成电路,它的电源电压工作范围为5V±5%V,逻辑高电平为“1”时≥2.4V,低电平为“0”时≤0.4V。

它们的逻辑表达式分别为:图 1.2.1 分别是本次实验所用基本逻辑门电路的逻辑符号图。

图 TTL 基本逻辑门电路与门的逻辑功能为“有0 则0,全1 则1”;或门的逻辑功能为“有1则1,全0 则0”;非门的逻辑功能为输出与输入相反;与非门的逻辑功能为“有0 则1,全1 则0”;或非门的逻辑功能为“有1 则0,全0 则1”;异或门的逻辑功能为“不同则1,相同则0”。

三、实验设备与器件1、仪器数字逻辑实验箱2、器件74LS00 二输入端四与非门四、实验内容及实验步骤(包括数据记录)1、测试74LS00(四2输入端与非门)逻辑功能将74LS00正确接入DIP插座,注意识别1脚位置(集成块正面放置且缺口向左,则左下角为1脚),输入端接逻辑电平输出插口,输出端接逻辑电平显示,拨动逻辑电平开关,根据LED发光二极管亮与灭,检测非门的逻辑功能,结果填入下表中。

数字逻辑实验报告

数字逻辑实验报告

数字逻辑实验报告实验介绍数字逻辑是计算机科学不可或缺的基础课程,本次实验我们将学习数字逻辑的基本概念,使用Verilog语言实现逻辑电路,并在数字仿真软件中模拟电路的运行过程。

实验目的•理解数字逻辑电路的基本概念和原理;•掌握Verilog语言的基本语法和编程技巧;•学会使用数字仿真软件模拟数字逻辑电路的运行过程。

实验过程实验一:组合逻辑电路的实现本实验中我们将使用Verilog语言实现一个简单的组合逻辑电路。

组合逻辑电路是由一些基本逻辑门连接而成的电路,这些逻辑门输出状态仅受输入状态影响,不受电路的历史状态影响,因此称为组合逻辑电路。

在本实验中,我们将使用Verilog语言实现一个简单的组合逻辑电路,具体如下:module combinational_logic(input a, b, c, output d, e);assign d = ~(a & b);assign e = ~(c | d);endmodule以上Verilog代码实现了一个简单的组合逻辑电路,在电路中有三个输入端口(a、b、c)和两个输出端口(d、e)。

其中d输出端口为(a & b)的反相值,e输出端口为(c | d)的反相值。

实验二:时序逻辑电路的实现时序逻辑电路是一种与历史状态相关的电路,因此称为时序逻辑电路。

与组合逻辑电路的不同之处,在于时序逻辑电路有一种状态元件,在时钟信号的驱动下更改其状态。

在本实验中,我们将使用Verilog语言实现一个简单的时序逻辑电路,具体如下:module sequential_logic(input clock, reset, input data, output reg q);always @(posedge clock or negedge reset) beginif(!reset) beginq <= 1'b0;endelse beginq <= data;endendendmodule以上Verilog代码实现了一个简单的时序逻辑电路,在电路中有两个输入端口(clock、reset)和一个输出端口(q)。

数字逻辑第一次实验报告-模板n

数字逻辑第一次实验报告-模板n

数字逻辑第一次实验报告-模板n数字逻辑实验报告(1)数字逻辑实验1一、系列二进制加法器设计50% 二、小型实验室门禁系统设计50%总成绩姓名:学号:班级:CS指导教师:计算机科学与技术学院评语:(包含:预习报告内容、实验过程、实验结果及分析)2018年5 月22 日数字逻辑实验报告系列二进制加法器设计预习报告一、系列二进制加法器设计1、实验名称系列二进制加法器设计。

2、实验目的要求同学采用传统电路的设计方法,对5种二进制加法器进行设计,并利用工具软件,例如,“logisim”软件的虚拟仿真功能来检查电路设计是否达到要求。

通过以上实验的设计、仿真、验证3个训练过程使同学们掌握传统逻辑电路的设计、仿真、调试的方法。

3、实验所用设备Logisim2.7.1软件一套。

4、实验内容对已设计的5种二进制加法器,使用logisim软件对它们进行虚拟实验仿真,除逻辑门、触发器外,不能直接使用logisim软件提供的逻辑库元件,具体内容如下。

(1)一位二进制半加器设计一个一位二进制半加器,电路有两个输入A、B,两个输出S和C。

输入A、B分别为被加数、加数,输出S、C为本位和、向高位进位。

(2)一位二进制全加器设计一个一位二进制全加器,电路有三个输入A、B和Ci ,两个输出S和Co。

输入A、B和Ci 分别为被加数、加数和来自低位的进位,输出S和Co为本位和和向高位的进位。

(3)串行进位的四位二进制并行加法器用四个一位二进制全加器串联设计一个串行进位的四位二进制并行加法器,电路有九个输入A3、A2、A1、A、B3、B2、B1、B和C,五个输出S3、S2、S1、S 0和C4。

输入A= A3A2A1A、B= B3B2B1B和C分别为被加数、加数和来自低位的进位,输出S= S3S2S1S和Co为本位和和向高位的进位。

(4)先行进位的四位二进制并行加法器利用超前进位的思想设计一个先行进位的四位二进制并行加法器,电路有九个输入A3、A2、A1、A、B3、B2、B1、B和C,五个输出S3、S2、S1、S和C4。

数字逻辑实验一(计算机)

数字逻辑实验一(计算机)

《数字逻辑》实验报告
实验序号:1 实验项目名称:各种门功能的熟悉
计科1001
学号姓名专业、班
实验地点文波实验室指导教师时间2011.3
一、实验目的及要求
1、目的
熟悉各种门的功能,包括与门、非门、或门、与非、或非等等。

掌握各种门的真值表。

2、要求:
使用门来验证其真值表。

二、实验设备(环境)及要求
1、数字逻辑实验箱一套。

2、连结导线若干。

三、实验内容与步骤
使用实验室提供的芯片来验证各种门的功能,使用了与门,或门,非门,与非,或非,异或等等,每个芯片各使用了两个输入0和1,使用了不同的组合。

四、实验结果
与门:输入:00 01 10 11
输出:0 0 0 1
或门:输入:00 01 10 11
输出:0 1 1 1
非门:输入:0 1
输出:1 0与非:输入:00 01 10 11
输出:1 1 1 0
或非:输入:00 01 10 11
输出:1 0 0 0
五、分析讨论
需要看准指导书上写的芯片引脚的编号,而不能想当然的认为哪些是输入,哪些是输出。

六、教师评语:能按时完成实验报告,实验步骤清晰,分析合理,结论正确
签名:朱平
日期:2011年6月成绩
见成绩表。

数字逻辑实验报告

数字逻辑实验报告

数字逻辑实验报告实验一 3-8译码器设计一、实验目的1.通过一个简单的 3-8 译码器的设计, 让学生掌握用原理图描述组合逻辑电路的设计方法。

2.掌握组合逻辑电路的软件仿真方法。

二.填写表格(亮或暗)(2)三. EDA平台下用原理图输入法设计组合电路的步骤。

(3)(1)在QuartusⅡ主界面下选择File->New命令, 然后选择Other File选项卡, 从中选择Vector Waveform File,建立一个空的波形编辑器窗口, 将此波形文件保存, 并勾选add file current project。

(4)在Name区域的对话框中单击Node Finder按钮。

(5)进行选择和设置, 完成节点添加。

(6)选择Edit->End Time命令, 将其设置为1.0us。

使用波形编辑器工具条编辑输入节点A,B,C的波形。

为节点A,B,C分别赋予周期为200ns,400ns,800ns的时钟波形, 初始电平为“0”。

然后通过View->Fit in Window显示输入波形全貌。

执行Tools->Simulator Tool命令, 进行设置, 单击Start进行仿真。

观察仿真结果, 检查是否与设计相符合。

四. 在仿真过程中, 为何设置A, B,C分别为周期为200ns,400ns,800ns的时钟信号?答: 将其周期设置成一定比例, 在仿真结果中便于观察与比较波形。

五.时序仿真波形中, 输出波形与输入波形是否同步变化?如何解释输出波形中存在的毛刺?答: 不是同步变化的。

输出波形中存在的毛刺是组合逻辑电路中的冒险现象, 主要是由于门电路的延迟时间产生的。

请总结实验中出现的问题, 你是如何解决的?答: (1)问题: 在为译码器的元件的管脚上添加连线时, 由于连接的线较多, 出现了线连接出错, 导致电路编译出错。

解决: 根据编译的提示找出了连接出错的地方, 然后重新连接再编译。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字电子技术实验报告
实验名称:集成门电路逻辑功能测试
一、实验目的:
1、验证常用集成门电路的逻辑功能;
2、熟悉各种逻辑门电路的逻辑符号;
3、熟悉TTL集成电路的特点、使用规则和使用方法。

二、实验设备及器件:
1、数字电路实验箱
2、74LS00四2输入与非门1片74LS86四2输入异或门1片
74LS11三3输入与门1片74LS32四2输入异或门1片
74LS04反相器1片
三、实验原理:
集成逻辑门电路是最简单、最基本的数字集成元件,目前已有种类齐全集成门电路。

TTL集成电路由于工作速度高、输出幅度大、种类多、不易损坏等特点而广泛使用,特别对学生进行实验论证,选用TTL电路较适合,因此这里使用了74LS系列的TTL电路,它的电源电压为5V+10%,逻辑电平“1”时>2.4V,低电平“0”时<0.4V。

实验使用的集成电路都采用的是双列直插式封装形式,其管脚的识别方法为:将集成块的正面(印有集成电路型号标记面)对着使用者,集成电路上的标识凹口朝左,右下角第一脚为一脚,按逆时针方向顺序排布其管脚。

四、实验步骤:
(一)、根据接线图连接,测试各门电路逻辑功能
1、与门逻辑功能测试
被测试器件为74LS11三3输入与门,其引脚图见实验教材P6。

(1)按图1-1(见实验教材P6)接线,门的三输入端节逻辑开关输出插口,以供“0”
与“1”电平信号,开关向上,输出逻辑“1”,先下输出逻辑“0”。

门的输入
端接LED发光二极管。

(实验时,利用DSWPK开关其电路图如下)(2)按表1-1要求用开关改变输入端A、B、C的状态,借助指示灯观测个相应输出端F的状态,当电平指示灯亮时记为“1”,灭时记为“0”,把测试结果填入表
1-1中。

表1-1 74LS11逻辑功能表
2、或门逻辑功能测试
(1)按图1-2接线(见实验教材P6),按表1-2要求用开关改变输入端A、B的状态,借助指示灯各相应输出端F的状态,把测试结果填入表1-2中。

(其实验电路图如下)
表1-2 74LS32逻辑功能表
3、非门逻辑功能测试
(1) 按图1-3接线(见实验教材P 7),按表1-3要求用开关改变输入端A 的状态,
借助指示灯各相应输出端F 的状态,把测试结果填入表1-3中。

表1-3 74LS04逻辑表
(二)、根据管脚功能图连接,测试各门电路逻辑功能
1、与非门逻辑测试74LS00四2输入与非门管脚功能如图1-4所示,用其中一个门测试其逻辑功能。

(其实验电路连接如下)
表1-4
74LS00逻辑功能表
2、 用74LS86检测异或门的逻辑功
74LS86四2输入异或门管脚功能如图1-5所示,用其中一个门测试其逻辑功能。

(其实验电路连接如下)
图 1-4
图 1-5
表1-5 74LS86逻辑功能
五、
1、实验器材的使用应在可行状态下越精简越好,在与门试验中,发现利用一下方
法布线复杂,并且输出端没有接地。

2、在与门、或门、非门与非门中当输入端接地时相当于高电平输入。

3、发现74LS1914(记储器)的功能与与门利用一组输入端时的功能完全符合。

相关文档
最新文档