十字相乘法与分组分解法习题课

合集下载

分组分解法练习题及答案

分组分解法练习题及答案

分组分解法练习题及答案精品文档分组分解法练习题及答案1.分组分解法利用分组来分解因式的方法叫做分组分解法.22例如:把x-y+ax+ay分解因式.此多项式各项之间没有公因式,又不能统一用某个公式分解.我们把前两项分为一组,2222后两项分为一组,得到:x-y+ax+ay=+=+a=,最终达到分解因式的目的.2.分组分解法的根据分组的原则是分组后可直接提取公因式或可直接运用公式,但必须使各组之间能继续分解.注意:1.分组时需进行尝试,找到合理的分组方法.2.有时,分组方法并不唯一.3.对于四项式在分解时,若分组后有公因式,则往往用“二二”分组;若分组后公式法22分解才行时,往往用“一三”分组,例如多项式2ab-a-b+1,在分解时,222222ab-a-b+1=1-=1-=1.重点难点分析1 / 19精品文档重点:掌握分组分解法,理解分组分解法的分组原则:分组后可继续分解.难点:是把多项式合理的分组,处理方法是在分组时要预先考虑到分组后能否继续进行因式分解.同时强调:分组无固定的形式.2.典型例题解析32例1 分解因式2a+a-6a-3分析这是四项式,可以“二二”分组,由于一、二两项的系数之比是2?1,三、四两项的系数之比也是2?1,因此,将一、二两项为一组,三、四两项为一组进行分组分解,有成功的希望.也可以一、三两项,二、四两项进行分组.32解 a+a-6a-33=-=a-3=222例分解因式4x-4xy+y-16z分析这是四项式,“二二”分组无法进行下去,采用“一三”分组,也就是前三项合为一组,满足完全平方公式,第四项单独作为一组,而且是某数或某整式的平方形式,这样便可运用平方差公式继续分解.222解 x-4xy+y-16z2 / 19精品文档222=-16z22=-=22例分解因式ax-ay-x+2xy-y分析这是五项式,采有“二三”分组,也就是前两项为一组,后三项为一组,能用完全平方公式,关键在分组后且间仍有公因式可提.解 ax-ay-x+2xy-y22=-2=a-=22222例把-4xy分解因式22222解 -4xy2222=-2222=[+2xy][-2xy]2222=[-1][-1]2=[-1][-1]=例分解因式x-6分析考虑去掉括号,重新分组.解 x-632=x-3x+2x-63 / 19精品文档32=+2=x+22=4例分解因式a+44分析这是一个四次二项式,无法直接运用某种方法分解因式.如果在a+4中项添上一22422项o,再把o拆成绝对值相等、符号相反的两项4a和-4a,则原多项式就变为a+4a+4-4a四项式了,再进行3-1分组,利用公式就能分解了.4解 a+4422=a+4a+4-4a422=-4a22=-22=点评本例是添拆项的典型例题,目的性很强,原来是二项式,通过添拆项变为四项式,再利用分组、公式进行分解.22322例已知x+10xy+25y-1=0,化简x+5xy+x.分析由已知条件,通过因式分解,可得到的值.从而可以化简所求代数式.22解由x+10xy+25y-1=0可得4 / 19精品文档-1=0 即=0当x+5y+1=0时32x+5x2y+x=x=0当x+5y-1=0时,即x+5y=1322x+5x2y+x=x=2x熟练掌握并能灵活运用分组分解法.考查分组分解法常与提公因式、公式法相结合,命题以对四项式的多项式因式分解为主.232例把2x+x-6x-3分解因式.32解 x+x-6x-33=-2=x-32=2222例把abx-aby-axy+bxy分解因式.2222解 abx-aby-axy+bxy2222=+=a+by=点评本题中前两项虽有公因式ab,后两项虽有公因5 / 19精品文档式xy,但分别提出公因式后,两组中却无公因式可提,无法继续分解.因此分组时,必须把眼光放远一点.本题解法是把一、三两项作为一组,二、四两项作为一组;也可把一、四两项作为一组,二、三两项作为一组.请读者试一试.2例10 把多项式分解因式xy-ax+bx+ay-a+ab.2解法一 xy-ax+bx+ay-a+ab2=+=x+a=2解法二 xy-ax+bx+ay-a+ab2=-+=y-a+b=点评本题共有六项,解法一分为两组:前三项为一组,后三项为一组;解法二分为三组:一、四两项作为一组,二、五两项作为一组,三、六两项作为一组.一般地,类似例8这样的六项式都可用以上两种方法分组.一、填空题221.x+2y-y+2x=.22.因式分解x+xy-3x-3y= .223.因式分解1-a+2ab-b= .6 / 19精品文档54324.因式分解x+x+x+x= .25.分解因式ax-ay+a+bx-by+ab= .6.分解因式ab-3ac+2ay-bx+3cx-2xy= .7.分解因式2x-2y+4xy-1= .8.分解因式ab-ab+ab-ab= .229.若a-b=2,a-c=4,则b-2bc+c+3= .2210.分解因式a-b+4a+2b+3= .二、分解因式32211.ab+bc-cd-da 12.x-xyz+xy-xz22213.y-x+6x-914.x-+2xy+y-ax-ay2215.6x-2m+2n 16.4x-4y+4y-1423324参考答案:22一、1. . . .x5.26. . .) .10 10.二、11.原式= 12.原式=x 13.原式=14.原式= 15.原式=2 16.原式=因式分解之分组分解法1. 按字母特征分组a?b?ab?1 a2,ab,ac,bc2. 按系数特征分组7x2?3y?xy?21x ac?6ad7 / 19精品文档3. 按指数特点分组a2?9b2?2a?6bx2?x?4y2?2y2224.按公式特点分组a,2ab,b,c a2?4b2?12bc?9c2四(总结规律1.合理分组;2.组内分解3.组间再分解4.如果一个多项式中有三项是一个完全平方式或通过提取负号是一个完全平方式,一般就选用“三一分组”的方法进行分组分解。

因式分解练习十字相乘、分组分解

因式分解练习十字相乘、分组分解

因式分解 ——十字相乘、分组分解【知识要点】1.十字相乘法(1)二次项系数为1的二次三项式q px x ++2中,如果能把常数项q 分解成两个因式b a ,的积,并且b a +等于一次项系数中p ,那么它就可以分解成()()()b x a x ab x b a x q px x ++=+++=++22 方法总结:将二次三项式2x px q ++分解因式,关键是选择a 和b ,使 q =, p =(1)q 为正数时,a 、b ,且与 同号;(2)q 为负数时,a 、b ,其中绝对值 (填“较大”或“较小”)因数与p 同号;(3)先把 分解成若干组两数之积,选择其中两数之和等于 的一组数。

(2)二次项系数不为1的二次三项式c bx ax ++2中,如果能把二次项系数a 分解成两个因数21,a a 的积,把常数项c 分解成两个因数21,c c 的积,并且1221c a c a +等于一次项系数b ,那么它就可以分解成:()=+++=++2112212212c c x c a c a x a a c bx ax ()()221c x a a x a ++。

2.分组分解法(1)定义:分组分解法,适用于四项以上的多项式,例如22a b a b-+-没有公因式,又不能直接利用分式法分解,但是如果将前两项和后两项分别结合,把原多项式分成两组。

再提公因式,即可达到分解因式的目的。

例如: 22a b a b -+-=22()()()()()()(1)a b a b a b a b a b a b a b -+-=-++-=-++,这种利用分组来分解因式的方法叫分组分解法。

(2)原则:分组后可直接提取公因式或可直接运用公式,但必须使各组之间能继续分解。

(3)有些多项式在用分组分解法时,分解方法并不唯一,无论怎样分组,只要能将多项式正确分解即可。

【典型例题】例1 把下列各式分解因式(1)2914x x ++= (2)212x x --=(3)2812x x ++= (4)2710x x -+=(5)228x x --= (6)2922x x --=(7)2295x x +-= (8)2376x x --=(9)28103x x ++= (10)210275x x ++=二、例1.把下列各式分解因式:(1)232x x ++ (2)276x x -+ (3)2421x x -- (4)2215x x --练习:把下列各式分解因式:(1)298x x ++ (2)2712x x -+ (3)2421a a --+ (4)2328b b --四、例2.把下列各式分解因式:(1)4220x x -- (2)2278a x ax +- (3)22914a ab b -+ (4)32412a a a --+练习:把下列各式分解因式:(1)21118x x ++ (2)22526a a -+ (3)22730a ab b -- (4)2232x xy y -+(5)222256x y x y x -+ (2)278a a +- (3)()()220x y x y +++-你能用十字相乘法分解下列各式吗?(1)223x x -- (2)2257x x +- (3)2321a a -- (4)23145b b +-六、解下列方程(1)220x x --= (2)2560x x +-= (3)23440a a +-= (4)227150b b +-=七、1.用十字相乘法分解因式:(1)2x 2+3x+1; (2)2y 2+y -6; (3)6x 2-13x+6; (4)3a 2-7a -6;(5)6x 2-11xy+3y 2; (6)4m 2+8mn+3n 2; (7)10x 2-21xy+2y 2; (8)8m 2-22mn+15n 2.2.把下列各式分解因式:(1)4n 2+4n -15; (2)6a 2+a -35; (3)5x 2-8x -13; (4)4x 2+15x+9(5)15x 2+x -2; (6)6y 2+19y+10; (7)20-9y -20y 2; (8)7(x -1) 2+4(x -1)(y+2)-20(y+2) 2.例2 把下列各式分解因式(1)bc ac ab a -+-2 (2)bx by ay ax -+-5102 (3)n mn m m 552+--(4)bx ay by ax 3443+++ (5)22144a ab b --- (6)223443ax ay bx cy cx by +-++-例3 把下列各式分解因式(1)22421x xy y --; (2)()()267a b a b +-+-; (3)()()22524x x -+-+(4)()()()()22310a b a b a b a b -+-+-+; (5)()()2224221x y x y y y +-+- (6)222()14()24x x x x +-++【练 习】A 组将下列各式分解因式1.221x x +-= 2.2352x x ++=3.232x x +-= 4.221315x x ++=5.2122512x x -+= 6.2310x x +-=7.ax +ay -bx -by = 8.x 2-xy -ax +ay =9.x 2+6y -xy -6x = 10.a 2-b 2-a +b =11.4x 2-y 2+2x +y = 12.a 2-2ab +b 2-c 2 =13.1-x 2-2xy -y 2= 14.x 2-9a 2+12a -4=15.x 2y +3xy 2-x -3y= 16.na 2-2ba 2+mn -2bm=17.x 3+3x 2+3x +9= 18.20ax 2+5xy -8axy -2y 2=19.bx +ax +by +bz +ay +az= 20.2ax -3bx +x -2a +3b -1=B 组一、分解因式1.2249y x -3、2a 4-324、a 2(3a +1)-b 2(3a +1)5、x 2-8x +166、a 2b 2-10ab +257、-x 4+2x 2y 2-y4 8、(2x 2+1)2+2(2x 2+1)+1二、分解因式1、9222+--a b ab 2.x 3+3x 2-4x -12 3.x 2-b x -a 2+a b4.m -m 3-mn 2+2m 2n 5.9ax 2+9bx 2-a -b 6.a 2-2a +4b -4b 2C 组三、分解因式1、(a 2+b 2)2-4a 2b 22、a 4(x -y)+b 4(y -x)3、(a 2+1)2-4a(a 2+1)+4a 24.a 2+2ab +b 2-ac -bc5.m 2+2mn +n 2-p 2-2pq -q2 6.(x 2-3)2-4x 27. (x 2-3)2+(x 2-3)-28.(x 2-2x)2-4(x 2-2x)-5 9.a 4-2a 2b 2-8b 4 10.x 4-6x 3+9x 2-16四、分解因式 (1)y y x x 2422+-- (2)222449c bc b a -+- (3)1724+-x x (4)422411y y x x +-(5)90)242)(32(22+-+-+x x x x (6)如果b a ,是整数,且12--x x 是123++bx ax 的因式,求b 的值.(7)设y kx xy x x 42323---+可分解为一次因式与二次因式之积,求k 的值.(8)已知62-+x x 是多项式162234-+++-+b a x ax x x 的因式,求a 、b 的值.。

14.3因式(十字相乘法和分组法)讲解

14.3因式(十字相乘法和分组法)讲解

“拆两头,凑中间”
请大家记住公式
十字相乘法公式:
x (a b) x ab ( x a)(x b)
2
将下列各数表示成两个整数的积的形式
(1)6= 2×3 或 (-2)×(-3)或1×6或(-1) ×(-6) (2)-6= 1× (-6)或-1×6或2× (-3)或3× (-2) (3)12= 1× 12或(-1)×(-12)或2× 6或(-2)× (-6) 或3×4 或(-3)× (-4) (4)-12= 1× (-12)或(-1)×12或2×(- 6)或(-2)× 6或 3×(-4) 或(-3)× 4 (5)24= 1× 24或(-1)×(-24)或2× 12或(-2)× (-12) 或 3×8或(-3)× (-8)或4× 6或(-4)× (-6) (6)-24= 1×(- 24)或(-1)×24或2× (-12)或(-2)× 12或 3×(-8)或(-3)× 8或4×(-6)或(-4)× 6
4
= a(x - 1)(x + 1)
4
因式分解

练习2:
ab + ac + 2a + bx + cx + 2x
解原式 = a(b + c + 2) + x(b + c + 2)
= (b + c + 2)(a + x)
解原式 = b(a + x) + c(a + x) + 2(a + x)
= (a + x)(b + c + 2)
= x4 + 2x3 + x2 + x2 + 2x +1

十字相乘法和分组分解法

十字相乘法和分组分解法
知识要 点
利用十字交叉线来分解系数,把二次三 项式分解因式的方法叫做十字相乘法.
用十字相乘法把形如x2+px+q的二次三 项式分解因式: q=ab,p=a+b
当q>0时,q分解的因数a、b( 同号 ) 当q<0时,q分解的因数a、b( 异号 )
x2+px+q= x2+(a+b)x+ab= (x+a)(x+b)
对二次三项式

x2+px+q进行因式分解, 应重点掌握以下三个问题:

1.掌握方法:拆分常数项,验证一次项.
2.符号规律: 当q>0时,a、b同号,且a、b的符号与p 的符号相同; 当q<0时,a、b异号,且绝对值较大的 因数与p的符号相同.
3.书写格式:竖分横积.
知识要 点
分组分解法分解因式:
练一 练
把下列各式因式分解: (1)x2+2xy+y2-z2 (2)ab+a+b+1
解:(1)原式=(x2+2xy+y2)-z2 =(x+y)2-z2 =(x+y+z)(x+y-z)
(2)原式=(ab+a)+(b+1) =a(b+1)+(b+1) =(b+1)(a+1)
(3)9a4-4a2+4a-1 解:9a4-4a2+4a-1
x
a
xห้องสมุดไป่ตู้
ax +
b
bx = (a+b)x
步骤: ①竖分二次项与常数项; ②交叉相乘,和相加; ③检验确定,横写因式.

人教版八年级上册数学《因式分解--十字相乘法与分组分解法》专题讲义(含答案)

人教版八年级上册数学《因式分解--十字相乘法与分组分解法》专题讲义(含答案)

因式分解的基本方法例题精讲一、十字相乘法十字相乘法:一个二次三项式2ax bx c ++,若可以分解,则一定可以写成1122()()a x c a x c ++的形式,它的系数可以写成12a a 12c c ,十字相乘法就是用试验的方法找出十字线两端的数,其实就是分解系数a ,b ,c ,使得:12a a a =,12c c c =,1221a c a c b +=,2()()()x a b x ab x a x b +++=++若24b ac -不是一个平方数,那么二次三项式2ax bx c ++就不能在有理数范围内分解二、分组分解分组分解法:将一个多项式分成二或三组,各组分别分解后,彼此又有公因式或者可以用公式,这就是分组分解法.一、十字相乘【例 1】分解因式:⑴256x x ++ ⑵256x x -+⑶276x x ++ ⑷276x x -+【解析】 ⑴(2)(3)x x ++;⑵(2)(3)x x --;⑶(1)(6)x x ++;⑷(1)(6)x x --【巩固】 分解因式:268x x ++【解析】 268(2)(4)x x x x ++=++【巩固】 分解因式:278x x +-【解析】 278(8)(1)x x x x +-=+-【例 2】分解因式:2376a a --【解析】 2376(32)(3)a a a a --=+-【巩固】 分解因式:2383x x --【解析】 2383(31)(3)x x x x --=+-【巩固】 分解因式:25129x x +-【解析】 25129(3)(53)x x x x +-=+-【巩固】 分解因式:42730x x +-【解析】 4222730(3)(10)x x x x +-=-+【巩固】 分解因式:2273320x x --【解析】 2273320(94)(35)x x x x --=+-【例 3】分解因式:212x x +-【解析】 221212(3)(4)x x x x x x +-=-++=+-+【巩固】 分解因式:2612x x -+-【解析】 22612(612)(23)(34)x x x x x x -+-=-+-=-+-【例 4】分解因式:2214425x y xy +-【解析】 2214425(16)(9)x y xy x y x y +-=--【巩固】 分解因式:22672x xy y -+【解析】 22672(2)(32)x xy y x y x y -+=--【巩固】 分解因式:22121115x xy y --【解析】 22121115(35)(43)x xy y x y x y --=-+【例 5】分解因式:⑴2()4()12x y x y +-+-;⑵2212()11()()2()x y x y x y x y +++-+-【解析】 ⑴把x y +看作一个整体,利用十字相乘法分解即可.2()4()12(2)(6)x y x y x y x y +-+-=+++-⑵将,x y x y +-看作整体,则原式[][]4()()3()2()(53)(5)x y x y x y x y x y x y =++-++-=++.【巩固】 分解因式:257(1)6(1)a a ++-+【解析】 [][]257(1)6(1)53(1)12(1)(23)(23)a a a a a a ++-+=-+++=-+【巩固】 分解因式:2(2)8(2)12a b a b ---+【解析】 [][]2(2)8(2)12(2)2(2)6(22)(26)a b a b a b a b a b a b ---+=----=----【例 6】分解因式:1a b c ab ac bc abc +++++++【解析】 把a 视为未知数,其它视为参数。

第十一讲因式分解(分组分解法和十字相乘法)

第十一讲因式分解(分组分解法和十字相乘法)

第十一讲因式分解(分组分解法和十字相乘法)第一部分、教学目标:1、掌握十字相乘法和分组分解法分解因式2掌握十字相乘法在实际生活中的应用第二部分、教学重点、难点本节课的重点是会利用分组分解法等方法分解因式本节课的难点是因式分解在实际问题中的应用。

第三部分、教学过程例题讲解:例1、因式分解:m2﹣my+mx﹣yx=.【分析】原式两项两项结合提取公因式即可.【解答】解:原式=(m2﹣my)+(mx﹣yx)=m(m﹣y)+x(m﹣y)=(m﹣y)(m+x),故答案为:(m﹣y)(m+x).练1.1、分解因式:6k2+9km﹣6mn﹣4kn.解:6k2+9km﹣6mn﹣4kn=3k(2k+3m)﹣2n(3m+2k)=(2k+3m)(3k﹣2n).练1.2、观察下面分解因式的过程,并完成后面的习题分解因式:am+an+bm+bn解法一:原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b)解法二:原式=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n)根据你发现的方法,分解因式:(1)mx﹣my+nx﹣ny(2)2a+4b﹣3ma﹣6mb.【解答】(1)解法一:原式=(mx﹣my)+(nx﹣ny)=m(x﹣y)+n(x﹣y)=(m+n)(x﹣y);解法二:原式=(mx+nx)﹣(my+ny)=x(m+n)﹣y(m+n)=(m+n)(x﹣y);(2)解法一:原式=(2a+4b)﹣(3ma+6mb)=2(a+2b)﹣3m(a+2b)=(2﹣3m)(a+2b);解法二:原式=(2a﹣3ma)+(4b﹣6mb)=a(2﹣3m)+2b(2﹣3m)=(2﹣3m)(a+2b).例2、分解因式:(1)2x2﹣18;(2)a2﹣4ab+4b2﹣9.【分析】(1)先提2,然后利用平方差公式分解因式;(2)先分组,把前面三项利用完全平方公式表示,然后利用平方差公式分解.【解答】解:(1)原式=2(x2﹣9)=2(x+3)(x﹣3);(2)原式=(a﹣2b)2﹣32=(a﹣2b+3)(a﹣2b﹣3).练2.2、分解因式:25﹣4x2+4xy﹣y2.解:25﹣4x2+4xy﹣y2,=25﹣(4x2﹣4xy+y2),=52﹣(2x﹣y)2,=(5+2x﹣y)(5﹣2x+y)例3、先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请解答下列问题:(1)因式分解:1+2(2x﹣3y)+(2x﹣3y)2.(2)因式分解:(a+b)(a+b﹣4)+4;【分析】(1)将(2x﹣3y)看作一个整体,利用完全平方公式进行因式分解.(2)令A=a+b,代入后因式分解后代入即可将原式因式分解.【解答】解:(1)原式=(1+2x﹣3y)2.(2)令A=a+b,则原式变为A(A﹣4)+4=A2﹣4A+4=(A﹣2)2,故(a+b)(a+b﹣4)+4=(a+b﹣2)2.练3.2、先阅读下列两段材料,再解答下列问题:(一)例题:分解因式:(a+b)2﹣2(a+b)+1解:将“a+b”看成整体,设M=a+b,则原式=M2﹣2M+1=(M﹣1)2,再将“M”还原,得原式=(a+b﹣1)2上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法;(二)常用的分解因式的方法有提取公因式法和公式法但有的多项式只用上述一种方法无法分解,例如x2﹣4y2﹣2x+4y,我们细心观察就会发现,前两项可以分解,后两项也可以分解,分别分解后会产生公因式就可以完整的分解了.过程为:x2﹣4y2﹣2x+4y=(x2﹣4y2)﹣2(x﹣2y)=(x﹣2y)(x+2y)﹣2(x ﹣2y)=(x﹣2y)(x+2y﹣2).这种方法叫分组分解法,对于超过三项的多项式往往考虑这种方法.利用上述数学思想方法解决下列问题:(1)分解因式(3a+2b)2﹣(2a+3b)2;(2)分解因式.xy2﹣2xy+2y﹣4;(3)分解因式:(a+b)(a+b﹣4)﹣c2+4.解:(1)(3a+2b)2﹣(2a+3b)2=(3a+2b﹣2a﹣3b)(3a+2b+2a+3b)=5(a﹣b)(a+b);(2)xy2﹣2xy+2y﹣4=xy(y﹣2)+2(y﹣2)=(xy+2)(y﹣2);(3)(a+b)(a+b﹣4)﹣c2+4=(a+b)2﹣4(a+b)+4﹣c2=(a+b﹣2)2﹣c2=(a+b﹣2﹣c)(a+b﹣2+c).例4、x2+(p+q)x+pq型式子是数学学习中常见的一类多项式,如何将这种类型的式子因式分解呢?因为(x+p)(x+q)=x2+(p+q)x+pq,所以,根据因式分解是与整式乘法方向相反的变形,利用这种关系可得:x2+(p+q)x+pq=(x+p)(x+q).如:x2+3x+2=x2+(1+2)x+1×2=(x+1)(x+2)上述过程还可以形象的用十字相乘的形式表示:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项的系数,如图.这样,我们可以得到:x2+3x+2=(x+1)(x+2)利用这种方法,将下列多项式分解因式:(1)x2+7x+10(2)﹣2x2﹣6x+36【分析】(1)仿照题中的方法将原式分解即可;(2)仿照题中的方法将原式分解即可.【解答】解:(1)x2+7x+10=(x+5)(x+2);(2)﹣2x2﹣6x+36=﹣2(x2+3x﹣18)=﹣2(x+6)(x﹣3).例5、若m+n=4,则2m2+4mn+2n2﹣5的值为()A.27B.11C.3D.0【分析】根据m+n=4和完全平方公式,将所求式子变形,即可得到所求式子的值.【解答】解:∵m+n=4,∴2m2+4mn+2n2﹣5=2(m+n)2﹣5=2×42﹣5=2×16﹣5=32﹣5=27,故选:A.练5.1、若m2+m﹣1=0,则m3+2m2+2019的值为(A)A.2020B.2019C.2021D.2018练5.2、已知a=2019x+2018,b=2019x+2019,c=2019x+2020,则代数式a2+b2+c2﹣ab﹣ac﹣bc的值为(D)A.0B.1C.2D.3例6、已知a,b,c是△ABC的三条边,且满足a2+b2+c2﹣ab﹣bc﹣ac=0,判断△ABC形状【分析】把等式两边乘以2,再利用完全平方公式得到(a﹣b)2+(b﹣c)2+(a﹣c)2=0,然后根据非负数的性质得到a=b=c,从而可判断△ABC的现状.【解答】解:∵a2+b2+c2﹣ab﹣bc﹣ac=0,∴2a2+2b2﹣2ab﹣2bc﹣2ac=0,∴(a﹣b)2+(b﹣c)2+(a﹣c)2=0,∴a﹣b=0,b﹣c=0,a﹣c=0,∴a=b=c,∴△ABC为等边三角形.练6.1、已知a,b,c是三角形的三边,那么代数式(a﹣b)2﹣c2的值(B)A.大于零B.小于零C.等于零D.不能确定练6.2、已知a、b、c是△ABC的三条边,且满足a2+bc=b2+ac,则△ABC是(C)A.锐角三角形B.钝角三角形C.等腰三角形D.等边三角形阅读并解决问题:分解因式(a+b)2+2(a+b)+1.解:设a+b=x,则原式=x2+2x+1=(x+1)2=(a+b+1)2.这样的解题方法叫做“换元法”,即当复杂的多项式中,某﹣﹣部分重复出现时,我们用字母将其替换,从而简化这个多项式换元法是一一个重要的数学方法,不少问题能用换元法解决.请用“换元法”对下列多项式进行因式分解:(1)(m+n)2﹣18(m+n)+81;(2)(x2﹣4x+2)(x2﹣4x+6)+4【解答】解:(1)设m+n=x,则原式=x2﹣18x+81=(x﹣9)2=(m+n﹣9)2;(2)设x2﹣4x+2=y,则原式=y(y+4)+4=y2+4y+4=(y+2)2=(x2﹣4x+2+2)2=[(x﹣2)2]2=(x﹣2)4第四部分、板书设计第五部分、作业布置今天是2020年月号星期天气今日所学:因式分解今日作业:新思维第页下次上课时间:下周正常上课第六部分、课后反思。

十字相乘和分组分解法因式分解-2023年新七年级数学核心知识点与常见题型(沪教版)(解析版)

十字相乘和分组分解法因式分解-2023年新七年级数学核心知识点与常见题型(沪教版)(解析版)

十字相乘和分组分解法因式分解【知识梳理】一、十字相乘十字相乘法:如果二次三项式2x px q ++中的常数项q 能分解成两个因式a 、b 的积,而且一次项系数p 又恰好是a b +,那么2x px q ++就可以进行如下的分解因式,即:()()()22x px q x a b x ab x a x b ++=+++=++要将二次三项式2x px q ++分解因式,就需要找到两个数a 、b ,使它们的积等于常数项q ,和等于一次项系数p , 满足这两个条件便可以进行如下分解因式, 即:22()()()x px q x a b x ab x a x b ++=+++=++.由于把2x px q ++中的q 分解成两个因数有多种情况,怎样才能找到两个合适的数,通常要经过多次的尝试才能确定采用哪种情况来进行分解因式.二、分组分解如何将多项式am an bm bn +++因式分解?分析:很显然,多项式am an bm bn +++中既没有公因式,也不好用公式法.怎么办呢?由于()am an a m n +=+,()bm bn b m n +=+而:()()()()a m n b m n m n a b +++=+.这样就有:()()()()()()am an bm bn am an bm bn a m n b m n m n a b +++=+++=+++=++将一个多项式分成二或三组,各组分别分解后,彼此又有公因式或者可以用公式,这就是分组分解法. 说明:如果把一个多项式的项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.【考点剖析】一.因式分解-十字相乘法等(共22小题)1.(2022秋•静安区校级期中)多项式77x 2﹣13x ﹣30可因式分解成(7x +a )(bx +c ),其中a 、b 、c 均为整数,求a +b +c 之值为何?( )A .0B .10C .12D .22【分析】首先利用十字交乘法将77x2﹣13x ﹣30因式分解,继而求得a ,b ,c 的值.【解答】解:利用十字交乘法将77x2﹣13x﹣30因式分解,可得:77x2﹣13x﹣30=(7x﹣5)(11x+6).∴a=﹣5,b=11,c=6,则a+b+c=(﹣5)+11+6=12.故选:C.【点评】此题考查了十字相乘法分解因式的知识.注意ax2+bx+c(a≠0)型的式子的因式分解:这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2).2.(2021秋•奉贤区期末)分解因式:x2+3x﹣10=.【分析】原式利用十字相乘法分解即可.【解答】解:原式=(x﹣2)(x+5),故答案为:(x﹣2)(x+5)【点评】此题考查了因式分解﹣十字相乘法,熟练掌握十字相乘的方法是解本题的关键.3.(2022秋•闵行区校级期末)因式分解:(y2﹣y)2﹣14(y2﹣y)+24.【分析】直接利用十字相乘法分解因式得出答案【解答】解:原式=(y2﹣y﹣2)(y2﹣y﹣12)=(y﹣2)(y+1)(y﹣4)(y+3).【点评】此题主要考查了十字相乘法分解因式,正确分解常数项是解题关键.4.(20222x2﹣6x﹣8=.【分析】原式先提取公因数2,再利用十字相乘法求出解即可.【解答】解:原式=2(x2﹣3x﹣4)=2(x﹣4)(x+1),故答案为:2(x﹣4)(x+1).【点评】本题考查了因式分解—十字相乘法,熟练掌握十字相乘的方法是解题的关键.5.(2022秋•虹口区校级期中)分解因式:x2﹣7xy﹣18y2=.【分析】由十字相乘法进行分解因式即可.【解答】解:x2﹣7xy﹣18y2=(x﹣9y)(x+2y).故答案是:(x﹣9y)(x+2y).【点评】本题考查因式分解,熟练掌握十字相乘法分解因式是解题的关键.6.(2022秋•宝山区期末)分解因式:2x2+6xy+4y2.【分析】先提公因式,再用十字相乘法因式分解即可.【解答】解:2x2+6xy+4y2=2(x2+3xy+2y2)=2(x+2y)(x+y).【点评】本题考查了提公因式法与十字相乘法的综合运用,熟练掌握因式分解的方法是解题的关键.7.(2022秋•宝山区期末)分解因式:x2﹣9x+14=(x+□)(x﹣7),其中□表示一个常数,则□的值是()A.7B.2C.﹣2D.﹣7【分析】利用十字相乘法因式分解即可.【解答】解:x2﹣9x+14=(x﹣2)(x﹣7),∴□表示﹣2,故选:C.【点评】本题考查因式分解,熟练掌握利用十字相乘法进行因式分解是解题的关键.8.(2022秋•虹口区校级期中)如果多项式x2﹣5x+c可以用十字相乘法因式分解,那么下列c的取值正确的是()A.2B.3C.4D.5【分析】∵4=﹣1×(﹣4),﹣1+(﹣4)=﹣5,∴可以用十字相乘法因式分解.【解答】解:当c=4时,x2﹣5x+c=x2﹣5x+4=(x﹣1)(x﹣4).故选:C.【点评】本题主要考查了因式分解﹣十字相乘法,熟练掌握十字相乘法分解因式的方法是解题关键.9.(2022x2﹣5x﹣6=.【分析】因为﹣6×1=﹣6,﹣6+1=﹣5,所以利用十字相乘法分解因式即可.【解答】解:x2﹣5x﹣6=(x﹣6)(x+1).【点评】本题考查十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.10.(2022秋•嘉定区校级期末)因式分解a2﹣a﹣6=.【分析】根据因式分解就是把一个多项式变形成几个整式的积的形式的定义,利用十字相乘法求解.【解答】解:a2﹣a﹣6=(a+2)(a﹣3).故答案为:(a+2)(a﹣3).【点评】本题考查了因式分解.解题的关键是掌握十字相乘法因式分解.11.(2022秋•闵行区校级期中)因式分解:x2﹣5x﹣24=.【分析】用十字相乘法因式分解.【解答】解:x2﹣5x﹣24=(x﹣8)(x+3),故答案为:(x﹣8)(x+3),【点评】本题主要考查了因式分解﹣十字相乘法,熟练掌握十字相乘法分解因式的方法,根据题意可知a、b是相互独立的,利用多项式相乘法则计算,再根据对应系数相等即可求出a、b的值是解题关键.12.(2021秋•宝山区期末)分解因式:x2+4x﹣21=.【分析】根据因式分解﹣十字相乘法进行分解即可.【解答】解:x2+4x﹣21=(x+7)(x﹣3),故答案为:(x+7)(x﹣3).【点评】本题考查了因式分解﹣十字相乘法,熟练掌握因式分解﹣十字相乘法是解题的关键.13.(2021秋•普陀区期末)已知关于x的多项式x2+kx﹣3能分解成两个一次多项式的积,那么整数k的值为.【分析】把常数项分解成两个整数的乘积,k就等于那两个整数之和.【解答】解:∵﹣3=﹣3×1或﹣3=﹣1×3,∴k=﹣3+1=﹣2或k=﹣1+3=2,∴整数k的值为:±2,故答案为:±2.【点评】本题考查了因式分解﹣十字相乘法,熟练掌握因式分解﹣十字相乘法是解题的关键.14.(2022ax4﹣14ax2﹣32a.【分析】首先提取公因式a,再利用十字相乘法分解因式,再结合平方差公式分解因式即可.【解答】解:ax4﹣14ax2﹣32a=a(x4﹣14x2﹣32)=a(x2+2)(x2﹣16)=a(x2+2)(x+4)(x﹣4).【点评】此题主要考查了十字相乘法分解因式,正确运用公式是解题关键.15.(2022秋•嘉定区校级期中)阅读下列文字,解决问题.先阅读下列解题过程,然后完成后面的题目.分解因式:x4+4解:x4+4=x4+4x2+4﹣4x2=(x2+2)2﹣4x2=(x2+2x+2)(x2﹣2x+2)以上解法中,在x4+4的中间加上一项,使得三项组成一个完全平方式,为了使这个式子的值保持与x4+4的值保持不变,必须减去同样的一项.这样利用添项的方法,将原代数式中的部分(或全部)变形为完全平方的形式,这种方法叫做配方法.按照这个思路,试把多项式x4+3x2y2+4y4分解因式.【分析】把原式中的第二项的系数1变为4﹣1,化简后三项结合构成完全平方式,剩下的一项写出完全平方式,然后再利用平方差公式即可分解因式.【解答】解:x4+3x2y2+4y4=x4+4x2y2+4y4﹣x2y2=(x2+2y2)2﹣x2y2=(x2+2y2+xy)(x2+2y2﹣xy).【点评】此题考查学生阅读新方法并灵活运用新方法的能力,考查了分组分解法进行分解因式,是一道中档题.本题的思路是添项构成完全平方式.16.(2021秋•普陀区期末)因式分解:(x2+4x)2﹣(x2+4x)﹣20.【分析】直接利用十字相乘法分解因式得出即可.【解答】解:原式=(x2+4x﹣5)(x2+4x+4)=(x+5)(x﹣1)(x+2)2.【点评】本题考查十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.17.(2022秋•虹口区校级期中)分解因式:(a2﹣a)2+2(a2﹣a)﹣8.【分析】先变形,局部逆用完全平方公式,再使用十字相乘法.【解答】解:(a2﹣a)2+2(a2﹣a)﹣8=(a2﹣a)2+2(a2﹣a)+1﹣9=(a2﹣a+1)2﹣9=(a2﹣a+1+3)(a2﹣a+1﹣3)=(a2﹣a+4)(a2﹣a﹣2)=(a2﹣a+4)(a﹣2)(a+1).【点评】本题主要考查运用公式法、十字相乘法进行因式分解,熟练掌握公式法、十字相乘法是解决本题的关键.18.(2021秋•浦东新区期末)分解因式:x2﹣4x﹣12=.【分析】因为﹣6×2=﹣12,﹣6+2=﹣4,所以利用十字相乘法分解因式即可.【解答】解:x2﹣4x﹣12=(x﹣6)(x+2).故答案为:(x﹣6)(x+2).【点评】本题考查十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.19.(2022秋•上海期末)分解因式:3x2﹣9x﹣30.【分析】先提取公因式,再利用十字相乘法分解.【解答】解:3x2﹣9x﹣30=3(x2﹣3x﹣10)=3(x﹣5)(x+2).【点评】本题考查了整式的因式分解,掌握提公因式法和十字相乘法是解决本题的关键.20.(2022秋•徐汇区期末)分解因式:(1)2ab2﹣6a2b2+4a3b2;(2)(x2﹣4x)2﹣5(x2﹣4x)﹣24.【分析】(1)先提取公因式,再利用十字相乘法;(2)先利用十字相乘法,再利用公式法和十字相乘法.【解答】解:(1)2ab2﹣6a2b2+4a3b2=2ab2(1﹣3a+2a2)=2ab2(2a﹣1)(a﹣1);(2)(x2﹣4x)2﹣5(x2﹣4x)﹣24=(x2﹣4x﹣8)(x2﹣4x+3)=[(x2﹣4x+4)﹣12](x﹣3)(x﹣1)=[(x﹣2)2﹣12](x﹣3)(x﹣1)=(x﹣2+2)(x﹣2﹣2)(x﹣3)(x﹣1).【点评】本题主要考查了整式的因式分解,掌握因式分解的提公因式法、公式法是解决本题的关键.21.(2021秋•金山区期末)分解因式:(x2﹣x)2﹣18(x2﹣x)+72.【分析】把(x2﹣x)看成一个整体,利用十字相乘法分解即可.【解答】解:(x2﹣x)2﹣18(x2﹣x)+72=[(x2﹣x)﹣6][(x2﹣x)﹣12]=(x2﹣x﹣6)(x2﹣x﹣12)=(x﹣3)(x+2)(x﹣4)(x+3).【点评】本题考查了整式的因式分解,掌握十字相乘法和整体的思想是解决本题的关键.22.(2021秋•奉贤区期末)分解因式:(a2+a)2﹣8(a2+a)+12.【分析】因为﹣2×(a2+a)=﹣2(a2+a),﹣6×(a2+a)=﹣6(a2+a),所以可利用十字相乘法分解因式;得到的两个因式,还可以用十字相乘法分解因式.【解答】解:根据十字相乘法,(a2+a)2﹣8(a2+a)+12,=(a2+a﹣2)(a2+a﹣6),=(a+2)(a﹣1)(a+3)(a﹣2).【点评】本题考查了十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察、体会它实质是二项式乘法的逆过程;并注意一定要分解完全.二.因式分解-分组分解法(共12小题)23.(2022秋•徐汇区期末)分解因式:xy+(x+1)(y+1)(xy+1).【分析】根据分组法和十字相乘法因式分解即可.【解答】解:xy+(x+1)(y+1)(xy+1)=xy+(xy+x+y+1)(xy+1)=xy+[(xy+1)+(x+y)](xy+1)=(xy+1)2+(x+y)(xy+1)+xy=(xy+x+1)(xy+y+1).【点评】本题考查了分组法进行因式分解,熟练掌握分组法和十字相乘法是解题的关键.24.(2022秋•青浦区校级期末)因式分解:x2+4y﹣1﹣4y2.【分析】首先重新分组,进而利用完全平方公式以及平方差公式分解因式得出答案即可.【解答】解:x2+4y﹣1﹣4y2.x2﹣(﹣4y+4y2+1)=x2﹣(1﹣2y)2=(x﹣2y+1)(x+2y﹣1).【点评】此题主要考查了分组分解法以及公式法分解因式,正确分组是解题关键.25.(2022秋•浦东新区校级期末)分解因式:(1)m2﹣n2+6n﹣9;(2)(x+2y)x2+6(x+2y)x﹣7x﹣14y.【分析】(1)根据平方差公式和完全平方公式解答;(2)用提公因式法和十字相乘法解答.【解答】解:(1)原式=m2﹣(n2﹣6n+9)=m2﹣(n﹣3)2=(m﹣n+3)(m+n﹣3);(2)原式=(x+2y)x2+6(x+2y)x﹣7(x+2y)=(x+2y)(x2+6x﹣7)=(x+2y)(x﹣1)(x+7).【点评】本题考查了因式分解,熟悉乘法公式和提公因式法是解题的关键.26.(2022秋•闵行区校级期末)分解因式:2x3﹣2x2y+8y﹣8x.【分析】两两分组:先分别提取公因式2x2,8;再提取公因式2(y﹣x)进行二次分解;最后利用平方差公式再次进行因式分解即可求得答案.【解答】解:原式=2x2(x﹣y)﹣8(x﹣y)=2(x﹣y)(x2﹣4)=2(x﹣y)(x+2)(x﹣2).【点评】本题考查了平方差公式,分组分解法分解因式,要先把式子整理,再分解因式.对于一个四项式用分组分解法进行因式分解,难点是采用两两分组还是三一分组.27.(2022秋•闵行区校级期中)因式分解:a2﹣6ab+9b2﹣16.【分析】先分成两组,用完全平方公式,再用平方差公式分解因式.【解答】解:原式=(a2﹣6ab+9b2)﹣16=(a﹣3b)2﹣42=(a﹣3b+4)(a﹣3b﹣4).【点评】本题主要考查了因式分解﹣分组分解法,掌握因式分解﹣分组分解法的方法,先分组,再分解因式,完全平方公式和平方差公式的熟练应用是解题关键.28.(2022秋•青浦区校级期中)因式分解:2ac﹣6ad+bc﹣3bd.【分析】首先将前两项以及后两项提取公因式,进而分解因式得出即可.【解答】解:2ac﹣6ad+bc﹣3bd=2a(c﹣3d)+b(c﹣3d)=(c﹣3d)(2a+b).【点评】此题主要考查了分组分解法分解因式,正确分组得出是解题关键.29.(2022秋•上海期末)分解因式:x2﹣xy+ax﹣ay=.【解答】解:x2﹣xy+ax﹣ay=x(x﹣y)+a(x﹣y)=(x﹣y)(x+a).故答案为:(x﹣y)(x+a).【点评】本题考查了整式的因式分解,掌握分组分解法和提公因式法是解决本题的关键.30.(2022秋•宝山区校级期末)分解因式:b2﹣4a2﹣1+4a.【分析】利用分组分解法,将﹣4a2﹣1+4a分为一组,先利用完全平方公式,再利用平方差公式即可.【解答】解:原式=b2﹣(4a2+1﹣4a)=b2﹣(2a﹣1)2=[b+(2a﹣1)][b﹣(2a﹣1)]=(b+2a﹣1)(b﹣2a+1).【点评】本题考查分组分解法分解因式,掌握分组的原则和分组的方法是正确解答的前提,掌握完全平方公式、平方差公式的结构特征是解决问题的关键.31.(2022秋•嘉定区校级期末)因式分解:x2﹣4+4y2﹣4xy.【分析】直接将原式分组,再利用完全平方公式以及平方差公式分解因式得出答案.【解答】解:x2﹣4+4y2﹣4xy=x2+4y2﹣4xy﹣4=(x﹣2y)2﹣4=(x﹣2y+2)(x﹣2y﹣2).【点评】此题主要考查了分组分解法分解因式,正确运用公式是解题关键.32.(2022秋•徐汇区期末)分解因式:x2+4z2﹣9y2+4xz=.【分析】先利用完全平方公式,再利用平方差公式.【解答】解:x2+4z2﹣9y2+4xz=x2+4z2+4xz﹣9y2=(x+2z)2﹣9y2=(x+2z+3y)(x+2z﹣3y).故答案为:(x+2z+3y)(x+2z﹣3y).【点评】本题主要考查了整式的因式分解,掌握因式分解的公式法是解决本题的关键.33.(2022秋•宝山区期末)分解因式:m2﹣2m+1﹣4n2.【分析】先分组再利用平方差公式.【解答】解:m2﹣2m+1﹣4n2=(m﹣1)2﹣4n2=(m﹣1+2n)(m﹣1﹣2n).【点评】本题主要考查了整式的因式分解,掌握因式分解的提公因式法、公式法是解决本题的关键.34.(2022秋•闵行区校级期中)因式分解:x2+9xy+18y2﹣3x﹣9y.【分析】先把多项式按三、二分组,再分别因式分解,最后提取公因式.【解答】解:x2+9xy+18y2﹣3x﹣9y=(x2+9xy+18y2)﹣(3x+9y)=(x+3y)(x+6y)﹣3(x+3y)=(x+3y)(x+6y﹣3).【点评】本题考查了整式的因式分解,掌握因式分解的提公因式和十字相乘法是解决本题的关键.三.因式分解的应用(共9小题)35.(2022秋•青浦区校级期末)用合理的方法计算:7.52×1.6﹣2.52×1.6.【分析】先利用提取公因式法,再利用平方差公式因式分解求得答案即可.【解答】解:原式=(7.52﹣2.52)×1.6=(7.5+2.5)×(7.5﹣2.5)×1.6=10×5×1.6=80.【点评】此题考查因式分解的实际运用,掌握提取公因式法和平方差公式是解决问题的关键.36.(2022秋•黄浦区期中)已知x﹣y=2,x2+y2=6,(1)求代数式xy的值;(2)求代数式x3y﹣3x2y2+xy3的值.【分析】(1)根据x2+y2=(x﹣y)2+2xy,再将已知代入即可;(2)将所求的式子变形为xy(x2﹣3xy+y2),再将x2+y2=6,xy=1代入求值即可.【解答】解:(1)∵x2+y2=(x﹣y)2+2xy,又∵x﹣y=2,x2+y2=6,∴6=4+2xy,∴xy=1;(2)x3y﹣3x2y2+xy3=xy(x2﹣3xy+y2),∵x2+y2=6,xy=1,∴原式=1×(6﹣3)=3.【点评】本题考查因式分解的应用,熟练掌握完全平方公式的变形形式,提取公因式法因式分解是解题的关键.37.(2022秋•静安区校级期中)已知x2﹣x﹣3=0,那么x3﹣2x2﹣2x+2022=.【分析】根据x2﹣x﹣3=0,得出x2=x+3,代入求值即可.【解答】解:∵x2﹣x﹣3=0,∴x2=x+3,x3﹣2x2﹣2x+2022=x(x+3)﹣2x2﹣2x+2022=﹣x2+x+2022=﹣(x2﹣x﹣3)+2019=2019,故答案为:2019.【点评】本题主要考查因式分解的应用,熟练掌握因式分解是解题的关键.38.(2022秋•静安区校级期中)n是整数,式子[1﹣(﹣1)n](n2﹣1)计算的结果()A.是0B.总是奇数C.总是偶数D.可能是奇数也可能是偶数【分析】根据题意,可以利用分类讨论的数学思想探索式子[1﹣(﹣1)n](n2﹣1)计算的结果等于什么,从而可以得到哪个选项是正确的.【解答】解:当n是偶数时,[1﹣(﹣1)n](n2﹣1)=[1﹣1](n2﹣1)=0,当n是奇数时,[1﹣(﹣1)n](n2﹣1)=×(1+1)(n+1)(n﹣1)=,设n=2k﹣1(k为整数),则==k(k﹣1),∵0或k(k﹣1)(k为整数)都是偶数,故选:C.【点评】本题考查因式分解的应用,解题的关键是明确题意,利用分类讨论的数学思想解答问题.39.(2022秋•闵行区校级期中)已知a2﹣a﹣1=0,则代数式a3﹣2a+6=.【分析】根据已知条件得到a2﹣a=1,将要求的代数式化简得到a(a2+a)﹣a2﹣2a+6,两次代入求解即可.【解答】解:∵a2﹣a﹣1=0,∴a2﹣a=1,a3﹣2a+6=a3﹣a2+a2﹣2a+6=a(a2﹣a)+a2﹣2a+6=a+a2﹣2a+6=a2﹣a+6,将a2﹣a=1代入原式=1+6=7.故答案为:7.【点评】本题考查因式分解的应用,合理利用已知条件是关键.40.(2022秋•闵行区校级期中)已知a,b,c是三个连续的正整数,a2=33124,c2=33856,那么b2=.【分析】由于a2=33124,c2=33856,则利用平方差公式得到(c+a)(c﹣a)=732,再根据a、b、c是三个连续正整数得到c﹣a=2①,于是可计算出c+a=366②,然后由①②可解得c,从而得到b的值.【解答】解:c2﹣a2=(c+a)(c)=33856﹣33124=732,∵a、b、c是三个连续正整数,∴c﹣a=2,∴c+a=366,∴c=184,∴b=183,∴b2=33489.故答案为:33489.【点评】本题考查了因式分解的应用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.41.(2022秋•宝山区校级期中)a,b,c是正整数,且满足①a+b2﹣2c﹣2=0②3a2﹣8b+c=0,求abc的最小值(要有过程).【分析】根据②3a2﹣8b+c=0,得出c=8b﹣3a2,代入①a+b2﹣2c﹣2=0,得出(b﹣8)2=66﹣6a2﹣a,根据完全平方数得出a,b,c的值即可.【解答】解:∵②3a2﹣8b+c=0,∴c=8b﹣3a2,∵a+b2﹣2c﹣2=0,即a+b2﹣2(8b﹣3a2)﹣2=0,整理得(b﹣8)2=66﹣6a2﹣a,∴66﹣6a2﹣a是完全平方数,∴66﹣6a2﹣a的值可能为1,4,9,16,25,36,49,64,∵a为正整数,∴a=3,可得b=5或11,c=13或61,∴abc的最小值为3×5×13=195.【点评】本题主要考查因式分解的应用,熟练掌握因式分解的知识是解题的关键.42.(2022秋•杨浦区期中)已知:x﹣2y=8,xy=5,求代数式x3y+4xy3的值.【分析】首先运用提取公因式法分解因式,再配方,然后代入已知条件计算即可.【解答】解:∵x﹣2y=8,xy=5,∴x3y+4xy3=xy(x2+4y2)=xy[(x﹣2y)2+4xy]=5(82+4×5)=5×84=420.43.(2022秋•奉贤区期中)根据所学我们知道:可以通过用不同的方法求解长方形面积,从而得到一些数学等式.如图1可以表示的数学等式:(a+m)(b+n)=ab+an+bm+mn,请完成下列问题:(1)写出图2中所表示的数学等式:.(2)从图3可得(a+b)(a+b+c)=.(3)结合图4,已知a+b+c=6,a2+b2+c2=14,求ab+bc+ac的值.【分析】(1)(2)根据题意利用面积公式计算即可求解;(3)首先根据面积公式得到(a+b+c)(a+b+c)=a2+b2+c2+2ab+2ac+2bc,然后利用已知条件即可求解.【解答】解:(1)(a+1)(a+2)=a2+a+2a+2=a2+3a+2;故答案为:a2+3a+2;(2)(a+b )(a+b+c )=a2+b2+ab+ab+ac+bc =a2+2ab+b2+ac+bc ;故答案为:a2+2ab+b2+ac+bc ;(3)根据题意得;(a+b+c )(a+b+c )=a2+b2+c2+2ab+2ac+2bc ,而a+b+c =6,a2+b2+c2=14∴6×6=14+2ab+2ac+2bc ,∴ab+bc+ca =11.【点评】此题主要考查了因式分解的应用,解题的关键是正确理解题意,然后根据题意求解.【过关检测】一、单选题 1.(2023·上海·七年级假期作业)如果多项式x 2﹣5x +c 可以用十字相乘法因式分解,那么下列c 的取值正确的是( )A .2B .3C .4D .5【答案】C【分析】根据十字相乘法进行因式分解的方法,对选项逐个判断即可.【详解】解:A 、252x x −+,不能用十字相乘法进行因式分解,不符合题意; B 、253x x −+,不能用十字相乘法进行因式分解,不符合题意;C 、()()25414x x x x −+=−−,能用十字相乘法进行因式分解,符合题意;D 、255x x -+,不能用十字相乘法进行因式分解,不符合题意;故选C【点睛】此题考查了十字相乘法进行因式分解,解题的关键是掌握十字相乘法进行因式分解. 2.(2018秋·上海浦东新·七年级校考阶段练习)把多项式2+x ax bw +分解因式得(+1)(-3)x x ,则a.b 的值分别是( )【答案】A【分析】运用多项式乘以多项式的法则求出(x+1)(x-3)的值,对比系数可以得到a ,b 的值.【详解】∵(x+1)(x−3)=x ⋅x−x ⋅3+1⋅x−1×3=x 2−3x+x−3=x 2−2x−3,∴x 2+ax+b=x 2−2x−3∴a=−2,b=−3.故选A.【点睛】此题考查因式分解的应用,解题关键在于掌握运算法则求出(x+1)(x-3)的值.3.(2021秋·上海·七年级期中)若1a −是25a a m ++的因式,则m 的值是( )A .4B .6C .-4D .-6【答案】D【分析】利用因式分解与整式乘法的恒等关系计算解答即可.【详解】∵多项式25a a m ++因式分解后有一个因式为1a −, ∴设另一个因式是a k −,即25a a m ++=()()1a a k −−=()21a k a k −++,则()15k k m ⎧−+=⎨=⎩,解得:66k m =−⎧⎨=−⎩,故答案为:D .【点睛】此题考查了因式分解的意义,熟练掌握因式分解的方法是解本题的关键.A .5m =,1n =B .5m =−,1n =C .5m =,1n =−D .5m =−,1n =−【答案】C 【分析】根据十字相乘法的分解方法和特点解答.【详解】解:由x2-4x-m=(x-5)(x-n ),得:-5-n=-4,(-5)(-n )=-m所以n=-1,m=5.故选:C .【点睛】本题主要考查十字相乘法分解因式,对常数项的不同分解是解本题的关键.5.(2021秋·上海·七年级期中)多项式3333a b c abc −++有因式( )A .a b c ++B .c a b +−C .222a b c bc ac ab ++−+−D .bc ac ab −+【答案】B【分析】当被分解的式子是四项时,应考虑运用分组分解法进行分解.【详解】原式=33()33()a c b abc ac a c +−+−+=22()[()()]3()a c b a c b a c b ac a c b +−++++−+−=22()[()()3]a c b a c b a c b ac +−++++−=222()[23]a c b a c ac ab ac b ac +−+++++−=222()()a c b a c b ab ac ac +−++++−. 故选:B .【点睛】本题考查了分组分解法分解因式,难点是采用两两分组还是三一分组.本题还需要熟练掌握立方和立方差公式. 6.(2023·上海·七年级假期作业)给出下面四个多项式:①2232x xy y −−;②22x x y y +−−;③76x xy −;④33x y +,其中以代数式x y −为因式的多项式的个数是( )A .1B .2C .3D .4【答案】C 【分析】综合提公因式法和公式法,十字相乘法,将四个多项式分解因式,根据分解的结果,逐一判断即可得到答案.【详解】解:①()()223322x y x y x xy y −−=+−; ②()()()()()()()22221x x y y x y x y x y x y x y x y x y +−−=−+−=+−+−=−++; ③()()()()()()()663333222276x x y x x y x y x x y x y xy x xy x y x xy y =−=+−=+−+−++−; ④()()2323x y x y y x xy =++−+,∴以代数式x y −为因式的多项式为①②③,共3个,故选C .【点睛】本题考查了公因式的确定,先分解因式,再做判断,熟练掌握因式分解的方法是解题关键.二、填空题7.(2023·上海·七年级假期作业)分解因式:21124x x −+=________.【答案】()()38x x −−【分析】根据十字相乘法可进行因式分解.【详解】解:()()2112438x x x x −+=−−; 故答案为:()()38x x −−. 【点睛】本题主要考查因式分解,熟练掌握十字相乘法因式分解是解题的关键.8.(2023·上海·七年级假期作业)分解因式:256x x −−=________.【答案】()()61x x −+【分析】直接根据十字相乘法分解即可.【详解】256x x −−=()()61x x −+, 故答案为()()61x x −+.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.因式分解必须分解到每个因式都不能再分解为止.【答案】241x x −+【分析】原式先提取公因数2,再利用十字相乘法求出解即可.【详解】解:原式()2234x x =−−()()241x x =−+, 故答案为:()()241x x −+. 【点睛】本题考查了因式分解—十字相乘法,熟练掌握十字相乘的方法是解题的关键.10.(2022秋·上海·七年级专题练习)分解因式:2x -ay +ax -2y =________.【答案】()()2x y a −+【分析】首先分组,然后利用提取公因式法分解因式.【详解】解:原式=()()()()()()22222x ax y ay x a y a x y a +−+=+−+=−+, 故答案为:()()2x y a −+.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解,因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法,因式分解必须分解到每个因式都不能再分解为止. 11.(2023·上海·七年级假期作业)如图,边长分别为a ,b 的长方形,它的周长为15,面积为10,则2233a b ab +=__________.【答案】225【分析】根据长方形的周长及面积可得出152a b +=,10ab =,将其代入2233a b ab +中即可求出结论.【详解】解:长方形的周长为15,面积为10,152a b ∴+=,10ab =,()22153333102252a b ab ab a b ∴+=+=⨯⨯=. 故答案为:225.【点睛】本题考查了因式分解的应用以及长方形的周长及面积,根据长方形的周长及面积找出152a b +=,10ab =是解题的关键.【答案】27x y −−/27y x −−【分析】根据平方差公式将4249y x −分解因式,并变形为()()222277y x x y −−−,即可得出答案.【详解】解:∵()()2224224977y x y x y x =−−+()()222277y x x y ⎡⎤=−+−⎣⎦()()222277y x x y =−−−, ∴与()27x y −之积等于4249y x −的因式为27x y −−.故答案为:27x y −−. 【点睛】本题主要考查了分解因式的应用,解题的关键是熟练掌握平方差公式()()22a b a b a b −=+−. 13.(2020秋·上海闵行·七年级期中)分解因式:321024a a a +−=____.【答案】()()122a a a +−【分析】先提出公因式,再利用十字相乘法因式分解,即可求解.【详解】解:()()()32210241024122a a a a a a a a a +−=+−=+−. 故答案为:()()122a a a +− 【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法,并根据多项式的特征灵活选合适方法解答是解题的关键.14.(2023秋·上海嘉定·七年级上海市育才中学校考期末)因式分解a 2-a -6=_____.【答案】(a +2)(a -3)【分析】利用公式()()()2x p q x pq x p x q +++=++ 公式进行因式分解. 【详解】解:()()()()226323232a a a a a a −−=+−++−⨯=−+ , 故填(a-3)(a+2)【点睛】本题考查因式分解,基本步骤是一提二套三检查. 15.(2020秋·上海徐汇·七年级上海市徐汇中学校考阶段练习)已知多项式223x mx ++可以分解成两个一次多项式,则整数m 的值是_____________【答案】7±或5±【分析】分别把2和3分解成2个因数的积的形式,共有4种情况,所以对应的m 也有4种情况.【详解】解:221=⨯,313=⨯或13−⨯−,∴①2311m =⨯+⨯或2(3)1(1)⨯−+⨯−,即7m =±,②2131m =⨯+⨯或2(1)1(3)⨯−+⨯−,即5m =±,故答案为:7±或5±.【安静】此题主要考查了分解因式−十字相乘法,解题的关键是要熟知二次三项式的一般形式与分解因式之间的关系:2()()()x m n x mn x m x n +++=++,即常数项与一次项系数之间的等量关系. 16.(2023·上海·七年级假期作业)已知a ,b ,c 是三个连续的正整数,233124a =,233856c =,那么2b =_____.【答案】33489【分析】利用平方差公式得到()()732c a c a +−=,再根据a 、b 、c 是三个连续正整数得到2c a −=,于是可计算出366c a +=,然后可得c ,从而得到b 的值.【详解】解:()()223385633124732c a c a c a −=+−=−=,∵a 、b 、c 是三个连续正整数,∴2c a −=,∴366c a +=,∴184c =,182a =,∴183b =,∴233489b =.故答案为:33489.【点睛】本题考查了因式分解的应用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.17.(2023·上海·七年级假期作业)23x +______多项式43225101518x x x x −−++的因式(填“是”或“不是”)【答案】是【分析】假设23x +是多项式43225101518x x x x −−++的因式,则只需将多项式43225101518x x x x −−++进行分组,43225101518x x x x −−++可写成4332223812231218x x x x x x x +−−++++,此时两两一组分解因式即可得到结果.【详解】43225101518x x x x −−++,4332223812231218x x x x x x x =+−−++++,32(23)4(23)(23)6(23)x x x x x x x =+−+++++,32(23)(46)x x x x =+−++,∴23x +是多项式43225101518x x x x −−++的因式.故答案为:是【点睛】本题主要考查因式分解的应用,掌握分组分解法是解题的关键. 18.(2022秋·七年级单元测试)已知关于x 的多项式x 2+kx ﹣3能分解成两个一次多项式的积,那么整数k 的值为 _____.【答案】2±【分析】把常数项分解成两个整数的乘积,k 就等于那两个整数之和.【详解】解:∵﹣3=﹣3×1或﹣3=﹣1×3,∴k =﹣3+1=﹣2或k =﹣1+3=2,∴整数k 的值为:±2,故答案为:±2.【点睛】本题考查因式分解—十字相乘法,是重要考点,掌握相关知识是解题关键.三、解答题19.(2022秋·上海·七年级专题练习)因式分解:2244x x a +−+.【答案】(2)(2)x a x a +++−【分析】分组,利用完全平方公式以及平方差公式分解即可求解.【详解】解:2244x x a +−+2244x x a =++−22(2)x a =+−(2)(2)x a x a =+++−.【点睛】本题考查的是因式分解,掌握完全平方公式以及平方差公式是解题的关键.20.(2022秋·上海闵行·七年级校考阶段练习)分解因式2812x x −+:.【答案】()()26x x −−【分析】根据十字相乘法,进行因式分解即可.【详解】解:()()281226x x x x −+=−−.【点睛】本题考查因式分解.熟练掌握十字相乘法因式分解,是解题的关键.21.(2022秋·上海·七年级校考期末)分解因式:()224516x xy y −−. 【答案】()()()22454x y x y x xy y −−−−【分析】先直接利用完全平方公式,然后再运用十字相乘法继续因式分解即可.【详解】解:()224516x xy y −− ()()222254x xy y =−− ()()()()22225454x xy y x xy y ⎡⎤⎡⎤=−+−−⎣⎦⎣⎦ ()()22225454x xy y xxy y =−+−− ()()()22454x y x y x xy y =−−−−.【点睛】本题考查了运用平方差公式和十字相乘法进行因式分解;解题的关键是分解因式要彻底.22.(2023秋·上海嘉定·七年级上海市育才中学校考期末)因式分解:4289ax ax a −−.【答案】()()()2331a x x x ++−【分析】先提取公因式a ,再用十字相乘法分解,最后再用平方差公式分解.【详解】解:4289ax ax a −−()4289a x x =−−()()2291a x x +=−()()()2331a x x x ++=−. 【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.因式分解必须分解到每个因式都不能再分解为止.23.(2022秋·上海·七年级校联考期末)分解因式:23930x x −−.【答案】()()352x x −+.【分析】先提取公因式,再利用十字相乘法继续分解即可.【详解】解:23930x x −−()23310x x =−−()()352x x =−+.【点睛】本题考查了用提公因式法和十字相乘法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.24.(2022秋·上海闵行·七年级校考阶段练习)分解因式:22944a ab b −+−.【答案】()()3232a b a b +−−+【分析】先将多项式分组为()22944a ab b −−+,再分别利用完全平方公式和平方差公式分解即可.【详解】解:22944a ab b −+−()22944b a a b =−−+()292a b =−−()()3232a b a b =+−−−⎡⎤⎡⎤⎣⎦⎣⎦()()3232a b a b =+−−+.【点睛】本题考查了因式分解-分组分解,熟练掌握完全平方公式和平方差公式,能根据多项式特点进行适当分组是解题关键.25.(2022秋·上海·七年级专题练习)阅读并解答:对于多项式32510x x x −++,我们把2x =代入多项式,。

十字相乘法和分组分解

十字相乘法和分组分解

请大家记住公式
十字相乘法公式:
x ( a b) x ab ( x a )( x b)
2
将下列各数表示成两个整数的积的形式
(1)6= 2×3 或 (-2)×(-3)或1×6或(-1) ×(-6) (2)-6= 1× (-6)或-1×6或2× (-3)或3× (-2) (3)12= 1× 12或(-1)×(-12)或2× 6或(-2)× (-6) 或3×4 或(-3)× (-4) (4)-12= 1× (-12)或(-1)×12或2×(- 6)或(-2)× 6或 3×(-4) 或(-3)× 4 (5)24= 1× 24或(-1)×(-24)或2× 12或(-2)× (-12) 或 3×8或(-3)× (-8)或4× 6或(-4)× (-6) (6)-24= 1×(- 24)或(-1)×24或2× (-12)或(-2)× 12或 3×(-8)或(-3)× 8或4×(-6)或(-4)× 6
解:原式=(-2)(-2)100+ (-2)100 =(-2)100(-2+1)=2100· (-1)=-2100
3、已知:2x-3=0,求代数式x(x2-x)+x2(5-x)-9的值
解:原式=x3-x2+5x2-x3-9 =4x2-9 =(2x+3)(2x-3) 又∵ 2x-3=0, ∴ 原式=0
2+(a+b)x+ab=(x+a)(x+b) x
因式分解
两个一次二项式相乘的积
一个二次三项式
反过来,得
一个二次三项式
如果二次三项式x2+px+q中的常数项系数q能分 解成两个因数a、b的积,而且一次项系数p又恰好 是a+b,那么x2+px+q就可以进行如上的因式分解。

《分解因式(十字相乘法、分组分解法)》热点专题高分特训(含答案)

《分解因式(十字相乘法、分组分解法)》热点专题高分特训(含答案)

分解因式(十字相乘法、分组分解法)(人教版)一、单选题(共14道,每道7分)1.把分解因式,结果正确的是( )A.(x+2)(x+3)B.(x-2)(x-3)C.(x+1)(x+6)D.(x-1)(x-6)答案:B解题思路:试题难度:三颗星知识点:分解因式——十字相乘法2.把分解因式,结果正确的是( )A.(x-2)(x+3)B.(x+2)(x-3)C.(x+1)(x-6)D.(x-1)(x+6)答案:C解题思路:试题难度:三颗星知识点:分解因式——十字相乘法3.把分解因式,结果正确的是( )A.(x-3)(x+4)B.(x+3)(x-4)C.-(x-3)(x+4)D.-(x+3)(x-4)答案:D解题思路:试题难度:三颗星知识点:分解因式——十字相乘法4.把分解因式,结果正确的是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:分解因式——十字相乘法5.把分解因式,结果正确的是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:分解因式——十字相乘法6.把分解因式,结果正确的是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:分解因式——十字相乘法7.把分解因式,结果正确的是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:分解因式——十字相乘法8.把分解因式,结果正确的是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:分解因式——十字相乘法9.把分解因式,结果正确的是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:分解因式——十字相乘法10.把分解因式,结果正确的是( )A.(a-b)(a+b+c)B.(a-b)(a+b-c)C.(a+b)(a-b-c)D.(a+b)(a-b+c)答案:A解题思路:试题难度:三颗星知识点:分解因式——分组分解法11.把ab-1+a-b分解因式,结果正确的是( )A.(a+1)(b+1)B.(a-1)(b-1)C.(a+1)(b-1)D.(a-1)(b+1)答案:D解题思路:试题难度:三颗星知识点:分解因式——分组分解法12.把分解因式,结果正确的是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:分解因式——分组分解法13.把分解因式,结果正确的是( )A.(1-x-y)(1+x-y)B.(1+x-y)(1-x+y)C.(1-x-y)(1-x+y)D.(1+x-y)(1+x+y)答案:B解题思路:试题难度:三颗星知识点:分解因式——分组分解法14.把分解因式,结果正确的是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:分解因式——分组分解法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

十字相乘法与分组分解法习题课
【知识内容】
1. 十字相乘法分解因式
(1)首项系数是1的二次三项式的因式分解 (2)二次项系数不为1的二次三项式的因式分解 (3)含有两个字母的二次三项式的因式分解 【典型例题】
例1 分解因式:-++134
37
2x x
例2 分解因式:x x y y 22
29100++ 例3 分解因式:311102
x x -+
例4 因式分解:x
x 2
67+-
分析:这个二次三项不符合完全平方公式的特点,首先,二次项与常数项不同号,其次,常数项的绝对值不是一次项系数一半的平方,所以不能直接用公式分解,但经过适当的变形后,便可用公式分解。

另外,这样的二次三项式可用十字相乘法分解。

解:方法一
xx xx 22
676997+-=++--
()()()
()()
=+-=+++-=+-x x x x x 3163434712
方法二:()()x x x x 2
6771+-=+-
小结:方法一叫配方法。

用配方法分解二次三项式时,其前提是二次项系数为1(如果二次项系数不是1,则提取这个系数,使二次项系数转化为1);关键是,加上紧接着减去一次项系数绝对值一半的平方,这样便达到配方的目的。

在用十字相乘法分解二次三项式时,主要考虑的是十字相乘后的代数和应是一次项。

2. 分组分解法分解因式
如果一个多项式适当分组,使分组后各组之间有公因式或可应用公式,那么这个多项式就可以用分组的方法分解因式。

例5 分解因式:
(1)22332
x x y x y +-- (2)a b a b 2
2
44-+-
(3)492416222
x y y z z --- (4)x x x 3
2
1--+
例6 分解因式:()(
)a b c d c d a b
2222
+++
例9 已知
x y x y x y --++=314422,求x 与y 的值。

分析:在通常情况下,由一个方程求两个未知数的值,条件是不够的,但在特殊条件下又是可行的,这“特殊条件”包括非负数的和等于零的性质。

本题已有一个明显的非负数,即x y --31,而另一个非负数
可由因式分解得到。

于是问题能够解决。

一、填空题 1. ()(
)xx yyx y 222357--=- 2. ()()271552
x x x --=-
3. ()(
)-++=1202
yy 4.
()()()xx y x y x y 2
34--=+-
5. (
)()()x yx y x y 22
2874+-=+-
6.
()(
)k xx x k 2
5632+-=-=,____________。

7. ()()18195922x x x m x n -+=++,则m =___________,n =___________。

二. 分解因式
(1)2532x x -- (2)521182x x -+ (3)a a b b 22
524--
(4)()()x y x y +++-2224 (5)36942x x +- (6)x x y y 2221++-
(7)a b a a b 22
2
21-++ (8)x y z x y 222
2+-+ (9)
()()()a b a bc b c +-+-2
三. 解答题
已知x x y y 22
235--=,求整数x 和y 的值。

约分:

3
22423248c b a c b a ⑵()()()()b a y x b a y x -+-+2
3
⑶6342
2-+++x x x x (4)x
x x
2
2
49
7-
- (5)()()y x a x y a --27122
3
(6)xy xy y x 222
+(7)m m m -+-1122
(8
) ⑿
a
x x
a --⒁
9
18
32
2---x x x 通分:
⑶2223,2,)(
1b a b a b a -+-+ (4(5) 1
21
,11,1212
22
++-+-a a a a a
23x x x 122
+--。

相关文档
最新文档