高考数学 2.9 函数模型及其应用练习

合集下载

高三数学函数模型及其应用试题答案及解析

高三数学函数模型及其应用试题答案及解析

高三数学函数模型及其应用试题答案及解析1.定义在上的函数满足,则=()A.-1B.0C.1D.2【答案】C【解析】因为2015=6×336-1,所以f(2015)=f(-1)=log(1+1)=1.选C2【考点】分段函数求值2.牛奶保鲜时间因储藏温度的不同而不同,假定保鲜时间与储藏温度的关系为指数型函数y=ka x,若牛奶在0℃的冰箱中,保鲜时间约为100 h,在5℃的冰箱中,保鲜时间约为80 h,那么在10℃时保鲜时间约为()A.49 h B.56 h C.64 h D.72 h【答案】C【解析】由得k=100,a5=,所以当10℃时,保鲜时间为100·a10=100·()2=64,故选C.3.(2011•湖北)提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(1)当0≤x≤200时,求函数v(x)的表达式;(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到1辆/小时).【答案】(1)(2)3333辆/小时【解析】(1)由题意:当0≤x≤20时,v(x)=60;当20<x≤200时,设v(x)=ax+b再由已知得,解得故函数v(x)的表达式为(2)依题并由(1)可得当0≤x<20时,f(x)为增函数,故当x=20时,其最大值为60×20=1200当20≤x≤200时,当且仅当x=200﹣x,即x=100时,等号成立.所以,当x=100时,f(x)在区间(20,200]上取得最大值.综上所述,当x=100时,f(x)在区间[0,200]上取得最大值为,即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.答:(1)函数v(x)的表达式(2)当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.4.某食品公司为了解某种新品种食品的市场需求,进行了20天的测试,人为地调控每天产品的单价P(元/件):前10天每天单价呈直线下降趋势(第10天免费赠送品尝),后10天呈直线上升,其中4天的单价记录如表:时间(将第x天记为x)x1101118而这20天相应的销售量Q(百件/天)与x对应的点(x,Q)在如图所示的半圆上.(1)写出每天销售收入y(元)与时间x(天)的函数关系式y=f(x).(2)在这20天中哪一天销售收入最高?为使每天销售收入最高,按此次测试结果应将单价P定为多少元为好?(结果精确到1元)【答案】(1)y=100QP=100,x∈[1,20],x∈N*(2)7【解析】(1)P=x∈N*,Q=,x∈[1,20],x∈N*,所以y=100QP=100,x∈[1,20],x∈N*.(2)因为(x-10)2[100-(x-10)2]≤=2500,所以当且仅当(x-10)2=100-(x-10)2,即x=10±5时,y有最大值.因为x∈N*,所以取x=3或17时,y=700max≈4999(元),此时,P=7元.答:第3天或第17天销售收入最高,按此次测试结果应将单价P定为7元为好.5.某造纸厂拟建一座底面图形为矩形且面积为162平方米的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/米,中间两道隔墙建造单价为248元/米,池底建造单价为80元/平方米,水池所有墙的厚度忽略不计.(1)试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;(2)若由于地形限制,该池的长和宽都不能超过16米,试设计污水处理池的长和宽,使总造价最低,并求出最低总造价.【答案】(1)当长为16.2米,宽为10米时总造价最低,总造价最低为38 880元(2)当长为16米,宽为10米时总造价最低,总造价最低为38 882元.【解析】(1)设污水处理池的宽为x米,则长为米.则总造价f(x)=400×(2x+)+248×2x+80×162=1 296x++12 960=1 296(x+)+12 960≥1 296×2 +12 960=38 880(元),当且仅当x=(x>0),即x=10时取等号.∴当长为16.2米,宽为10米时总造价最低,总造价最低为38 880元.(2)由限制条件知,∴10≤x≤16,设g(x)=x+(10≤x≤16),g(x)在上是增函数,∴当x=10时(此时),g(x)有最小值,即f(x)有最小值,即为1 296×+12 960=38 882元.∴当长为16米,宽为10米时总造价最低,总造价最低为38 882元.6.农业技术员进行某种作物的种植密度试验,把一块试验田划分为8块面积相等的区域(除了种植密度,其它影响作物生长的因素都保持一致),种植密度和单株产量统计如下:根据上表所提供信息,第_____号区域的总产量最大,该区域种植密度为_____株/.{第13,14题的第一空3分,第二空2分}【答案】5,3.6【解析】由图中数据可得,,总产量,故时取得最大值,即第5号区域的总产量最大,该区域种植密度为.【考点】二次函数.7.某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为立方米,且. 假设该容器的建造费用仅与其表面积有关. 已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为22千元. 设该容器的建造费用为y千元. 当该容器建造费用最小时,r的值为()A.B.1C.D.2【答案】B【解析】设容器的容积为,由题意知:,又,故由于,因此.所以建造费用,因此,,此时易知,故选B.【考点】1.几何体的体积;2.基本不等式.8.设函数,.(1)解方程:;(2)令,求证:;(3)若是实数集上的奇函数,且对任意实数恒成立,求实数的取值范围.【答案】(1);(2)参考解析;(3)【解析】(1)由于函数,,所以解方程.通过换元即可转化为解二次方程.即可求得结论.(2)由于即得到.所以.所以两个一组的和为1,还剩中间一个.即可求得结论.(3)由是实数集上的奇函数,可求得.又由于对任意实数恒成立.该式的理解较困难,所以研究函数的单调性可得.函数在实数集上是递增.集合奇函数,由函数值大小即可得到变量的大小,再利用基本不等式,从而得到结论.试题解析:(1)即:,解得,(2).因为,所以,,(3)因为是实数集上的奇函数,所以.,在实数集上单调递增.由得,又因为是实数集上的奇函数,所以,,又因为在实数集上单调递增,所以即对任意的都成立,即对任意的都成立,.【考点】1.解方程的思想.2.函数的单调性.3.归纳推理的思想.4.基本不等式.9.为了净化空气,某科研单位根据实验得出,在一定范围内,每喷洒1个单位的净化剂,空气中释放的浓度y(单位:毫克/立方米)随着时间(单位:天)变化的函数关系式近似为若多次喷洒,则某一时刻空气中的净化剂浓度为每次投放的净化剂在相应时刻所释放的浓度之和.由实验知,当空气中净化剂的浓度不低于4(毫克/立方米)时,它才能起到净化空气的作用.(1)若一次喷洒4个单位的净化剂,则净化时间可达几天?(2)若第一次喷洒2个单位的净化剂,6天后再喷洒a()个单位的药剂,要使接下来的4天中能够持续有效净化,试求的最小值(精确到0.1,参考数据:取1.4).【答案】(1)可达8天;(2)a的最小值为.【解析】(1)根据题中条件每喷洒1个单位的净化剂,空气中释放的浓度y(单位:毫克/立方米)随着时间(单位:天)变化的函数关系已经给出,则易得一次喷洒4个单位的净化剂时的函数关系式:,这样就得到一个分段函数,对分段函数的处理常用的原则:先分开,现合并,解两个不等式即可求解; (2)中若第一次喷洒2个单位的净化剂,6天后再喷洒a()个单位的药剂,根据题意从第6天开始浓度来源与两方面,这是题中的难点,前面留下的为:,后面新增的为:,所得化简即可得到:,结合基本不等式知识求出最小值,最后解一个不等式:,即可求解.试题解析:(1)因为一次喷洒4个单位的净化剂,所以浓度则当时,由,解得,所以此时. 3分当时,由解得,所以此时.综合得,若一次投放4个单位的制剂,则有效净化时间可达8天. 7分(2)设从第一次喷洒起,经x()天,浓度. 10分因为,而,所以,故当且仅当时,y有最小值为.令,解得,所以a的最小值为. 14分【考点】1.实际应用问题;2.分段函数;3.基本不等式.10.设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D)有x+l∈D,且f (x+l)≥f(x),则称f(x)为M上的l高调函数,如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的8高调函数,那么实数a的取值范围是( )A. B. C. D.【答案】A【解析】当时,,则,即为上的8高调函数;当时,函数的图象如图所示,若为上的8高调函数,则,解得且.综上.【考点】1.新定义题;2.函数图像.11.要在墙上开一个上半部为半圆形、下部为矩形的窗户(如图所示),在窗框为定长的条件下,要使窗户能够透过最多的光线,窗户应设计成怎样的尺寸?【答案】半圆直径与矩形的高的比为2∶1【解析】设半圆直径为2R,矩形的高为a,则2a+2R+πR=L(定值),S=2Ra+πR2=-R2+LR,当R=时S最大,此时=1,即半圆直径与矩形的高的比为2∶1时,窗户能够透过最多的光线.12.我国辽东半岛普兰附近的泥炭层中,发掘出的古莲子,至今大部分还能发芽开花,这些古莲子是多少年以前的遗物呢?要测定古物的年代,可用放射性碳法.在动植物的体内都含有微量的放射性14C,动植物死亡后,停止了新陈代谢,14C不再产生,且原有的14C会自动衰变,经过5570年(叫做14C的半衰期),它的残余量只有原始量的一半,经过科学家测定知道,若14C的原始含量为a,则经过t年后的残余量a′(与a之间满足a′=a·e-kt).现测得出土的古莲子中14C残余量占原量的87.9%,试推算古莲子的生活年代.【答案】1036年前【解析】因a′=a·e-kt,即=e-kt.两边取对数,得lg=-ktlge.①又知14C的半衰期是5570年,即t=5570时,=.故lg=-5570klge,即klge=.代入①式,并整理,得t=-.这就是利用放射性碳法计算古生物年代的公式.现测得古莲子的是0.879,代入公式,得t=-≈1036.即古莲子约是1036年前的遗物.13.用长为90cm、宽为48cm的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻折90°角,再焊接而成,则该容器的高为________cm时,容器的容积最大.【答案】10【解析】设容器的高为xcm,即小正方形的边长为xcm,该容器的容积为V,则V=(90-2x)(48-2x)x=4(x3-69x2+1080x),0<x<12,V′=12(x2-46x+360)=12(x-10)(x-36),当0<x<10时,V′>0;当10<x<12时,V′<0.所以V在(0,10]上是增函数,在[10,12)上是减函数,故当x =10时,V最大.14.某客运部门规定甲、乙两地之间旅客托运行李的费用为:不超过25kg按0.5元/kg收费,超过25kg的部分按0.8元/kg收费,计算收费的程序框图如图所示,则①②处应填()A.y=0.8xy=0.5xB.y=0.5xy=0.8xC.y=0.8x-7.5y=0.5xD.y=0.8x+12.5y=0.8x【答案】C【解析】设行李的质量为xkg,则所需费用为:y=即y=15.定义在R上的函数及二次函数满足:且。

【高考一轮复习】2018课标版理数2.9函数模型及应用 夯基提能作业本

【高考一轮复习】2018课标版理数2.9函数模型及应用 夯基提能作业本

第九节函数模型及应用A组基础题组1.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是()A.118元B.105元C.106元D.108元2.一个人以6 m/s的速度去追停在交通灯前的汽车,当他离汽车25 m时,交通灯由红变绿,汽车以1 m/s2的加速度匀加速开走,那么()A.人可在7 s内追上汽车B.人可在10 s内追上汽车C.人追不上汽车,其间距最少为5 mD.人追不上汽车,其间距最少为7 m3.在某个物理实验中,测量得变量x和变量y的几组数据,如下表:则对x,y最适合的拟合函数是()A.y=2xB.y=x2-1C.y=2x-2D.y=log2x4.(2016北京朝阳统一考试)设某公司原有员工100人从事产品A的生产,平均每人每年创造产值t万元(t为正常数).公司决定从原有员工中分流x(0<x<100,x∈N*)人去进行新开发的产品B的生产.分流后,继续从事产品A生产的员工平均每人每年创造产值在原有的基础上增长了1.2x%.若要保证产品A的年产值不减少,则最多能分流的人数是()A.15B.16C.17D.185.将甲桶中的a升水缓慢注入空桶乙中,t分钟后甲桶中剩余的水量符合指数衰减曲线y=ae nt.若5分钟后甲桶和乙桶的水量相等,又过了m分钟后甲桶中的水只有升,则m的值为()A.7B.8C.9D.106.西北某羊皮手套公司准备投入适当的广告费对其生产的产品进行促销.根据预算得羊皮手套的年利润L万元与年广告费x万元之间的函数解析式为L=-(x>0).则当年广告费投入万元时,该公司的年利润最大.7.某化工厂生产一种溶液,按市场要求杂质含量不能超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少,至少应过滤次才能达到市场要求.(已知lg 2≈0.301,lg 3≈0.477 1)8.“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v(单位:千克/年)是养殖密度x(单位:尾/立方米)的函数.当x 不超过4尾/立方米时,v的值为2千克/年;当4≤x≤20时,v是x的一次函数;当x达到20尾/立方米时,因缺氧等原因,v的值为0千克/年.(1)当0<x≤20时,求函数v关于x的函数表达式;(2)当养殖密度x为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.9.(2017黑龙江牡丹江十五中期末)有一种新型的洗衣液,去污速度特别快.已知每投放k(1≤k≤4,且k∈R)个单位的洗衣液在装有一定量水的洗衣机中,它在水中释放的浓度y(克/升)随着时间x(分钟)变化的函数关系式近似为y=k·f(x),其中f(x)=若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和.根据经验,当水中洗衣液的浓度不低于4克/升时,它才能起到有效去污的作用.(1)若只投放一次k个单位的洗衣液,当两分钟时水中洗衣液的浓度为3克/升,求k的值;(2)若只投放一次4个单位的洗衣液,则有效去污时间可达几分钟?(3)若第一次投放2个单位的洗衣液,10分钟后再投放1个单位的洗衣液,则在第12分钟时洗衣液是否还能起到有效去污的作用?请说明理由.B组提升题组10.(2016山东威海模拟)已知每生产100克饼干的原材料加工费为1.8元.某食品加工厂对饼干采用两种包装,其包装费用、销售价格如下表所示:则下列说法正确的是()①买小包装实惠;②买大包装实惠;③卖3小包比卖1大包盈利多;④卖1大包比卖3小包盈利多.A.①③B.①④C.②③D.②④11.某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3 000元时,这70套公寓能全租出去;当月租金每增加50元时(月租金均为50元的整数倍),就会多一套房子不能出租.设租出的每套房子每月需要公司花100元的日常维修等费用(租不出的房子不需要花这些费用).要使公司获得最大利润,每套房月租金应定为()A.3 000元B.3 300元C.3 500元D.4 000元12.某厂有许多形状为直角梯形的铁皮边角料(如图),为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图阴影部分)备用,则截取的矩形面积的最大值为.13.里氏震级M的计算公式为M=lg A-lg A0,其中A是测震仪记录的地震曲线的最大振幅,A0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1 000,此时标准地震的振幅为0.001,则此次地震的震级为级;9级地震的最大振幅是5级地震最大振幅的倍.14.已知某物体的温度θ(单位:℃)随时间t(单位:min)的变化规律是θ=m·2t+21-t(t≥0且m>0).(1)如果m=2,求经过多长时间物体的温度为5 ℃;(2)若物体的温度总不低于2 ℃,求m的取值范围.答案全解全析A组基础题组1.D 设进货价为a元,由题意知132×(1-10%)-a=10%·a,解得a=108,故选D.2.D 设汽车经过t秒行驶的路程为s米,则s=t2,车与人的间距d=(s+25)-6t=t2-6t+25=(t-6)2+7,当t=6时,d取得最小值,为7(m).3.D 根据x=0.50,y=-0.99,代入各选项计算,可以排除A;根据x=2.01,y=0.98,代入各选项计算,可以排除B,C;将各数据代入函数y=log2x,可知满足题意.故选D.4.B 由题意,分流前每年创造的产值为100t(万元),分流x人后,每年创造的产值为(100-x)(1+1.2x%)t(万元),则由解得0<x≤.因为x∈N*,所以x的最大值为16.5.D 令a=ae nt,则=e nt,由已知得=e5n,故=e15n,∴t=15,m=15-5=10.6.答案 4解析L=-=-×(x>0).当-=0,即x=4时,L取得最大值21.5.故当年广告费投入4万元时,该公司的年利润最大.7.答案8解析设过滤n次能达到市场要求,则2%≤0.1%,即≤,所以nlg≤-1-lg 2,即n(lg 2-lg 3)≤-1-lg 2,所以n≥7.39,又n∈N*,所以n的最小值为8.8.解析(1)由题意得当0<x≤4时,v=2;当4≤x≤20时,设v=ax+b,显然v=ax+b在[4,20]内是减函数,由已知得解得所以v=-x+,故函数v=(2)设年生长量为f(x)千克/立方米,依题意并由(1)可得f(x)=当0<x≤4时, f(x)为增函数,故f(x)max=f(4)=4×2=8;当4<x≤20时, f(x)=-x2+x=-(x2-20x)=-(x-10)2+, f(x)max=f(10)=12.5.所以当0<x≤20时, f(x)的最大值为12.5.即当养殖密度为10尾/立方米时,鱼的年生长量可以达到最大,最大值为12.5千克/立方米.9.解析(1)由题意知k=3,∴k=1.(2)因为k=4,所以y=当0≤x≤4时,由-4≥4,解得-4≤x<8,所以0≤x≤4.当4<x≤14时,由28-2x≥4,解得x≤12,所以4<x≤12.综上可知,当y≥4时,0≤x≤12,所以只投放一次4个单位的洗衣液的有效去污时间可达12分钟.(3)能,理由:在第12分钟时,水中洗衣液的浓度为2×+1×=5(克/升),又5>4,所以在第12分钟时还能起到有效去污的作用.B组提升题组10.D 买小包装时每克费用为元,买大包装每克费用为=元,而>,所以买大包装实惠,卖3小包的利润为3×(3-1.8-0.5)=2.1(元),卖1大包的利润为8.4-1.8×3-0.7=2.3(元).而2.3>2.1,所以卖1大包盈利多,故选D.11.B 设利润为y元,租金定为(3 000+50x)元(0≤x≤70,x∈N*),则y=(3 000+50x)(70-x)-100(70-x)=(2 900+50x)(70-x)=50(58+x)(70-x)≤50,当且仅当58+x=70-x,即x=6时,等号成立,故每套房月租金定为3 000+300=3 300(元)时,公司获得最大利润,故选B.12.答案180解析依题意知:=(0<x≤20,8≤y<24),即x=(24-y),∴阴影部分的面积S=xy=(24-y)·y=(-y2+24y)=-(y-12)2+180(8≤y<24).∴当y=12时,S取最大值180.13.答案6;10 000解析由题意,A=1 000=103,A-3,则M=lg 103-lg 10-3=3-(-3)=6.设9级地震,5级地震的最大振幅分别为A9,A5,则lg A9-9=lg A5-5,得lg A9-lg A5=4,即lg=4,∴=10 000.14.解析(1)若m=2,则θ=2·2t+21-t=2,当θ=5时,2t+=,令x=2t,x≥1,则x+=,即2x2-5x+2=0,解得x=2或x=(舍去),当x=2时,t=1.故经过1 min,物体的温度为5 ℃.(2)物体的温度总不低于2 ℃等价于对于任意的t∈[0,+∞),θ≥2恒成立,即m·2t+≥2(t≥0)恒成立,亦即m≥2(t≥0)恒成立.令y=,则0<y≤1,故对于任意的y∈(0,1],m≥2(y-y2)恒成立,因为y-y2=-+≤,所以m≥.因此,当物体的温度总不低于2 ℃时,m的取值范围是.。

函数模型及其应用

函数模型及其应用

演 实 战


∵R(x)在[0,210]上是增函数,∴x=210时,
场 点


搏 核 心
R(x)有最大值为-15(210-220)2+1 680=1 660.


∴年产量为210吨时,可获得最大利润1 660万元.
课 时



菜单
高三总复习·数学(理)


考向二 指数函数模型的应用
养 满




[典例剖析]
高三总复习·数学(理)
















第九节 函数模型及其应用
战 沙










ห้องสมุดไป่ตู้





菜单
高三总复习·数学(理)










考纲要求:1.了解指数函数、对数函数以及幂函数的增

纲 考
长特征,知道直线上升、指数增长、对数增长等不同函数类



型增长的含义.2.了解函数模型(如指数函数、对数函数、幂

考 向
数模型和实验数据,可以得到最佳加工时间为(
)
演 实













高三数学一轮复习 2.9函数模型及其应用课件

高三数学一轮复习 2.9函数模型及其应用课件

f1 x , x D 1,
(6)分段函数模型:
y
f
2
x
,
x
D 2,
图象特点是每一段自变量
f
n
x

x
D
n
,
变化所遵循的规律不同.可以先将其当作几个问题,将各段的变
化规律分别找出来,再将其合到一起,要注意各段自变量的取值
范围,特别是端点.
3.建立函数模型解决实际应用问题的步骤(四步八字) (1)审题:阅读理解、弄清题意,分清条件和结论,理顺数量关系, 弄清数据的单位等. (2)建模:正确选择自变量,将自然语言转化为数学语言,将文字 语言转化为符号语言,利用数学知识,建立相应的数学模型. (3)求模:求解数学模型,得出数学结论. (4)还原:将数学问题还原为实际问题.
5.某种储蓄按复利计算利息,若本金为a元,每期利率为r,存期
是x,本利和(本金加利息)为y元,则本利和y随存期x变化的函数
关系式是
.
【解析】已知本金为a元,利率为r,则 1期后本利和为y=a+ar=a(1+r), 2期后本利和为y=a(1+r)+a(1+r)r=a(1+r)2, 3期后本利和为y=a(1+r)3, … x期后本利和为y=a(1+r)x,x∈N. 答案:y=a(1+r)x,x∈N
③图(3)的建议是:提高票价,并保持成本不变;
④图(3)的建议是:提高票价,并降低成本.
其中所有正确说法的序号是( )A.①③Fra bibliotekB.①④
C.②③
D.②④
【解析】选C.对于图(2),当x=0时,函数值比图(1)中的大,表示 成本降低,两直线平行,表明票价不变,故②正确;对于图(3),当 x=0时,函数值不变表示成本不变,当x>0时,函数值增大表明票 价提高,故③正确.

2.9 函数模型及其综合应用-5年3年模拟北京高考

2.9 函数模型及其综合应用-5年3年模拟北京高考

2.9 函数模型及其综合应用五年高考考点 函数的实际应用1.(2013天津,8,5分)已知函数|).|1()(x a x x f +=设关于x 的不等式)()(x f a x f <+的解集为A .若,]21,21[A ⊆-则实数a 的取值范围是( ) )0,251.(-A )0,231.(-B )231,0()0,251.(+- C )251,.(--∞D2.(2012北京,8,5分)某棵果树前n 年的总产量S 。

与n 之间的关系如图所示,从目前记录的结果看,前m 年的年平均产量最高,m 的值为 ( )5.A 7.B 9.C 11.D3.(2013湖南.16,5分)设函数,)(xx x c b a x f -+=其中.0,0>>>>b c a c(1)记集合c b a c b a M ,,1),,{(=不能构成一个三角形的三条边长,且a=b},则M c b a ∈),,(所对应的)(x f 的零点的取值集合为(2)若a ,b ,c 是△ABC 的三条边长,则下列结论正确的是 .(写出所有正确结论的序号);0)(),1,(>-∞∈∀x f x ①,R x ∈∃②使c b a xx x ,,不能构成一个三角形的三条边长;③若△ABC 为钝角三角形,则),2,1(∈∃x 使.0)(=x f4.(2013课标全国I .21,12分)设函数)(,)(2x g b ax x x f ++=).(d cx e x +=若曲线)(x f y =⋅和曲线)(x g y =都过点P(O ,2),且在点P 处有相同的切线.24+=x y (1)求a ,b ,c ,d 的值;(2)若2-≥x 时,),()(x kg x f ≤求k 的取值范围.5.(2012江苏,17,14分)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米,某炮位于坐标原点,已知炮弹发射后的轨迹在方程k x k kx y <+-=22)1(201)0>表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.6.(2012上海.21,14分)海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A 处,如图,现假设:①失事船的移动路径可视为抛物线;49122x y =②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为7t . (1)当t=0.5时,写出失事船所在位置P 的纵坐标.若此时两船恰好会合,求救援船速度的大小和方向; (2)问救援船的时速至少是多少海里才能追上失事船?智力背景上帝之数—— 神秘的完美数 所谓的上帝之数就是这样的一些完美数,它的所有的真因予(包括1, 但是不包括本身)之和正好等于这个数本身.例如:;3216;3216++=⨯⨯=142174128⨯⨯=⨯⨯= 且,28147421=++++6和28是最小的两个完美数,这在古希腊就已经被发现了,由于6是古时传说中上帝创造世界所用的天数,而28是月亮绕地球一周所需的天数,这使得完美数充满了神秘的色彩,现在以我们人类的认知水平还无法揭开这些数的神秘面纱, 7.(2011湖北.17,12分)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度”(单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为O ;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20020≤≤x 时,车流速度w 是车流密度x 的一次函数. (1)当2000≤≤x 时,求函数v(x)的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时))()(x v x x f ⋅=可以达到最大,并求出最大值.(精确到1辆/小时)8.(2011江苏,17,14分)请你设计一个包装盒,如图所示,AB-CD 是边长为60 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒.E ,F 在AB 上,是被切去的一个等腰直角三角形斜边的两 个端点,设⋅==)(cm x FB AE(1)某广告商要求包装盒的侧面积)(2cm s 最大,试问x 应取何值?(2)某厂商要求包装盒的容积)(3cm V 最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.解读探究知识清单2.三种增长型函数之间增长速度的比较(1)指数函数)1(>=a a y x 与幂函数)0(>=ααx y在区间),0(+∞上,无论α比a 大多少,尽管在x 的一定范围内xa 会小于,αx 但由于xa y =的增长度⑧ αx y =的增长速度,因而总存在一个,0x 当0x x >时有⑨(2)对数函数)1(log >=a x y a 与幂函数)0(>=ααx y 不论a 与α值的大小如何,对数函数)1(log >=a x y a 的增长速度总会⑩ αx y =的增长速度,因而在定义域内总存在一个实数,0x 使0x x >时有由(1)(2)可以看出三种增长型的函数尽管均为增函数,但它们的增长速度不同,且不在同一个档次上,因此在),0(+∞上,总会存在一个,0x 使0x x >时有智力背景不可能的三接棍 许多图案和实例,一旦熟悉起来便觉得想当然.在1958年英国的《心理学杂志》 上.R .朋罗斯发表了他的不可能的三接棍,他称之为立体的矩形构造:三个直角显示出垂直,但它是不可 能存在于空间的.这里三个直角似乎形成一个三角形,但三角形是一个平面而非立体的图形,它的三个角的和为,180o而非.2700【知识拓展】1.函数的应用是数学应用问题的主要类型之一,教材中介绍了函数知识在增长率、物理等方面的应用,首先要深刻理解、准确把握题目中的概念和公式,把以上类型摘清搞懂,由此初步掌握解决函数应用问题的基本方法,为逐步提高解答应用问题的能力打下良好的基础.2.解函数应用题关键是建立数学模型,要顺利地建立数学模型,重点要过好三关:(1)事理关:通过阅读、理解,明白问题讲的是什么,熟悉实际背景,为解题打开突破口. (2)文理关:将实际问题的文字语言转化为数学的符号语言,用数学式子表达数学关系.(3)数理关:在构建数学模型的过程中,对已有数学知识进行检验,从而认定或构建相应的数学模型,完成由实际问题向数学问题的转化.3.学习过程中要注意从数学的角度理解、分析、研究、把握问题,先独立尝试,后对比验证,特别要强调开展自主的、独立的探讨活动,这样才有利于培养阅读理解、分析和解决实际问题的能力,有助于提高对数学思想方法的认识,有利于培养数学意识,·知识清单答案突破方法方法 函数模型的应用函数应用的基本过程:例(2012河南安阳二模.18,12分)某厂生产某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为C(x)万元,当年产量不足80千件时,x x x C 1031)(2+=(万元);当年产量不少于80千件时,14501000051)(-+=xx x C (万元).通过市场分析,若每件售价为500元时,该厂年内生产该商品能全部销售完.(1)写出年利润L (万元)关于年产量x (千件)的函数解析式; (2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?解题思路解析 (1)当*,800N x x ∈<<时,2501031100001000500)(2---⨯=x x x x L;2504032-+-=x x f 当*,80N x x ∈≥时, (2分)2501450001051100001000500)(0-+--⨯=xx xx L),10000(1200xx +-= (4分) ⎪⎩⎪⎨⎧⋅∈≥+-⋅∈<<-+-=∴*),80()10000(1200),,800(2504031)(2N x x x x N x x x x x L (2)当*,800N x x ∈<<时, (6分),950)60(31)(2+--=x x L.‘.当x= 60时,)(x L 取得最大值.950)60(=L (8分) 当*,80N x x ∈≥时,xx x x x L 10000.21200)10000(1200)(-≤+-= ,10002001200=-=∴ 当,10000xx =即100=x 时, )(x L 取得最大值.9501000)100(>=L (11分)综上所述,当100=x 时,)(x L 取得最大值1000,即年产量为100千件时,该厂在这一商品的生产中所获利润最大. (12分)【方法点拨】 求解函数应用题的一般方法:“数学建模”是解决数学应用题的重要方法,解应用题的一般程序:智力背景懂得数学,一辈子受用不尽 人们用最美的词句赞荑数学:“自然科学的皇后”、“皇冠”、“明珠”、 “稀世珍宝”、“巍峨的阶梯”、“金碧辉煌的宫殿”、“人造宇宙”等,这些一点儿也不夸张.数学原本就是培养思考力最好的方法,即使讨厌数学的人,也能透过“头脑体操”让自己拥有数学式的逻辑思考;数学能让人排除不必要的杂物,看透事物本质,并得到解决问题的启示.会数学,不仅等于拥有万种知识的钥匙,也能透过数学来探索人生的其他可能性,三年模拟A 组 2011-2013年模拟探究专项基础测试时间:45分钟 分值.40分 一、选择题(共5分) 1.(2013山西临汾一模.11)某家具的标价为132元,若降价以九折出售(即优惠10% ),仍可获利10%(相对进货价),则该家具的进货价是 ( ) A .118元 B.105元 C.106元 D.108元 二、解答题(共35分) 2.(2013山东德州一模,18)某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比已知投资1万元时两类产品的收益分别为0.125万元和0.5万元. (1)分别写出两类产品的收益与投资的函数关系;(2)该家庭有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?3.(2012山东聊城5月模拟.19)某村计划建造一个室内面积为2800m 的矩形蔬菜温室,在温室内,沿左、右两侧与后侧内墙各保留Im 宽的通道,沿前侧内墙保留3m 宽的空地,当矩形温室的左后两侧边长各为多少时,蔬菜的种植面积最大?最大面积是多少? 4.(2012河南鹤壁二模.17)某食品公司为了解某种新品种食品的市场需求,进行了20天的测试,人为地调控每天产品的单价P(元/件):前10天每天单价呈直线下降趋势(第10天免费赠送品尝),后10天呈直线上升,其中4天的单价记录如下表:而这20天相应的销售量Q (百件/天)与时间x 对应的点(x ,Q)在如图所示的半圆上. (1)写出每天销售收入y (元)与时间x (天)的函数;(2)在这20天中哪一天销售收入最高?此时单价P 定为多少元为好?(结果精确到1元)智力背景隐藏予大自然中的“对称” 对称的事物是荧的,它广泛存在于大自然中: 1.斑马的条纹以它的身体为基准形成左右对称. 2.仿蛱蝶的翅膀上的图案是对反射变换对称. 3.雪的结晶,为对60度倍数角旋转变换对称. 4.星龟甲壳上的六角形图案,为对旋转变换对称,B 组 2011-2013年模拟探究专项提升测试时间:30分钟 分值:35分一、填空题(每题5分,共10分) 1.(2013河南焦作4月,14)某商人购货,进价已按原价a 扣去25%.他希望对货物定一新价,以便按新价让利20% 销售后仍可获得售价25%的利润,则此商人经营这种货物的件数x 与按新价让利总额y 之间的函数关系式为 . 2.(2013浙江余杭一模,13)某汽车运输公司,购买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y (单位:10万元)与营运年数*)(N x x 为二次函数关系,如图所示,则每辆客车营运 年,其营运的年平均利润最大,二、解答题(共25分)3.(2013福建宁德5月.18)有一种新型的洗衣液,去污速度特别快.已知每投放),41(R k k k ∈≤≤且 个单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度y (克/升)随着时间x (分钟)变化的函数关系式近似为),(x f k y ⋅=其中=)(x f ⎪⎩⎪⎨⎧≤<-≤≤--).144(217),40(1824x x x x 若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和,根据经验,当水中洗衣液的浓度不低于4(克/升)时,它才能起到有效去污的作用.(1)若只投放一次k 个单位的洗衣液,两分钟时水中洗衣液的浓度为3(克/升),求k 的值; (2)若只投放一次4个单位的洗衣液,则有效去污时间可达几分钟? 4.(2011天津十校联考5月,18)某市居民自来水收费标准如下:每户每月用水不超过4吨时每吨为1.80元,当用水超过4吨时,超过部分每吨3.00元,某月甲、乙两户共交水费y 元,已知甲、乙两用户该月用水量分别为5x 、3x(吨). (1)求y 关于x 的函数;(2)若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费.智力背景网球选手的动作暗含数学原理 科学家发现, 世界顶级网球选手的动作和判断力与托马斯·贝叶斯1763年发现的贝叶斯定理非常相近.这项定理的概率运算规则表明,根据事件先前发生的次数可以计算它以后发生的概率.一种称作“贝叶斯方法”的统计学方法以已知事件发生的频率为基础,测算某些事情发生的概率.这正是一位有经验选手的大脑如何在几乎看不到网球的情况下对快速运行的球做出判断的过程.。

2020版高考数学(文)高分计划一轮高分讲义:第2章函数、导数及其应用 2.9 函数模型及其应用 Word版含解析

2020版高考数学(文)高分计划一轮高分讲义:第2章函数、导数及其应用 2.9 函数模型及其应用 Word版含解析

2.9函数模型及其应用[知识梳理]1.七类常见函数模型2.指数、对数、幂函数模型的性质3.解函数应用问题的步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型.(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型.(3)解模:求解数学模型,得出数学结论.(4)还原:将数学问题还原为实际问题.以上过程用框图表示如下:特别提醒:(1)“直线上升”是匀速增长,其增长量固定不变;“指数增长”先慢后快,其增长量成倍增加,常用“指数爆炸”来形容;“对数增长”先快后慢,其增长速度缓慢.(2)充分理解题意,并熟练掌握几种常见函数的图象和性质是解题的关键.(3)易忽视实际问题中自变量的取值范围,需合理确定函数的定义域,必须验证数学结果对实际问题的合理性.[诊断自测]1.概念思辨(1)在(0,+∞)上,随着x的增大,y=a x(a>1)的增长速度会超过并远远大于y=xα(α>0)的增长速度.()(2)指数函数模型,一般用于解决变化较快,短时间内变化量较大的实际问题.()(3)当a>1时,不存在实数x0,使a x0<x a0<log a x0.()(4)对数函数增长模型比较适合于描述增长速度平缓的变化规律.()答案(1)√(2)√(3)√(4)√2.教材衍化(1)(必修A1P59T6)如果在今后若干年内,我国国民经济生产总值都控制在平均每年增长9%的水平,那么要达到国民经济生产总值比1995年翻两番的年份大约是(lg 2=0.3010,lg 3=0.4771,lg 109=2.0374,lg 0.09=-2.9543)()A.2015年B.2011年C.2010年D.2008年答案 B解析设1995年总值为a,经过x年翻两番,则a·(1+9%)x=4a.∴x=2lg 2lg 1.09≈16.故选B.(2)(必修A1P107T1)在某种新型材料的研制中,实验人员获得了下列一组实验数据:现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是()A .y =2x -2B .y =12(x 2-1) C .y =log 2x D .y =log 12x答案 B解析 由题意得,表中数据y 随x 的变化趋势,函数在(0,+∞)上是增函数,且y 的变化随x 的增大越来越快.∵A 中函数是线性增加的函数,C 中函数是比线性增加还缓慢的函数,D中函数是减函数,∴排除A ,C ,D ,∴B 中函数y =12(x 2-1)符合题意.故选B. 3.小题热身(1) (2018·湖北八校联考)某人根据经验绘制了2016年春节前后,从1月25日至2月11日自己种植的西红柿的销售量y (千克)随时间x (天)变化的函数图象,如图所示,则此人在1月30日大约卖出了西红柿 ________千克.答案 1909解析 前10天满足一次函数关系,设为y =kx +b ,将点(1,10)和点(10,30)代入函数解析式,得⎩⎪⎨⎪⎧10=k +b ,30=10k +b ,解得k =209,b =709,所以y =209x +709,则当x =6时,y =1909. (2)(2017·朝阳区模拟)某商场2017年一月份到十二月份月销售额呈现先下降后上升的趋势,现有三种函数模型:①f (x )=p ·q x (q >0,q ≠1); ②f (x )=log p x +q (p >0,p ≠1); ③f (x )=x 2+px +q .能较准确反映商场月销售额f (x )与月份x 关系的函数模型为________(填写相应函数的序号),若所选函数满足f (1)=10,f (3)=2,则f (x )=________.答案 ③ x 2-8x +17解析 (ⅰ)因为f (x )=p ·q x ,f (x )=log q x +q 是单调函数,f (x )=x 2+px +q 中,f ′(x )=2x +p ,令f ′(x )=0,得x =-p2,f (x )出现一个递增区间和一个递减区间,所以模拟函数应选f (x )=x 2+px +q .(ⅱ)∵f (1)=10,f (3)=2,∴⎩⎪⎨⎪⎧1+p +q =10,9+3p +q =2,解得p =-8,q =17, ∴f (x )=x 2-8x +17 故答案为③;x 2-8x +17.题型1 二次函数及分段函数模型典例 为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,新上了把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =⎩⎪⎨⎪⎧13x 3-80x 2+5040x ,x ∈[120,144),12x 2-200x +80000,x ∈[144,500],且每处理一吨二氧化碳得到可利用的化工产品价值为200元,若该项目不获利,亏损数额国家将给予补偿.(1)当x ∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果亏损,则国家每月补偿数额的范围是多少?(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?本题用函数法,再由均值定理解之.解 (1)当x ∈[200,300]时,设该项目获利为S ,则S =200x -⎝ ⎛⎭⎪⎫12x 2-200x +80000=-12x 2+400x -80000=-12(x-400)2,所以当x ∈[200,300]时,S <0,因此该单位不会获利. 当x =300时,S 取得最大值-5000,当x =200时,S 取得最小值-20000,故国家每月补偿数额的范围是[5000,20000].(2)由题意,可知二氧化碳的每吨处理成本为 yx =⎩⎪⎨⎪⎧13x 2-80x +5040,x ∈[120,144),12x +80000x -200,x ∈[144,500].①当x ∈[120,144)时,y x =13x 2-80x +5040=13(x -120)2+240, 所以当x =120时,yx 取得最小值240. ②当x ∈[144,500]时, y x =12x +80000x -200≥212x ×80000x -200=200,当且仅当12x =80000x ,即x =400时,yx 取得最小值200.因为200<240,所以当每月的处理量为400吨时,才能使每吨的平均处理成本最低.方法技巧一次函数、二次函数及分段函数模型的选取与应用策略 1.在实际问题中,若两个变量之间的关系是直线上升或直线下降或图象为直线(或其一部分),一般构建一次函数模型,利用一次函数的图象与性质求解.2.实际问题中的如面积问题、利润问题、产量问题或其图象为抛物线(或抛物线的一部分)等一般选用二次函数模型,根据已知条件确定二次函数解析式.结合二次函数的图象、最值求法、单调性、零点等知识将实际问题解决.见典例.3.实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同的关系式构成,如出租车计价与路程之间的关系,应构建分段函数模型求解,但应关注以下两点:(1)构造分段函数时,要力求准确、简洁,做到分段合理、不重不漏;(2)分段函数的最值是各段的最大(或最小)值中的最大(或最小)值. 提醒:(1)构建函数模型时不要忘记考虑函数的定义域. (2)对构建的较复杂的函数模型,要适时地用换元法转化为熟悉的函数问题求解.冲关针对训练(2017·广州模拟)某企业生产A ,B 两种产品,根据市场调查与预测,A 产品的利润与投资成正比,其关系如图1;B 产品的利润与投资的算术平方根成正比,其关系如图2(注:利润和投资单位:万元).(1)分别将A ,B 两种产品的利润表示为投资的函数关系式; (2)已知该企业已筹集到18万元资金,并将全部投入A ,B 两种产品的生产.①若平均投入生产两种产品,可获得多少利润?②如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?解 (1)f (x )=0.25x (x ≥0),g (x )=2x (x ≥0).(2)①由(1)得f (9)=2.25,g (9)=29=6,所以总利润y =8.25万元.②设B 产品投入x 万元,A 产品投入(18-x )万元,该企业可获总利润为y 万元.则y =14(18-x )+2x ,0≤x ≤18. 令x =t ,t ∈[0,3 2 ],则y =14(-t 2+8t +18)=-14(t -4)2+172. 所以当t =4时,y max =172=8.5,此时x =16,18-x =2,所以当A ,B 两种产品分别投入2万元、16万元时,可使该企业获得最大利润,约为8.5万元.题型2 指数函数模型典例 (2017·西安模拟)我国加入WTO 后,根据达成的协议,若干年内某产品的关税与市场供应量P 的关系近似满足:y =P (x )=2(1-kt )(x -b )2(其中t 为关税的税率,且t ∈⎣⎢⎡⎭⎪⎫0,12,x 为市场价格,b ,k为正常数),当t =18时的市场供应量曲线如图:(1)根据图象求b ,k 的值; (2)若市场需求量为Q ,它近似满足Q (x )=211-x2.当P =Q 时的市场价格称为市场平衡价格.为使市场平衡价格控制在不低于9元的范围内,求税率t 的最小值.本题用函数思想,采用换元法.解 (1)由图象知函数图象过(5,1),(7,2).所以⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫1-k 8(5-b )2=0,⎝ ⎛⎭⎪⎫1-k 8(7-b )2=1,解得⎩⎪⎨⎪⎧k =6,b =5.(2)当P =Q 时,2(1-6t )(x -5) 2=211-x 2 ,即(1-6t )(x -5)2=11-x 2,化简得1-6t =11-x 2(x -5)2=12·22-x(x -5)2=12·⎣⎢⎡⎦⎥⎤17(x -5)2-1x -5. 令m =1x -5(x ≥9),所以m ∈⎝ ⎛⎦⎥⎤0,14.设f (m )=17m 2-m ,m ∈⎝ ⎛⎦⎥⎤0,14,对称轴为m =134,所以f (m )max =f ⎝ ⎛⎭⎪⎫14=1316,所以,当m =14,即x =9时,1-6t 取得最大值为12×1316,即1-6t ≤12×1316,解得t ≥19192,即税率的最小值为19192. 方法技巧构建指数函数模型的关注点1.指数函数模型常与增长率相结合进行考查,在实际问题中有人口增长、银行利率、细胞分裂等增长问题可以利用指数函数模型来解决.2.应用指数函数模型时关键是对模型的判断,先设定模型,再将已知有关数据代入验证,确定参数,从而确定函数模型.3.y =a (1+x )n 通常利用指数运算与对数函数的性质求解. 冲关针对训练某城市现有人口总数为100万人,如果年自然增长率为1.2%,试解答以下问题:(1)写出该城市人口总数y (单位:万人)与年份x (单位:年)的函数关系式;(2)计算10年以后该城市人口总数(精确到0.1万人);(3)计算大约多少年以后该城市人口将达到120万人(精确到1年). (1.01210≈1.127,1.01215≈1.196,1.01216≈1.210,log 1.0121.2≈15.3) 解 (1)1年后该城市人口总数为y =100+100×1.2%=100×(1+1.2%),2年后该城市人口总数为y =100×(1+1.2%)+100×(1+1.2%)×1.2%=100×(1+1.2%)2,3年后该城市人口总数为y =100×(1+1.2%)2+100×(1+1.2%)2×1.2%=100×(1+1.2%)3,……x 年后该城市人口总数为y =100×(1+1.2%)x .所以该城市人口总数y (万人)与年份x (年)的函数关系式是y =100×(1+1.2%)x (x ∈N ).(2)10年后该城市人口总数为100×(1+1.2%)10≈112.7(万人). 所以10年后该城市人口总数约为112.7万人.(3)设x 年后该城市人口将达到120万人,即100(1+1.2%)x ≥120,于是1.012x ≥120100,所以x ≥log 1.012120100=log 1.0121.2≈15.3≈15(年),即大约15年后该城市人口总数将达到120万人.题型3 对数函数模型典例 某企业根据分析和预测,能获得10万~1000万元的投资收益,企业拟制定方案对科研进行奖励,方案:奖金y (万元)随投资收益x (万元)的增加而增加,且奖金不超过9万元,同时奖金也不超过投资收益的20%,并用函数y =f (x )模拟此方案.(1)写出模拟函数y =f (x )所满足的条件;(2)试分析函数模型y =4lg x -3是否符合此方案要求,并说明理由.用函数思想,采用导数法.解 (1)由题意,y =f (x )所满足的条件是:①f (x )在[10,1000]上为增函数,②f (x )≤9,③f (x )≤15x .(2)对于y =4lg x -3,显然在[10,1000]上是增函数,满足条件①.当10≤x ≤1000时,4lg 10-3≤y ≤4lg 1000-3,即1≤y ≤9,满足条件②.证明如下:f (x )≤15x ,即4lg x -3≤15x ,对于x ∈[10,1000]恒成立.令g (x )=4lg x -3-15x ,x ∈[10,1000],g ′(x )=20 lg e -x 5x,∵e<10,∴lg e<lg 10=12, ∴20lg e<10,又∵x ≥10,∴20lg e -x <0,∴g ′(x )<0对于x ∈[10,1000]恒成立,∴g (x )在[10,1000]上是减函数.∴g (x )≤g (10)=4lg 10-3-15×10=-1<0,即4lg x -3-15x ≤0,即4lg x -3≤15x ,对x ∈[10,1000]恒成立,从而满足条件③.方法技巧本例属奖金分配问题,奖金的收益属对数增长,随着投资收益的增加,奖金的增加会趋向于“饱和”状态,实际中很多经济现象都是这种规律,并注意掌握直接法、列式比较法、描点观察法.冲关针对训练候鸟每年都要随季节的变化进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v (单位:m/s)与其耗氧量Q 之间的关系为:v =a +b log 3Q 10(其中a ,b 是实数).据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1 m/s.(1)求出a ,b 的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要多少个单位?解 (1)由题意可知,当这种鸟类静止时,它的速度为0 m/s ,此时耗氧量为30个单位,故有a +b log 33010=0,即a +b =0;当耗氧量为90个单位时,速度为1 m/s ,故a +b log 39010=1,整理得a +2b =1.解方程组⎩⎪⎨⎪⎧ a +b =0,a +2b =1,得⎩⎪⎨⎪⎧a =-1,b =1. (2)由(1)知,v =a +b log 3Q 10=-1+log 3Q 10.所以要使飞行速度不低于2 m/s ,则有v ≥2,所以-1+log 3Q 10≥2,即log 3Q 10≥3,解得Q 10≥27,即Q ≥270.所以若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要270个单位.1.(2015·北京高考)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.在这段时间内,该车每100千米平均耗油量为( )A .6升B .8升C .10升D .12升答案 B 解析 因为第一次(即5月1日)把油加满,而第二次把油加满加了48升,即汽车行驶35600-35000=600千米耗油48升,所以每100千米的耗油量为8升.故选B.2.(2014·湖南高考)某市生产总值连续两年持续增加,第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( )A.p +q 2B .(p +1)(q +1)-12 C.pqD .(p +1)(q +1)-1 答案 D解析 设两年前的年底该市的生产总值为a ,则第二年年底的生产总值为a (1+p )(1+q ).设这两年生产总值的年平均增长率为x ,则a (1+x )2=a (1+p )(1+q ),由于连续两年持续增加,所以x >0,因此x =(1+p )(1+q )-1.故选D.3.(2015·四川高考)某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx +b (e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0 ℃ 的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是________小时.答案 24解析 依题意有192=e b,48=e 22k +b =e 22k ·e b ,所以e 22k=48e b =48192=14,所以e 11k =12或-12(舍去),于是该食品在33 ℃的保鲜时间是e 33k +b =(e 11k )3·e b=⎝ ⎛⎭⎪⎫123×192=24(小时). 4.(2017·江西九江七校联考)某店销售进价为2元/件的产品A ,该店产品A 每日的销售量y (单位:千件)与销售价格x (单位:元/件)满足关系式y =10x -2+4(x -6)2,其中2<x <6.(1)若产品A 销售价格为4元/件,求该店每日销售产品A 所获得的利润;(2)试确定产品A 的销售价格x 的值,其使该店每日销售产品A 所获得的利润最大.(保留1位小数)解 (1)当x =4时,y =102+4×(4-6)2=21千件,此时该店每日销售产品A 所获得的利润为(4-2)×21=42千元.(2)该店每日销售产品A 所获得的利润f (x )=(x -2)·⎣⎢⎡⎦⎥⎤10x -2+4(x -6)2=10+4(x -6)2(x -2)=4x 3-56x 2+240x -278(2<x <6),从而f ′(x )=12x 2-112x +240=4(3x -10)(x -6)(2<x <6).令f ′(x )=0,得x =103,易知在⎝ ⎛⎭⎪⎫2,103上,f ′(x )>0,函数f (x )单调递增;在⎝ ⎛⎭⎪⎫103,6上,f ′(x )<0,函数f (x )单调递减.所以x =103是函数f (x )在(2,6)内的极大值点,也是最大值点,所以当x =103≈3.3时,函数f (x )取得最大值.故当销售价格为3.3元/件时,利润最大.[基础送分 提速狂刷练]一、选择题1.(2018·福州模拟)在一次数学实验中,运用计算器采集到如下一组数据:则y 关于x 的函数关系与下列函数最接近的(其中a ,b 为待定系数)是( )A .y =a +bxB .y =a +b xC .y =ax 2+bD .y =a +b x答案 B 解析 由x =0时,y =1,排除D ;由f (-1.0)≠f (1.0),排除C ;由函数值增长速度不同,排除A.故选B.2.(2017·云南联考)某工厂6年来生产某种产品的情况是:前三年年产量的增长速度越来越快,后三年年产量保持不变,则该厂6年来这种产品的总产量C 与时间t (年)的函数关系可用图象表示的是( )答案 A解析 由于开始的三年产量的增长速度越来越快,故总产量迅速增长,图中符合这个规律的只有选项A ;后三年产量保持不变,总产量直线上升.故选A.3.某杂志每本原定价2元,可发行5万本,若每本提价0.20元,则发行量减少4000本,为使销售总收入不低于9万元,需要确定杂志的最高定价是( )A .2.4元B .3元C .2.8元D .3.2元答案 B解析 设每本定价x 元(x ≥2),销售总收入是y 元,则y =⎣⎢⎡⎦⎥⎤5×104-x -20.2×4×103·x =104·x (9-2x )≥9×104. ∴2x 2-9x +9≤0⇒32≤x ≤3.故选B.4.(2017·南昌期末)某公司租地建仓库,每月土地费用与仓库到车站距离成反比,而每月货物的运输费用与仓库到车站距离成正比.如果在距离车站10 km 处建仓库,则土地费用和运输费用分别为2万元和8万元,那么要使两项费用之和最小,仓库应建在离车站( )A .5 km 处B .4 km 处C .3 km 处D .2 km 处答案 A解析 设仓库与车站距离为x ,土地费用为y 1,运输费用为y 2,于是y 1=k 1x ,y 2=k 2x ,∴⎩⎨⎧ 2=k 110,8=10k 2,解得k 1=20,k 2=45.设总费用为y ,则y =20x +4x 5≥220x ·4x5=8. 当且仅当20x =4x 5,即x =5时取等号.故选A.5.(2015·北京高考)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时.相同条件下, 在该市用丙车比用乙车更省油答案 D解析 对于A 选项,从图中可以看出当乙车的行驶速度大于40 km/h 时的燃油效率大于5 km/L ,故乙车消耗1升汽油的行驶路程可大于5千米,所以A 错误;对于B 选项,由图可知甲车消耗汽油最少;对于C 选项,甲车以80 km/h 的速度行驶时的燃油效率为10 km/L ,故行驶1小时的路程为80千米,消耗8 L 汽油,所以C 错误;对于D 选项,当最高限速为80 km/h 且速度相同时丙车的燃油效率大于乙车的燃油效率,故用丙车比用乙车更省油,所以D 正确.故选D.6.(2017·北京朝阳测试)将甲桶中的a 升水缓慢注入空桶乙中,t 分钟后甲桶中剩余的水符合指数衰减曲线y =a e n t .假设过5分钟后甲桶和乙桶的水量相等,若再过m 分钟甲桶中的水只有a 8,则m 的值为( )A .7B .8C .9D .10答案 D解析 根据题意知12=e 5n ,令18a =a e n t ,即18=e n t ,因为12=e 5n ,故18=e 15n ,比较知t =15,m =15-5=10.故选D.7.(2016·天津模拟)国家规定某行业征税如下:年收入在280万元及以下的税率为p %,超过280万元的部分按(p +2)%征税,有一公司的实际缴税比例为(p +0.25)%,则该公司的年收入是( )A .560万元B .420万元C .350万元D .320万元答案 D解析 设该公司的年收入为x 万元,纳税额为y 万元,则由题意得y =⎩⎪⎨⎪⎧x ×p %,x ≤280,280×p %+(x -280)×(p +2)%,x >280, 依题有280×p %+(x -280)×(p +2)%x=(p +0.25)%,解得x =320.故选D.8.假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案每天的回报如图所示.横轴为投资时间,纵轴为每天的回报,根据以上信息,若使回报最多,下列说法错误的是( )A .投资3天以内(含3天),采用方案一B .投资4天,不采用方案三C .投资6天,采用方案一D .投资12天,采用方案二答案 D解析 由图可知,投资3天以内(含3天),方案一的回报最高,A 正确;投资4天,方案一的回报约为40×4=160(元),方案二的回报约为10+20+30+40=100(元),都高于方案三的回报,B 正确;投资6天,方案一的回报约为40×6=240(元),方案二的回报约为10+20+30+40+50+60=210(元),都高于方案三的回报,C 正确;投资12天,明显方案三的回报最高,所以此时采用方案三,D 错误.故选D.9.(2017·福建质检)当生物死亡后,其体内原有的碳14的含量大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.当死亡生物体内的碳14含量不足死亡前的千分之一时,用一般的放射性探测器就测不到了.若某死亡生物体内的碳14用一般的放射性探测器探测不到,则它经过的“半衰期”个数至少是( )A .8B .9C .10D .11答案 C解析 设死亡生物体内原有的碳14含量为1,则经过n (n ∈N *)个“半衰期”后的含量为⎝ ⎛⎭⎪⎫12n ,由⎝ ⎛⎭⎪⎫12n <11000得n ≥10.所以,若探测不到碳14含量,则至少经过了10个“半衰期”.故选C.10.(2017·北京朝阳区模拟)某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3000元时,这70套公寓能全租出去;当月租金每增加50元时(设月租金均为50元的整数倍),就会多一套房子不能出租.设租出的每套房子每月需要公司花费100元的日常维修等费用(设租不出的房子不需要花这些费用).要使公司获得最大利润,每套房月租金应定为( )A .3000元B .3300元C .3500元D .4000元答案 B解析 由题意,设利润为y 元,租金定为3000+50x 元(0≤x ≤70,x ∈N ).则y =(3000+50x )(70-x )-100(70-x )=(2900+50x )·(70-x )=50(58+x )(70-x )≤50⎝ ⎛⎭⎪⎫58+x +70-x 22, 当且仅当58+x =70-x ,即x =6时,等号成立,故每月租金定为3000+300=3300(元)时,公司获得最大利润.故选B.二、填空题11.(2017·金版创新)“好酒也怕巷子深”,许多著名品牌是通过广告宣传进入消费者视线的.已知某品牌商品靠广告销售的收入R 与广告费A 之间满足关系R =a A (a 为常数),广告效应为D =a A -A .那么精明的商人为了取得最大广告效应,投入的广告费应为________.(用常数a 表示)答案 14a 2解析 令t =A (t ≥0),则A =t 2,∴D =at -t 2=-⎝ ⎛⎭⎪⎫t -12a 2+14a 2. ∴当t =12a ,即A =14a 2时,D 取得最大值.12.一个容器装有细沙a cm 3,细沙从容器底部一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y =a e -bt (cm 3),若经过8 min 后发现容器内还有一半的沙子,则再经过________min ,容器中的沙子只有开始时的八分之一.答案 16解析 当t =0时,y =a ;当t =8时,y =a e-8b =12a , ∴e-8b =12,容器中的沙子只有开始时的八分之一时,即y =a e -bt=18a .e -bt =18=(e -8b )3=e -24b ,则t =24,所以再经过16 min.13.(2014·北京高考改编)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p =at 2+bt +c (a ,b ,c 是常数),右图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为________.答案 3.75分钟解析 由已知得⎩⎪⎨⎪⎧ 9a +3b +c =0.7,16a +4b +c =0.8,25a +5b +c =0.5,解得⎩⎪⎨⎪⎧ a =-0.2,b =1.5,c =-2, ∴p =-0.2t 2+1.5t -2=-15⎝ ⎛⎭⎪⎫t -1542+1316,∴当t =154=3.75时p 最大,即最佳加工时间为3.75分钟.14.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式y =⎝ ⎛⎭⎪⎫116t -a (a 为常数),如图所示,根据图中提供的信息,回答下列问题:(1)从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为________;(2)据测定,当空气中每立方米的含药量不大于0.25毫克时,学生方可进教室,那么从药物释放开始,至少需要经过________小时后,学生才能回到教室.答案 (1)y =⎩⎨⎧ 10t ,0≤t ≤0.1,⎝ ⎛⎭⎪⎫116t -0.1,t >0.1 (2)0.6解析 (1)设y =kt ,由图象知y =kt 过点(0.1,1),则1=k ×0.1,k =10,∴y =10t (0≤t ≤0.1).由y =⎝ ⎛⎭⎪⎫116t -a 过点(0.1,1),得1=⎝ ⎛⎭⎪⎫1160.1-a ,解得a =0.1,∴y =⎝ ⎛⎭⎪⎫116t -0.1(t >0.1).(2)由⎝ ⎛⎭⎪⎫116t -0.1≤0.25=14,得t ≥0.6. 故至少需经过0.6小时学生才能回到教室.三、解答题15.(2017·济宁期末)已知某商品的进货单价为1元/件,商户甲往年以单价2元/件销售该商品时,年销量为1万件,今年拟下调销售单价以提高销量增加收益.据估算,若今年的实际销售单价为x 元/件(1≤x ≤2),则新增的年销量P =4(2-x )2(万件).(1)写出今年商户甲的收益f (x )(单位:万元)与x 的函数关系式;(2)商户甲今年采取降低单价提高销量的营销策略,是否能获得比往年更大的收益(即比往年收益更多)?请说明理由.解 (1)由题意可得:f (x )=[1+4(2-x )2](x -1),1≤x ≤2.(2)甲往年以单价2元/件销售该商品时,年销量为1万件,可得收益为1万元.f ′(x )=8(x -2)(x -1)+1+4(2-x )2=12x 2-40x +33=(2x -3)(6x -11),可得当x ∈⎣⎢⎡⎭⎪⎫1,32时,函数f (x )单调递增; 当x ∈⎝ ⎛⎭⎪⎫32,116时,函数f (x )单调递减; 当x ∈⎝ ⎛⎦⎥⎤116,2时,函数f (x )单调递增. ∴x =32时,函数f (x )取得极大值,f ⎝ ⎛⎭⎪⎫32=1;又f (2)=1.∴当x =32或x =2时,函数f (x )取得最大值1(万元).因此商户甲今年采取降低单价提高销量的营销策略,不能获得比往年更大的收益.16.(2017·北京模拟)已知甲、乙两个工厂在今年的1月份的利润都是6万元,且乙厂在2月份的利润是8万元.若甲、乙两个工厂的利润(万元)与月份x 之间的函数关系式分别符合下列函数模型:f (x )=a 1x 2-4x +6,g (x )=a 2·3x +b 2(a 1,a 2,b 2∈R ).(1)求函数f (x )与g (x )的解析式;(2)求甲、乙两个工厂今年5月份的利润;(3)在同一直角坐标系下画出函数f (x )与g (x )的草图,并根据草图比较今年1~10月份甲、乙两个工厂的利润的大小情况.解 (1)依题意:由f (1)=6,解得a 1=4,所以f (x )=4x 2-4x +6.由⎩⎪⎨⎪⎧ g (1)=6,g (2)=8,得⎩⎪⎨⎪⎧3a 2+b 2=6,9a 2+b 2=8, 解得a 2=13,b 2=5,所以g (x )=13×3x +5=3x -1+5.(2)由(1)知甲厂在今年5月份的利润为f (5)=86万元,乙厂在今年5月份的利润为g (5)=86万元,故有f (5)=g (5),即甲、乙两个工厂今年5月份的利润相等.(3)作函数图象如下:从图中可以看出今年1~10月份甲、乙两个工厂的利润:当x=1或x=5时,有f(x)=g(x);当x=2,3,4时,有f(x)>g(x);当x=6,7,8,9,10时,有f(x)<g(x).海阔天空专业文档。

高考数学一轮总复习第2章函数的概念与基本初等函数(ⅰ)第9节函数模型及其应用跟踪检测文含解析

高考数学一轮总复习第2章函数的概念与基本初等函数(ⅰ)第9节函数模型及其应用跟踪检测文含解析

第二章 函数的概念与基本初等函数(Ⅰ)第九节 函数模型及其应用A 级·基础过关|固根基|1.一根蜡烛长20 cm ,点燃后每小时燃烧5 cm ,燃烧时剩下的高度h(cm)与燃烧时间t(h)的函数关系用图象表示为图中的( )解析:选B 由题意知h =20-5t(0≤t≤4),图象应为B 项.2.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是( )A .118元B .105元C .106元D .108元解析:选D 设进货价为a 元,由题意知132×(1-10%)-a =10%·a ,解得a =108.3.根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与M N最接近的是( )(参考数据:lg 3≈0.48) A .1033B .1053C .1073D .1093解析:选D M≈3361,N≈1080,M N ≈33611080,则lg M N ≈lg 33611080=lg 3361-lg 1080=361lg 3-80≈93.∴M N≈1093. 4.某汽车销售公司在A ,B 两地销售同一种品牌的汽车,在A 地的销售利润(单位:万元)为y 1=4.1x-0.1x 2,在B 地的销售利润(单位:万元)为y 2=2x ,其中x 为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是( )A .10.5万元B .11万元C .43万元D .43.025万元解析:选C 设公司在A 地销售该品牌的汽车x 辆,则在B 地销售该品牌的汽车(16-x)辆. 所以利润y =4.1x -0.1x 2+2(16-x)=-0.1x 2+2.1x +32=-0.1⎝⎛⎭⎪⎫x -2122+0.1×2124+32.因为x∈[0,16],且x∈N,所以当x =10或11时,总利润取得最大值43万元.5.设某公司原有员工100人从事产品A 的生产,平均每人每年创造产值t 万元(t 为正数).公司决定从原有员工中分流x(0<x <100,x∈N *)人去进行新开发的产品B 的生产.分流后,继续从事产品A 生产的员工平均每人每年创造产值在原有的基础上增长了1.2x%.若要保证产品A 的年产值不减少,则最多能分流的人数是( )A .15B .16C .17D .18解析:选B 由题意,分流前每年创造的产值为100t 万元,分流x 人后,每年创造的产值为(100-x)(1+1.2x%)t 万元,则由⎩⎪⎨⎪⎧0<x <100,x∈N *,(100-x )(1+1.2x%)t≥100t,解得0<x≤503.因为x∈N *,所以x 的最大值为16.6.当生物死亡后,其体内原有的碳14的含量大约每经过5 730年衰减为原来的一半,这个时间称为“半衰期”.当死亡生物体内的碳14含量不足死亡前的千分之一时,用一般的放射性探测器就测不到了.若某死亡生物体内的碳14用该放射性探测器探测不到,则它经过的“半衰期”个数至少是( )A .8B .9C .10D .11解析:选C 设该死亡生物体内原来的碳14的含量为1,则经过n 个“半衰期”后的含量为⎝ ⎛⎭⎪⎫12n,由⎝ ⎛⎭⎪⎫12n<11 000,得n≥10,所以,若某死亡生物体内的碳14用该放射性探测器探测不到,则它至少需要经过10个“半衰期”.7.(2019届北京东城模拟)小菲在学校选修课中了解到艾宾浩斯遗忘曲线,为了解自己记忆一组单词的情况,她记录了随后一个月的有关数据,绘制图象,拟合了记忆保持量f(x)与时间x(天)之间的函数关系f(x)=⎩⎪⎨⎪⎧-720x +1,0<x≤1,15+920x-12,1<x≤30.某同学根据小菲拟合后的信息得到以下结论: ①随着时间的增加,小菲的单词记忆保持量降低; ②9天后,小菲的单词记忆保持量低于40%; ③26天后,小菲的单词记忆保持量不足20%.其中正确结论的序号有________.(请写出所有正确结论的序号)解析:由函数解析式可知f(x)随着x 的增加而减少,故①正确;当1<x≤30时,f(x)=15+920x -12,则f(9)=15+920×9-12=0.35,即9天后,小菲的单词记忆保持量低于40%,故②正确;f(26)=15+920×26-12>15,故③错误. 答案:①②8.有一批材料可以建成200 m 长的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形(如图所示),则围成的矩形场地的最大面积为________ m 2.(围墙厚度不计)解析:设围成的矩形场地的长为x m ,则宽为200-x 4 m ,则S =x·200-x 4=14(-x 2+200x)=-14(x -100)2+2 500.∴当x =100时,S max =2 500 m 2. 答案:2 5009.已知投资x 万元经销甲商品所获得的利润为P =x 4;投资x 万元经销乙商品所获得的利润为Q =a2x(a >0).若投资20万元同时经销这两种商品或只经销其中一种商品,使所获得的利润不少于5万元,则a的最小值为________.解析:设投资乙商品x 万元(0≤x≤20),则投资甲商品(20-x)万元. 则利润分别为Q =a 2x(a >0),P =20-x4,由题意得P +Q≥5,0≤x≤20时恒成立, 则化简得a x ≥x2,在0≤x≤20时恒成立.(1)x =0时,a 为一切实数; (2)0<x≤20时,分离参数a≥x2,0<x≤20时恒成立,所以a≥5,a 的最小值为 5. 答案: 510.已知某服装厂生产某种品牌的衣服,销售量q(x)(单位:百件)关于每件衣服的利润x(单位:元)的函数解析式为q(x)=⎩⎪⎨⎪⎧1 260x +1,0<x≤20,90-35x ,20<x≤180,求该服装厂所获得的最大效益是多少元?解:设该服装厂所获效益为f(x)元,则f(x)=100xq(x)=⎩⎪⎨⎪⎧126 000x x +1,0<x≤20,100x (90-35x ),20<x≤180.当0<x≤20时,f(x)=126 000x x +1=126 000-126 000x +1,f(x)在区间(0,20]上单调递增,所以当x =20时,f(x)有最大值120 000;当20<x≤180时,f(x)=9 000x -3005·x x , 则f′(x)=9 000-4505·x ,令f′(x)=0,所以x =80.当20<x <80时,f′(x)>0,f(x)单调递增;当80≤x≤180时,f′(x)≤0,f(x)为单调递减,所以当x =80时,f(x)有极大值,也是最大值240 000.由于120 000<240 000.故该服装厂所获得的最大效益是240 000元. B 级·素养提升|练能力|11.将甲桶中的a L 水缓慢注入空桶乙中,t min 后甲桶中剩余的水量符合指数衰减曲线y =ae nt.假设过5 min 后甲桶和乙桶的水量相等,若再过m min 甲桶中的水只有a4L ,则m 的值为( )A .5B .8C .9D .10解析:选A ∵5 min 后甲桶和乙桶的水量相等,∴函数y =f(t)=ae n t 满足f(5)=ae 5n=12a ,可得n =15ln 12,∴f(t )=a·⎝ ⎛⎭⎪⎫12t 5,因此,当k min 后甲桶中的水只有a4 L 时,f(k)=a·⎝ ⎛⎭⎪⎫12k 5=14a ,即⎝ ⎛⎭⎪⎫12k 5=14,∴k =10,由题可知m =k -5=5.12.“好酒也怕巷子深”,许多著名品牌是通过广告宣传进入消费者视线的.已知某品牌商品靠广告销售的收入R 与广告费A 之间满足关系R =a A(a 为常数),广告效应为D =a A -A.那么精明的商人为了取得最大广告效应,投入的广告费应为________.(用常数a 表示)解析:令t =A(t ≥0),则A =t 2,所以D =at -t 2=-t -12a 2+14a 2,所以当t =12a ,即A =14a 2时,D取得最大值.答案:14a 213.(2019年北京卷)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.(1)当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付________元;(2)在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为________.解析:(1)当x =10时,一次购买草莓和西瓜各1盒,共60+80=140(元),由题可知顾客需支付140-10=130(元).(2)设每笔订单金额为m 元,当0≤m<120时,顾客支付m 元,李明得到0.8m 元,0.8m ≥0.7m ,显然符合题意,此时x =0; 当m≥120时,根据题意得(m -x)80%≥m ×70%, 所以x≤m8,而m≥120,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x≤⎝ ⎛⎭⎪⎫m 8min ,而⎝ ⎛⎭⎪⎫m 8min=15, 所以x≤15.综上,当0≤x≤15时,符合题意, 所以x 的最大值为15.答案:(1)130 (2)1514.十九大提出对农村要坚持精准扶贫,至2020年底全面脱贫.现有扶贫工作组到某山区贫困村实施脱贫工作,经摸底排查,该村现有贫困农户100家,他们均从事水果种植,2017年底该村平均每户年纯收入为1万元.扶贫工作组一方面请有关专家对水果进行品种改良,提高产量;另一方面,抽出部分农户从事水果包装、销售工作,其人数必须小于种植的人数.从2018年初开始,若该村抽出5x 户(x∈Z,1≤x≤9)从事水果包装、销售工作,经测算,剩下从事水果种植的农户的年纯收入每户平均比上一年提高x20,而从事包装、销售的农户的年纯收入每户平均为⎝ ⎛⎭⎪⎫3-14x 万元(参考数据:1.13=1.331,1.153≈1.521,1.23=1.728).(1)至2020年底,为使从事水果种植的农户能实现脱贫(每户年均纯收入不低于1万6千元),至少要抽出多少户从事包装、销售工作?(2)至2018年底,该村每户年均纯收入能否达到1.35万元?若能,请求出从事包装、销售的户数;若不能,请说明理由.解:(1)至2020年底,种植户平均收入 =(100-5x )⎝ ⎛⎭⎪⎫1+x 203100-5x≥1.6,即⎝ ⎛⎭⎪⎫1+x 203≥1.6, 即x≥20(31.6-1).由题中所给数据,知1.15<31.6<1.2,所以3<20(31.6-1)<4. 所以x 的最小值为4,此时5x≥20,即至少要抽出20户从事包装、销售工作. (2)至2018年底,假设该村每户年均纯收入能达到1.35万元.每户的平均收入为5x ⎝ ⎛⎭⎪⎫3-14x +(100-5x )⎝ ⎛⎭⎪⎫1+x 20100≥1.35,化简得3x 2-30x +70≤0.因为x∈Z 且1≤x≤9,所以x∈{4,5,6}.所以当从事包装、销售的户数达到20至30户时,能达到,否则,不能.。

2024届新高考数学复习:专项(函数模型及其应用)历年好题练习(附答案)

2024届新高考数学复习:专项(函数模型及其应用)历年好题练习(附答案)

2024届新高考数学复习:专项(函数模型及其应用)历年好题练习[基础巩固]一、选择题1.[2023ꞏ河北唐山一中期中]某工厂产生的废气经过过滤后排放,在过滤过程中,污染物的数量p (单位:毫克/升)不断减少,已知p 与时间t (单位:时)满足p (t )=p 0×2-t 30 ,其中p 0为t =0时的污染物数量.又测得当t ∈[0,30]时,污染物数量的变化率是-10ln 2,则p (60)=( )A .150毫克/升B .300毫克/升C .150ln 2毫克/升D .300ln 2毫克/升2.[2023ꞏ广东惠州调研]为了给地球减负,提高资源利用率,2020年全国掀起了垃圾分类的热潮,垃圾分类已经成为新时尚.假设某市2020年全年用于垃圾分类的资金为2 000万元,在此基础上,每年投入的资金比上一年增长20%,则该市全年用于垃圾分类的资金开始超过1亿元的年份是(参考数据:lg 1.2≈0.08,lg 5≈0.70)( )A .2030年B .2029年C .2028年D .2027年3.2023年6月4日6时30分许,神舟十五号载人飞船返回舱在预定区域安全着陆,神舟十五号载人飞船是使用长征二号F 遥十五运载火箭发射成功的.在不考虑空气阻力的情况下,火箭的最大速度v (单位:m/s)和燃料的质量M (单位:kg)、火箭(除燃料外)的质量m (单位:kg)的函数关系式为v =2 000ln ⎝⎛⎭⎫1+M m .如果火箭的最大速度达到12 km/s ,则燃料的质量与火箭的质量的关系是( )A.M =e 6m B .Mm =e 6-1C .ln M +ln m =6D .M m =e 6-14.中国的5G 技术处于领先地位,5G 技术的数学原理之一便是著名的香农公式:C =W log 2⎝⎛⎭⎫1+S N .它表示:在受噪声干扰的信道中,最大信息传递速度C 取决于信道带宽W ,信道内信号的平均功率S ,信道内部的高斯噪声功率N 的大小,其中S N 叫做信噪比.当信噪比比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽W ,而将信噪比S N 从1 000提升至4 000,则C 大约增加了(附:lg 2≈0.301 0)( )A .10%B .20%C .50%D .100%5.[2023ꞏ重庆巴蜀中学月考]2019年7月,中国良渚古城遗址获准列入世界遗产名录.良渚古城遗址是人类早期城市文明的范例,实证了中华五千年文明史.考古学家在测定遗址年龄的过程中利用了“放射性物质因衰变而减小”这一规律.已知样本中碳14的质量N 随时间t (年)的衰变规律满足:N =N 0ꞏ2-t 5 730 (N 0表示碳14原来的质量),经过测定,良渚古城某文物样本中碳14的质量是原来的0.6倍,据此推测良渚古城遗址存在的时期距今大约是(参考数据:log 23≈1.6,log 25≈2.3)( )A .3 440年B .4 010年C .4 580年D .5 160年二、填空题6.某品牌手机销售商今年1,2,3月份的销售量分别是1万部,1.2万部,1.3万部,为估计以后每个月的销售量,以这三个月的销售量为依据,用一个函数模拟该品牌手机的销售量y (单位:万部)与月份x 之间的关系,现从二次函数y =ax 2+bx +c (a ≠0)或函数y =ab x +c (b >0,b ≠1)中选用一个效果好的函数进行模拟,如果4月份的销售量为1.37万部,则5月份的销售量为________万部.7.已知某公司生产某产品的年固定成本为100万元,每生产1千件需另投入27万元,设该公司一年内生产该产品x 千件(0<x ≤25)并全部销售完,每千件的销售收入为R (x )(单位:万元),且R (x )=⎩⎨⎧108-13x 2(0<x ≤10),-x +175x +57(10<x ≤25). 当年产量为________千件时,该公司在这一产品的生产中所获年利润最大.(注:年利润=年销售收入-年总成本)8.网店和实体店各有利弊,两者的结合将在未来一段时期内,成为商业的一个主要发展方向.某品牌行车记录仪支架销售公司从2017年1月起开展网络销售与实体店体验安装结合的销售模式.根据几个月运营发现,产品的月销量x (万件)与投入实体店体验安装的费用t (万元)之间满足x =3-2t +1的函数关系.已知网店每月固定的各种费用支出为3万元,产品每1万件进货价格为32万元.若每件产品的售价定为“进货价的150%”与“平均每件产品的实体店体验安装费用的一半”之和,则该公司最大月利润为________万元.参考答案1.C 因为当t ∈[0,30]时,污染物数量的变化率是-10ln 2,所以-10ln 2=12p 0-p 030-0 ,所以p 0=600ln 2.因为p (t )=p 0×2-t 30 ,所以p (60)=600ln 2×2-2=150ln 2(毫克/升). 2.B 设经过n 年后,投入资金为y 万元,则y =2 000ꞏ(1+20%)n .由题意得2 000(1+20%)n >10 000,即1.2n >5,则n lg 1.2>lg 5,所以n >lg 5lg 1.2 ≈0.700.08=8.75,所以n =9,即2029年该市全年用于垃圾分类的资金开始超过1亿元.3.D 12 km/s =12 000 m/s ,所以12 000=2 000ln ⎝⎛⎭⎫1+M m ,所以ln ⎝⎛⎭⎫1+M m =6,则1+M m =e 6,所以M m =e 6-1,故选D .4.B 将信噪比S N 从 1 000提升至 4 000时,C 增加了W log 2(1+4 000)-W log 2(1+1 000)W log 2(1+1 000)≈ log 24 000-log 21 000log 21 000=23log 210 =23 lg 2≈23 ×0.301 0≈0.2=20%,故C 大约增加了20%,选B.5.B 由题得0.6ꞏN 0=N 0ꞏ2-t 5 730 ,即2-t 5 730 =35 ,两边同时取以2为底的对数,则有-t 5 730 =log 235 =log 23-log 25≈-0.7,故t ≈0.7×5 730=4 011年,最符合题意的选项为B.6.1.375答案解析:由题意可知,当选用函数f (x )=ax 2+bx +c 时,由⎩⎪⎨⎪⎧a +b +c =1,4a +2b +c =1.2,9a +3b +c =1.3,解得⎩⎪⎨⎪⎧a =-0.05,b =0.35,c =0.7,∴f (x )=-0.05x 2+0.35x +0.7,∴f (4)=1.3; 当选用函数g (x )=ab x +c 时,由⎩⎪⎨⎪⎧ab +c =1,ab 2+c =1.2,ab 3+c =1.3, 解得⎩⎪⎨⎪⎧a =-0.8,b =0.5,c =1.4,∴g (x )=-0.8×0.5x +1.4,∴g (4)=1.35.∵g (4)比f (4)更接近于1.37,∴选用函数g (x )=ab x +c 模拟效果较好,∴g (5)=-0.8×0.55+1.4=1.375,即5月份的销售量为1.375万部.7.9答案解析:设该公司在这一产品的生产中所获年利润为f (x ),当0<x ≤10时,f (x )=xR (x )-(100+27x )=81x -x 33 -100;当10<x ≤25时,f (x )=xR (x )-(100+27x )=-x 2+30x +75.故f (x )=⎩⎪⎨⎪⎧81x -x 33-100(0<x ≤10),-x 2+30x +75(10<x ≤25).当0<x ≤10时,由f ′(x )=81-x 2=-(x +9)(x -9),得当x ∈(0,9)时,f ′(x )>0,f (x )单调递增;当x ∈(9,10)时,f ′(x )<0,f (x )单调递减.故f (x )max =f (9)=81×9-13 ×93-100=386.当10<x ≤25时,f (x )=-x 2+30x +75=-(x -15)2+300≤300.综上,当x =9时,年利润取最大值,为386.所以当年产量为9千件时,该公司在这一产品的生产中所获年利润最大.8.37.5答案解析:由题意,产品的月销量x (万件)与投入实体店体验安装的费用t (万元)之间满足x =3-2t +1, 即t =23-x-1(1<x <3), 所以月利润y =⎝⎛⎭⎫48+t 2x x -32x -3-t =16x -t 2 -3=16x -13-x-52 =45.5-⎣⎡⎦⎤16(3-x )+13-x ≤45.5-216 =37.5, 当且仅当16(3-x )=13-x,即x =114 时取等号, 即该公司最大月利润为37.5万元.。

高考数学一轮总复习第二章函数导数及其应用2.9函数模型及其应用课件理

高考数学一轮总复习第二章函数导数及其应用2.9函数模型及其应用课件理
必修(bìxiū)部分
第二章 函数(hánshù)、导数及其应用
第九节 函数模型(móxíng)及其应用
第一页,共33页。

考情分析 1
(fēnxī)

基础自主(zìzhǔ) 2
3 考点疑难(yí
nán)突破

梳理

4 课时跟踪检测
第二页,共33页。
1
考情分析
第三页,共33页。
考点分布
考纲要求
第十三页,共33页。
3.生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品 x 万件时的生产成本为 C(x)=12x2+2x+20(万元).一万件售价是 20 万元,为获取更大 利润,该企业一个月应生产该商品数量为________万件.
解析:利润 L(x)=20x-C(x)=-12(x-18)2+142,当 x=18 时,L(x)有最大值. 答案:18
第三十页,共33页。
指数函数与对数函数模型的应用技巧 (1)与指数函数、对数函数两类函数模型有关的实际问题,在求解时,要先学会 合理选择模型,在两类模型中,指数函数模型是增长速度越来越快(底数大于 1)的一 类函数模型,与增长率、银行利率有关的问题都属于指数函数模型. (2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函 数解析式,再借助函数的图象求解最值问题.
二次函数模型
f(x)=ax2+bx+c (a,b,c 为常数,a≠0)
第六页,共33页。
f(x)=bax+c 指数函数模型
(a,b,c 为常数,b≠0,a>0 且 a≠1)
对数函数模型
f(x)=blogax+c
(a,b,c 为常数,b≠0,a>0 且 a≠1)

高考数学《2.9 函数模型及其应用》

高考数学《2.9 函数模型及其应用》

f(x)=4
1
+
1 ������
,人均消费 g(x)(单位:元)与时间 x(单位:天)的函数关系
近似满足g(x)=104-|x-23|. (1)求该市旅游日收益p(x)(单位:万元)与时间x(1≤x≤30,x∈N*) 的函数关系式; (2)若以最低日收益的15%为纯收入,该市对纯收入按1.5%的税率 来收回投资,按此预计两年内能否收回全部投资. 思考分段函数模型适合哪些问题?
关闭
4
解析 答案
第二章
2.9 函数模型及其应用
知识梳理
核心考点
-9-
考点1
考点2
考点3
考点4
考点 1 二次函数模型
例1A,B两城相距100 km,在两城之间距A城x km处建一核电站给 A,B两城供电,为保证城市安全,核电站与城市距离不得小于10 km. 已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25 倍,若A城供电量为每月20亿度,B城供电量为每月10亿度.
核心考点
-7-
知识梳理 双基自测
12345
4.(教材例题改编P123例2)在某个物理实验中,测量得变量x和变量 y的几组数据,如下表.则x,y最适合的函数模型是( )
x 0.50 y -0.99
0.99
2.01
3.98
0.01
0.98
2.00
A.y=2x C.y=2x-2
B.y=x2-1 D.y=log2x
关闭
(1)× (2)√ (3)√ (4)√ (5)√
答案
第二章
2.9 函数模型及其应用
知识梳理
核心考点
-5-
知识梳理 双基自测
12345

浙江2020版高考数学大一轮复习《2.9函数模型及其应用》提能作业含答案

浙江2020版高考数学大一轮复习《2.9函数模型及其应用》提能作业含答案

2.9 函数模型及其应用A组基础题组1.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后来为了赶时间加快速度行驶.与以上事件吻合得最好的图象是( )答案 C 小明匀速运动时,所得图象为一条直线,且距离学校越来越近,故排除A.因交通堵塞停留了一段时间,与学校的距离不变,故排除D.后来为了赶时间加快速度行驶,故排除B.故选C.2.某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年的年产量保持不变,将该厂6年来这种产品的总产量C与时间t(年)的函数关系用图象表示,正确的是( )答案 A 依题意,前3年年产量的增长速度越来越快,说明总产量C的增长速度越来越快,只有选项A中的图象符合要求,故选A.3.(2018临沂模拟)某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边夹角为60°(如图),考虑防洪堤坚固性及石块用料等因素,设计其横断面要求面积为9,且高度不低于.记防洪堤横断面的腰长为x米,外周长(梯形的上底线段BC与两腰长的和)为y米.要使防洪堤横断面的外周长不超过10.5米,则其腰长x的范围为( )A.[2,4]B.[3,4]C.[2,5]D.[3,5]答案 B 根据题意知,9=(AD+BC)h,其中AD=BC+2·=BC+x,h=x,所以9=(2BC+x)·x,得BC=-,由-0得2≤x<6,所以y=BC+2x=+(2≤x<6),由+≤10.5,解得3≤x≤4.因为[3,4]⊆[2,6),所以腰长x 的范围是[3,4].4.加工爆米花时,爆开且不煳的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系p=at2+bt+c(a,b,c是常数),下图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )A.3.50分钟B.3.75分钟C.4.00分钟D.4.25分钟答案 B 由已知得60解得-0-∴p=-0.2t2+1.5t-2=--+6,∴当t==3.75时p最大,即最佳加工时间为3.75分钟.故选B.5.某校甲、乙两食堂某年1月份的营业额相等,甲食堂的营业额逐月增加,并且每月的增加值相同;乙食堂的营业额也逐月增加,且每月增加的百分率相同.已知该年9月份两食堂的营业额又相等,则该年5月份( )A.甲食堂的营业额较高B.乙食堂的营业额较高C.甲、乙两食堂的营业额相同D.不能确定甲、乙哪个食堂的营业额较高答案 A 设甲、乙两食堂1月份的营业额均为m,甲食堂的营业额每月增加a(a>0),乙食堂的营业额每月增加的百分率为x(x>0),由题意可得 m+ a=m×( + )8,则5月份甲食堂的营业额y1=m+4a,乙食堂的营业额y2=m×( + )4=(),因为-=(m+4a)2-m(m+8a)=16a2>0,所以y1>y2,故5月份甲食堂的营业额较高.6.调查表明,酒后驾驶是导致交通事故的重要原因,交通法规规定,驾驶员在驾驶机动车时血液中酒精含量不得超过0.2mg/mL.某人喝酒后,其血液中酒精含量将上升到3mg/mL,在停止喝酒后,血液中酒精含量以每小时50%的速度减少,则至少经过小时他才可以驾驶机动车.(精确到小时)答案4解析设n小时后他可以驾驶机动车,由题意得3(1-0.5)n≤0.2,即2n≥15,故至少经过4小时他才可以驾驶机动车.7.A、B两艘船分别从东西方向上相距145km的甲、乙两地开出.A船从甲地自东向西行驶,B船从乙地自北向南行驶,A船的速度是40km/h,B船的速度是16km/h,经过h,A、B两艘船之间的距离最短.答案解析设经过xh,A、B两艘船之间的距离为ykm,由题意可得y=( - 0)( 6 )= (6 - 00 ),易=时,y取得最小值,即A、B两艘船之间的距离最短.知当x=-- 0068.(2018杭州八校联考)一艘轮船在匀速行驶过程中每小时的燃料费与速度v的平方成正比,且比例系数为k,除燃料费外其他费用为每小时96元.当速度为10海里/时时,每小时的燃料费是6元.若匀速行驶10海里,则当这艘轮船的速度为海里/时时,总费用最小.答案40解析设每小时的总费用为y元,行驶10海里的总费用为W元,则y=kv2+96,又当v=10时 k× 02=6,解得k=0.06,所以y=0.06v2+96,又匀速行驶10海里所用的时间为 0小时,故W= 0y= 0(0.06v2+96)=0.6v+ 60≥20 6· 60=48,当且仅当0.6v= 60,即v=40时等号成立.故总费用最小时轮船的速度为40海里/时.9.某食品的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b 为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是小时.答案24解析依题意有192=e b,48=e22k+b=e22k·e b,所以e 22k= = =,所以e 11k= 或-(舍去),于是该食品在33℃的保鲜时间是e33k+b=(e 11k )3·e b=× = (小时).10.某地上年度电价为0.8元,年用电量为1亿千瓦时.本年度计划将电价调至0.55元~0.75元之间(包含0.55元和0.75元),经测算,若电价调至x 元,则本年度新增用电量y(亿千瓦时)与(x-0.4)(元)成反比.又当x=0.65时,y=0.8.(1)求y 与x 之间的函数关系式;(2)若每千瓦时电的成本为0.3元,则电价调至多少时,本年度电力部门的收益将比上年增加20%? [收益=用电量×(实际电价-成本价)] 解析 (1)因为y 与(x-0.4)成反比, 所以可设y=-0 (k ≠0),把x=0.65,y=0.8代入上式得0.8=0 6 -0,解得k=0.2,所以y=-0 =-,则y 与x 之间的函数关系式为y=-(0.55≤x ≤0.75).(2)根据题意,得-(x-0 )= ×(0 -0 )×( + 0%) 整理得x 2-1.1x+0.3=0.解得x 1=0.5,x 2=0.6,因为x 的取值范围是[0.55,0.75], 所以x=0.5不符合题意,舍去,则x=0.6,所以当电价调至0.6元时,本年度电力部门的收益将比上年增加20%.11.某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l 1,l 2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N 为C 的两个端点,测得点M 到l 1,l 2的距离分别为5千米和40千米,点N 到l 1,l 2的距离分别为20千米和2.5千米,以l 2,l 1所在的直线分别为x,y 轴,建立平面直角坐标系xOy,假设曲线C 符合函数y=(其中a,b 为常数)模型.(1)求a,b 的值;(2)设公路l 与曲线C 相切于P 点,P 的横坐标为t. ①请写出公路l 长度的函数解析式f(t),并写出其定义域; ②当t 为何值时,公路l 的长度最短?求出最短长度.解析 (1)由题意知,点M,N 的坐标分别为(5,40),(20,2.5).将其分别代入y=,得00解得000 0( )①由(1)知,y= 000(5≤x ≤20), 则点P 的坐标为000,y'=- 000,设在点P 处的切线l 交x,y 轴分别于A,B 点,l 的方程为y- 000=-000(x-t), 由此得A0 ,B 0000.故f(t)=000= 06,t ∈[5,20].②设g(t)=t 2+ 06, 则g'(t)=2t-6 06.令g'(t)=0,解得t=10 .当t ∈(5,10 )时,g'(t)<0,g(t)是减函数; 当t ∈(10 ,20)时,g'(t)>0,g(t)是增函数. 从而,当t=10 时,函数g(t)有极小值,也是最小值, 所以g(t)min =300, 此时f(t)min =15 .答:当t=10 时,公路l 的长度最短,最短长度为15 千米.B 组 提升题组1.某市生产总值连续两年持续增加,第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为( )A.B.( )( )-C. D. ( )( )-1答案 D 设两年前的年底该市的生产总值为a,则第二年年底的生产总值为a(1+p)(1+q).设这两年生产总值的年平均增长率为x,则a(1+x)2=a(1+p)(1+q),由于连续两年持续增加,所以x>0,所以x= ( )( )-1,故选D. 2.某乡镇现在人均一年占有粮食360千克,如果该乡镇人口平均每年增长1.2%,粮食总产量平均每年增长4%,那么x 年后若人均一年占有y 千克粮食,则y 关于x 的解析式为( ) A.y=360 0 0- B y= 60× 0 xC.y=60 0 0D.y=360 0 0答案 D 设该乡镇现在人口总量为M,则该乡镇现在一年的粮食总产量为360M 千克,1年后,该乡镇粮食总产量为360M(1+4%)千克,人口总量为 M(1+1.2%),则人均占有粮食 60 ( %)( %)千克,2年后,人均占有粮食60 ( %)( %)千克,……,x 年后,人均占有粮食60 ( %)( %) 千克,即所求解析式为y=3600 0.3.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80km/h 的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80km/h.相同条件下,在该市用丙车比用乙车更省油答案 D 对于A 选项:由题图可知,当乙车速度大于40km/h 时,乙车每消耗1升汽油,行驶里程都超过5km,则A 错;对于B 选项:由题意可知,以相同速度行驶相同路程,燃油效率越高,耗油越少,故三辆车中甲车耗油最少,则B 错; 对于C 选项:甲车以80km/h 的速度行驶时,燃油效率为10km/L,则行驶1小时,消耗了汽油 0× ÷ 0= (L) 则C 错;对于D 选项:当行驶速度小于80km/h 时,在相同条件下,丙车的燃油效率高于乙车,则在该市用丙车比用乙车更省油,则D 对.综上,选D.4.某公司为了实现1000万元销售利润的目标,准备制订一个激励销售人员的奖励方案:在销售利润达到10万元时,按照销售利润进行奖励,且奖金y(单位:万元)随销售利润x(单位:万元)的增加而增加,但奖金不超过5万元,同时奖金不超过销售利润的25%,则下列函数最符合要求的是( )A.y=xB.y=lgx+1C.y=D.y=答案 B 由题意知,x∈[10,1000],符合公司要求的模型需同时满足:①函数为增函数;②函数的最大值不超过 ;③y≤x·25%.对于y=x,易知满足① 但当x>20时,y>5,不满足要求;对于y=,易知满足① 因为>5,故当x>4时,不满足要求;对于y=,易知满足① 但当x>25时,y>5,不满足要求;对于y=lgx+1,易知满足① 当x∈-1<0,x∈[10,1000]时,2≤y≤4,满足② 再证明lgx+1≤x·25%,即4lgx+4-x≤0,设F(x)=4lgx+4-x,则F'(x)=[10,1000],所以F(x)为减函数,f(x)max=F(10)=4lg10+4-10=-2<0,满足③ 故选B.5.(2019汤溪中学月考)某远程教育网推出两种上网学习卡收取佣金的方案:A方案是先收取20元学习佣金,再按上网学习的累计时间收取佣金,B方案是直接按上网学习的累计时间收取佣金.已知一个月的学习累计时间t(小时)与上网费用s(元)的函数关系如图所示,则当累计学习150小时时,这两种方案收取的佣金相差元.答案10解析设A方案对应的函数解析式为s 1=k1t+20,B方案对应的函数解析式为s2=k2t,当t=100时,100k1+20=100k2 ∴k2-k1=,当t=150时,150k2-150k1- 0= 0×-20=10.6.(2018辽宁抚顺模拟)食品安全问题越来越引起人们的重视,农药、化肥的滥用给人民群众的健康带来了一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建了甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收入P(单位:万元)、种黄瓜的年收入Q(单位:万元)与投入a(单位:万元)满足P=80+4Q=a+120,设甲大棚的投入为x(单位:万元),每年两个大棚的总收益为f(x)(单位:万元).(1)求f(50)的值;(2)如何安排甲、乙两个大棚的投入,才能使总收益f(x)最大?解析( )∵甲大棚投入了50万元,∴乙大棚投入了150万元,∴f( 0)= 0+ 0+× 0+ 0=(2)f(x)=80+4+(200-x)+120=-x+4+250,依题意得00- 0⇒20≤x≤180,故f(x)=-x+4+250(20≤x≤180).令t=,则t∈[2,6],f(t)=-t2+4t+250=-(t-8)2+282,当t=8,即x=128时,f(x)max=282.所以甲大棚投入128万元,乙大棚投入72万元时,总收益最大,且最大收益为282万元.。

2021版《3年高考2年模拟》高考数学(浙江版理)检测:2.9 函数的模型及其应用 Word版含答案

2021版《3年高考2年模拟》高考数学(浙江版理)检测:2.9 函数的模型及其应用 Word版含答案

§2.9函数的模型及其应用A组基础题组1.(2021浙江重点中学协作体适应性测试,4)已知0<a<1,则a2、2a、log2a的大小关系是( )A.a2>2a>log2aB.2a>a2>log2aC.log2a>a2>2aD.2a>log2a>a22.(2021福建泉州一中期中,5,5分)给出四个函数,分别满足:①f(x+y)=f(x)+f(y),②g(x+y)=g(x)g(y),③h(xy)=h(x)+h(y),④m(xy)=m(x)m(y).下列为四个函数的图象,对应正确的是( )A.①甲,②乙,③丙,④丁B.①乙,②丙,③甲,④丁C.①丙,②甲,③乙,④丁D.①丁,②甲,③乙,④丙3.(2021湖北,5,5分)小明骑车上学,开头时匀速行驶,途中因交通堵塞停留了一段时间,后来为了赶时间加快速度行驶.与以上大事吻合得最好的图象是( )4.(2021陕西,3,5分)如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sin+k,据此函数可知,这段时间水深(单位:m)的最大值为( )A.5B.6C.8D.105.(2022北京,8,5分)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系p=at2+bt+c(a,b,c是常数),下图记录了三次试验的数据.依据上述函数模型和试验数据,可以得到最佳加工时间为( ) A.3.50分钟 B.3.75分钟 C.4.00分钟 D.4.25分钟6.(2021浙江五校第一次联考)一个容器装有细沙acm3,细沙从容器底部一个微小的小孔渐渐地漏出,tmin后剩余的细沙量为y=ae-bt(cm3),经过8min后发觉容器内还有一半的沙子,则再经过min,容器中的沙子只有开头时的八分之一.7.(2022杭州学军中学其次次月考,13,4分)不等式2x-1>m(x2-1)对满足|m|≤2的一切实数m都成立,则x的取值范围是.8.(2021湖南师大附中月考)某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.8元;当超过4吨时,超过部分按每吨3元收费.已知某个月甲、乙两户共交水费y元,并且该月甲、乙两户的用水量分别为5x、3x吨.(1)求y与x的函数关系式;(2)若该月甲、乙两户共交水费26.4元,分别求出该月甲、乙两户的用水量和水费.9.(2022上海普陀调研测试,21,14分)某中学为了落实“阳光运动一小时”活动,方案在一块直角三角形ABC 的空地上修建一个占地面积为S平方米的矩形AMPN健身场地.如图,点M在AC上,点N在AB上,且P点在斜边BC上,已知∠ACB=60°且|AC|=30米,|AM|=x米,x∈[10,20].(1)试用x表示S,并求S的取值范围;(2)若在矩形AMPN以外(阴影部分)铺上草坪.已知:矩形AMPN健身场地每平方米的造价为元,草坪每平方米的造价为(k为正常数)元.设总造价T关于S的函数为T=f(S),试问:如何选取AM的长,才能使总造价T最低?B组提升题组1.(2022湖南,8,5分)某市生产总值连续两年持续增加,第一年的增长率为p,其次年的增长率为q,则该市这两年生产总值的年平均增长率为( )A. B.C. D.-12.(2021北京,8,5分)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率状况.下列叙述中正确的是( )A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时.相同条件下,在该市用丙车比用乙车更省油3.(2021浙江重点中学协作体摸底)一高为H,满缸水量为V的鱼缸截面如图所示,其底部破了一个小洞,满缸水从洞中流出.若鱼缸水深为h时,水的体积为V1,则函数V1=f(h)的大致图象可能是图.4.(2021浙江杭州九中期末)某汽车运输公司购买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y(单位:10万元)与营运年数x(x∈N*)为二次函数关系(如图所示),则每辆客车营运年时,其营运的年平均利润最大.5.求实数a的范围,使得关于x的方程x2-ax+2=0在[1,3]上有解.6.(2022杭州学军中学其次次月考,18,14分)已知集合P=,y=log2(ax2-2x+2)的定义域为Q.(1)若P∩Q≠⌀,求实数a的取值范围;(2)若方程log2(ax2-2x+2)=2在内有解,求实数a的取值范围.7.(2021江苏,17,14分)某山区外围有两条相互垂直的直线型大路,为进一步改善山区的交通现状,方案修建一条连接两条大路和山区边界的直线型大路,记两条相互垂直的大路为l1,l2,山区边界曲线为C,方案修建的大路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1所在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.(1)求a,b的值;(2)设大路l与曲线C相切于P点,P的横坐标为t.①请写出大路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,大路l的长度最短?求出最短长度.8.(2022超级中学原创猜测卷六文,20,15分)某市为迎接元旦的到来,拟在市观光巡游区建筑一个花坛,已知用钢管焊接而成的花坛围栏如图所示,它的外框是一个等腰梯形PQRS,内部是一段抛物线和一根横梁,抛物线的顶点与梯形上底边的中点均是焊接点O,梯形的腰紧靠在抛物线上,且两腰的中点是梯形的腰、抛物线与横梁的焊接点A,B,抛物线与梯形下底边的两个焊接点为C,D.已知梯形的高是40米,C,D两点间的距离是40米.(1)求横梁AB的长度;(2)求制作梯形外框的用料长度.(注:钢管的粗细等因素忽视不计,≈1.41)A组基础题组1.B 由于当0<a<1时,a2∈(0,1),2a>1,log2a<0,所以2a>a2>log2a,故选B.2.D 由题图可知丁是正比例函数图象,满足①;甲是指数型函数图象,满足②;乙是对数型函数图象,满足③;丙是幂函数图象,满足④.故选D.3.C 小明匀速运动时,所得图象为一条直线,且距离学校越来越近,故排解A.因交通堵塞停留了一段时间,与学校的距离不变,故排解D.后来为了赶时间加快速度行驶,故排解B.故选C.4.C 由于函数y=3sin+k的最小值为2,所以-3+k=2,得k=5,故这段时间水深的最大值为3+5=8(m),选C.5.B 由已知得解得∴p=-0.2t2+1.5t-2=-+,∴当t==3.75时p最大,即最佳加工时间为3.75分钟.故选B.6.答案16解析当t=0时,y=a,当t=8时,y=ae-8b=a,∴e-8b=,容器中的沙子只有开头时的八分之一,即y=ae-bt=a,e-bt==(e-8b)3=e-24b,则t=24,24-8=16. 7.答案解析构造函数f(m)=(x2-1)m-(2x-1),则f(m)是关于m的一次函数,要使2x-1>m(x2-1)对任意|m|≤2恒成立,即f(m)<0对任意m∈[-2,2]恒成立,只需解得x∈.8.解析(1)当甲的用水量不超过4吨,即5x≤4时,乙的用水量也不超过4吨,y=(5x+3x)×1.8=14.4x;当甲的用水量超过4吨,乙的用水量不超过4吨,即3x≤4且5x>4时,y=4×1.8+3x×1.8+3(5x-4)=20.4x-4.8; 当乙的用水量超过4吨,即3x>4时,y=1.8×8+3(5x-4+3x-4)=24x-9.6.所以y=(2)y=f(x)在各段区间上均为单调递增函数,当x∈时,y max=f<26.4;当x∈时,y max=f<26.4;当x∈时,令24x-9.6=26.4,解得x=1.5.所以甲户用水量为5x=7.5吨,水费为4×1.8+3.5×3=17.7(元);乙户用水量为3x=4.5吨,水费为4×1.8+0.5×3=8.7(元).9.解析(1)在Rt△PMC中,|MC|=30-x米,∠PCM=60°,∴|PM|=|MC|·tan∠PCM=(30-x)米,则S=x(30-x),x ∈[10,20],于是200≤S≤225.(2)矩形AMPN健身场地造价T1=37k元,又△ABC的面积为450平方米,∴草坪造价T2=(450-S)元,又T=T1+T2,∴f(S)=25k,200≤S≤225.∵+≥12,当且仅当=,即S=216时等号成立,此时x(30-x)=216,解得x=12或x=18,∴选取AM的长为12米或18米时总造价T最低.B组提升题组1.D 设两年前的年底该市的生产总值为a,则其次年年底的生产总值为a(1+p)(1+q).设这两年生产总值的年平均增长率为x,则a(1+x)2=a(1+p)(1+q),由于连续两年持续增加,所以x>0,因此x=-1,故选D.2.D 对于A选项:由题图可知,当乙车速度大于40km/h时,乙车每消耗1升汽油,行驶里程都超过5km,则A错; 对于B选项:由题意可知,以相同速度行驶相同路程,燃油效率越高,耗油越少,故三辆车中甲车耗油最少,则B 错;对于C选项:甲车以80千米/小时的速度行驶时,燃油效率为10km/L,则行驶1小时,消耗了汽油80×1÷10=8(升),则C错;对于D选项:当行驶速度小于80km/h时,在相同条件下,丙车的燃油效率高于乙车,则在该市用丙车比用乙车更省油,则D对.综上,选D.3.答案②解析当h=0时,V1=0,可排解①③;由于鱼缸中间粗两头细,所以当h在四周时,体积变化较快;当h小于时,体积增加得越来越快;当h大于时,体积增加得越来越慢.故填②.4.答案 5解析由题图可得营运总利润y=-(x-6)2+11,则营运的年平均利润为=-x-+12,∵x∈N*,∴≤-2+12=2,当且仅当x=,即x=5时取“=”.∴当x=5时,营运的年平均利润最大.5.解析①当x=1是方程的解时,a=3.②当x=3是方程的解时,a=.③设f(x)=x2-ax+2,则函数在(1,3)内有唯一零点的条件为或解得3<a<或a=2.④当方程x2-ax+2=0在(1,3)上有两解时,设f(x)=x2-ax+2,则解得2<a<3.综上,实数a的取值范围是2≤a≤.6.解析(1)由已知得Q={x|ax2-2x+2>0},若P∩Q≠⌀,则说明在内至少有一个x值,使不等式ax2-2x+2>0成立,即在内至少有一个x值,使a>-成立,令u=-,则只需a>u min,又u=-2+,当x∈时,∈,从而u∈,∴a的取值范围是a>-4.(2)∵方程log2(ax2-2x+2)=2在内有解,∴ax2-2x+2=4,即ax2-2x-2=0在内有解,即存在x∈,使a=+=2-,∵≤2-≤12,∴≤a≤12,即a的取值范围是.7.解析(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5).将其分别代入y=,得解得(2)①由(1)知,y=(5≤x≤20),则点P的坐标为,y'=-,设在点P处的切线l交x,y轴分别于A,B点,l的方程为y-=-(x-t),由此得A,B.故f(t)==,t∈[5,20].②设g(t)=t2+,则g'(t)=2t-.令g'(t)=0,解得t=10.当t∈(5,10)时,g'(t)<0,g(t)是减函数;当t∈(10,20)时,g'(t)>0,g(t)是增函数.从而,当t=10时,函数g(t)有微小值,也是最小值,所以g(t)min=300,此时f(t)min=15.答:当t=10时,大路l的长度最短,最短长度为15千米.8.解析(1)建立如图所示的平面直角坐标系,设梯形的下底边与y轴交于点M,抛物线的方程为x2=2py(p<0). 由题意得D(20,-40),代入抛物线的方程得p=-5,所以抛物线的方程为x2=-10y. 当y=-20时,x=±10,即A(-10,-20),B(10,-20),所以|AB|=20≈28.2.故横梁AB的长度约为28.2米.(2)由题意得梯形的腰QR的中点是梯形的腰QR与抛物线唯一的公共点,设直线RQ的方程为y+20=k(x-10)(k<0),由得x2+10kx-100(2+k)=0,则Δ=100k2+400(2+k)=0,解得k=-2,所以直线RQ的方程为y=-2x+20.从而得Q(5,0),R(15,-40).所以|OQ|=5,|MR|=15,|RQ|=30,所以梯形的周长为2×(5+15+30)=100≈141(米),故制作梯形外框的用料长度约为141米.。

高考数学一轮复习练习 数学建模——函数模型及其应用

高考数学一轮复习练习  数学建模——函数模型及其应用

数学建模——函数模型及其应用基础巩固组1.汽车的“燃油效率”是指汽车每消耗1 L汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是()A.消耗1 L汽油,乙车最多可行驶5 kmB.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80 km/h的速度行驶1小时,消耗10 L汽油D.某城市机动车最高限速80 km/h,相同条件下,在该市用丙车比用乙车更省油2.某产品的总成本y(万元)与产量x(台)之间的函数关系是y=3 000+20x-0.1x2(0<x<240,x∈N*),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是()A.100台B.120台C.150台D.180台3.某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3 000元时,这70套公寓能全租出去;当月租金每增加50元时(设月租金均为50元的整数倍),就会多一套房子不能出租.设租出的每套房子每月需要公司花费100元的日常维修等费用(设租不出的房子不需要花这些费用).要使公司获得最大利润,每套房月租金应定为()A.3 000元B.3 300元C.3 500元D.4 000元4.一个人以6米/秒的速度去追赶停在交通灯前的汽车,当他离汽车25米时交通灯由红变绿,汽车开始变速直线行驶(汽车与人前进方向相同),汽车在时间t内的路程为s=1t2米,那么,此人()2A.可在7秒内追上汽车B.可在9秒内追上汽车C.不能追上汽车,但期间最近距离为14米D.不能追上汽车,但期间最近距离为7米5.设某公司原有员工100人从事产品A的生产,平均每人每年创造产值t万元(t为正数).公司决定从原有员工中分流x(0<x<100,x∈N*)人去进行新开发的产品B的生产.分流后,继续从事产品A生产的员工平均每人每年创造产值在原有的基础上增长了(1.2x)%.若要保证产品A的年产值不减少,则最多能分流的人数是()A.15B.16C.17D.186.某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初时含杂质2%,每过滤一次可使杂质,至少应过滤次才能达到市场要求.(已知lg 2≈0.301 0,lg 3≈0.477 1)含量减少137.一个容器装有细沙a cm3,细沙从容器底部一个细微的小孔慢慢地匀速漏出,t min后剩余的细沙量为y=a e-bt cm3,经过8 min后发现容器内还有一半的沙子,则再经过 min,容器中的沙子只有开始时的八分之一.8.某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(单位:μg)与时间t(单位:h)之间的关系近似满足如图所示的曲线.(1)写出第一次服药后y与t之间的函数解析式y=f(t);(2)据进一步测定:当每毫升血液中含药量不少于0.25 μg时,治疗有效,求服药一次后治疗有效的时间.综合提升组9.如图,有一直角墙角,两边的长度足够长,若P处有一棵树与两墙的距离分别是4 m和a m(0<a<12).不考虑树的粗细,现用16 m长的篱笆,借助墙角围成一个矩形花圃ABCD,设此矩形花圃的最大面积为u,若将这棵树围在矩形花圃内,则函数u=f(a)(单位:m2)的图像大致是()10.某高校为提升科研能力,计划逐年加大科研经费投入.若该高校2018年全年投入科研经费1 300万元,在此基础上,每年投入的科研经费比上一年增长12%,则该高校全年投入的科研经费开始超过2 000万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)()A.2020年B.2021年C.2022年D.2023年11.如图,直角边长为2 cm的等腰直角三角形ABC,以2 cm/s 的速度沿直线l向右运动,则该三角形与矩形CDEF重合部分面积y(单位:cm2)与时间t(单位:s)的函数关系(设0≤t≤3)为,y的最大值为.12.某沿海地区养殖的一种特色海鲜上市时间仅能持续5个月,预测上市初期和后期会因供应不足使价格呈持续上涨态势,而中期又将出现供大于求使价格连续下跌.现有三种价格模拟函数:①f(x)=p·q x;②f(x)=px2+qx+1;③f(x)=x(x-q)2+p(以上三式中p,q均为常数,且q>1).(1)为准确研究其价格走势,应选哪种价格模拟函数(不必说明理由)?(2)若f(0)=4,f(2)=6,求出所选函数f(x)的解析式(注:函数定义域是[0,5],其中x=0表示8月1日,x=1表示9月1日,以此类推);(3)在(2)的条件下预测该海鲜将在哪几个月内价格下跌.创新应用组13.声强级Y(单位:分贝)由公式Y=10lg I给出,其中I为声强(单位:W/m2).10-12(1)平常人交谈时的声强约为10-6 W/m2,求其声强级.(2)一般常人能听到的最低声强级是0分贝,求能听到的最低声强为多少?(3)比较理想的睡眠环境要求声强级Y ≤50分贝,已知熄灯后两位同学在宿舍说话的声强为5×10-7 W/m 2,问这两位同学是否会影响其他同学休息?参考答案课时规范练13 数学建模——函数模型及其应用1.D 从图中可以看出当乙车的行驶速度大于40 km/h 时的燃油效率大于5 km/L,故乙车消耗1 L 汽油的行驶路程可大于5 km,所以选项A 错误;由图可知以相同速度行驶相同路程甲车消耗汽油最少,所以选项B 错误;甲车以80 km/h 的速度行驶时的燃油效率为10 km/L,故行驶1小时的路程为80 km,消耗8 L 汽油,所以选项C 错误;当最高限速为80 km/h 且速度相同时丙车的燃油效率大于乙车的燃油效率,故用丙车比用乙车更省油,所以选项D 正确.2.C 设利润为f (x )万元,则f (x )=25x-(3 000+20x-0.1x 2)=0.1x 2+5x-3 000(0<x<240,x ∈N *).令f (x )≥0,得x ≥150,故生产者不亏本时的最低产量是150台.故选C .3.B 由题意,设利润为y 元,租金定为(3 000+50x )元(0≤x ≤70,x ∈N ),则y=(3 000+50x )(70-x )-100(70-x )=(2 900+50x )(70-x )=50(58+x )(70-x )≤5058+x+70-x 22=204 800,当且仅当58+x=70-x ,即x=6时,等号成立,故每月租金定为3 000+300=3 300(元)时,公司获得最大利润,故选B .4.D 已知s=12t 2,车与人的间距d=(s+25)-6t=12t 2-6t+25=12(t-6)2+7.当t=6时,d 取得最小值7.所以不能追上汽车,但期间最近距离为7米,故选D .5.B 由题意,分流前每年创造的产值为100t 万元,分流x 人后,每年创造的产值为(100-x )[1+(1.2x )%]t ,则{0<x <100,x ∈N *,(100-x )[1+(1.2x )%]t ≥100t , 解得0<x ≤503.因为x ∈N *,所以x 的最大值为16,故选B . 6.8 设至少过滤n 次才能达到市场要求,则2%1-13n ≤0.1%,即23n ≤120, 所以n lg 23≤-1-lg 2,解得n ≥7.39,所以n=8.7.16 当t=0时,y=a ,当t=8时,y=a e -8b =12a ,所以e -8b =12,容器中的沙子只有开始时的八分之一时,即y=a e -bt =18a ,e -bt =18=(e -8b )3=e -24b ,则t=24,所以再经过24-8=16(min),容器中的沙子只有开始时的八分之一.8.解 (1)根据所给的曲线,可设y={kt ,0≤t ≤1,(12) t -a ,t >1.当t=1时,由y=4,得k=4,由121-a =4,得a=3.则y={4t ,0≤t ≤1,(12) t -3,t >1.(2)由y ≥0.25,得{0≤t ≤1,4t ≥0.25或{t >1,(12) t -3≥0.25,解得116≤t ≤5.因此服药一次后治疗有效的时间为5-116=7916(h).9.B 设AD 的长为x m,则CD 的长为(16-x ) m,则矩形ABCD 的面积为x (16-x ) m 2.因为要将点P 围在矩形ABCD 内,所以a ≤x ≤12.当0<a ≤8时,当且仅当x=8时,u=64;当8<a<12时,u=a (16-a ).画出函数图像可得其形状与B 选项接近,故选B .10.C 若2019年是第1年,则第n 年全年投入的科研经费为1 300×1.12n 万元,由1 300×1.12n >2 000,可得lg 1.3+n lg 1.12>lg 2,所以n ×0.05>0.19,得n>3.8,所以第4年,即2022年全年投入的科研经费开始超过2 000万元,故选C .11.y={2t 2,0≤t <1,2,1≤t ≤2,2-12(2t -4)2,2<t ≤32 如题图,当0≤t<1时,重叠部分面积y=12×2t ×2t=2t 2;当1≤t ≤2时,重叠部分为直角三角形ABC ,重叠部分面积y=12×2×2=2(cm 2); 当2<t ≤3时,重叠部分为梯形,重叠部分面积y=S △ABC -12(2t-4)2=2-12(2t-4)2=-2t 2+8t-6. 综上,y={2t 2,0≤t <1,2,1≤t ≤2,-2t 2+8t -6,2<t ≤3,故可得y 的最大值为2.12.解 (1)因为上市初期和后期价格呈持续上涨态势,而中期又将出现价格连续下跌,所以在所给出的函数中应选模拟函数f (x )=x (x-q )2+p.(2)对于f (x )=x (x-q )2+p ,由f (0)=4,f (2)=6,可得p=4,(2-q )2=1,又q>1,所以q=3,所以f (x )=x 3-6x 2+9x+4(0≤x ≤5).(3)因为f (x )=x 3-6x 2+9x+4(0≤x ≤5),所以f'(x )=3x 2-12x+9, 令f'(x )<0,得1<x<3.所以函数f (x )在(1,3)内单调递减,所以可以预测这种海鲜将在9月,10月两个月内价格下跌. 13.解 (1)当声强为10-6 W/m 2时,由公式Y=10lgI 10-12,得Y=10lg 10-610-12=10lg 106=60(分贝).(2)当Y=0时,由公式Y=10lg I 10-12,得10lgI 10-12=0.所以I10-12=1,即I=10-12 W/m 2,则最低声强为10-12 W/m 2.(3)当声强为5×10-7 W/m 2时,声强级为Y=10lg 5×10-710-12=10lg(5×105)=50+10lg 5(分贝),因为50+10lg 5>50,故这两位同学会影响其他同学休息.。

创新设计江苏专用2018版高考数学一轮复习第二章函数概念与基本初等函数I2.9函数模型及其应用课时作业理

创新设计江苏专用2018版高考数学一轮复习第二章函数概念与基本初等函数I2.9函数模型及其应用课时作业理

第9讲 函数模型及其应用基础巩固题组(建议用时:40分钟) 一、填空题1.给出下列函数模型:①一次函数模型;②幂函数模型;③指数函数模型;④对数函数模型.下表是函数值y随自变量x变化的一组数据,它最可能的函数模型是________(填序号).x45678910y15171921232527解析 根据已知数据可知,自变量每增加1函数值增加2,因此函数值的增量是均匀的,故为一次函数模型.答案 ①2.某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C与时间t(年)的函数关系图象正确的是________(填序号).解析 前3年年产量的增长速度越来越快,说明呈高速增长,只有①,③图象符合要求,而后3年年产量保持不变,总产量增加,故①正确,③错误.答案 ①3.某电信公司推出两种手机收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差________元.解析 设A种方式对应的函数解析式为s=k1t+20,B种方式对应的函数解析式为s=k2t,当t=100时,100k1+20=100k2,∴k2-k1=,t=150时,150k2-150k1-20=150×-20=10.答案 104.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x为________m.解析 设内接矩形另一边长为y,则由相似三角形性质可得=,解得y=40-x,所以面积S=x(40-x)=-x2+40x=-(x-20)2+400(0<x<40),当x=20时,S max=400.答案 205.(2017·长春模拟)一个容器装有细沙a cm3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y=a e-bt(cm3),经过8 min后发现容器内还有一半的沙子,则再经过________min,容器中的沙子只有开始时的八分之一.解析 当t=0时,y=a,当t=8时,y=a e-8b=a,∴e-8b=,容器中的沙子只有开始时的八分之一时,即y=a e-bt=a,e-bt==(e-8b)3=e-24b,则t=24,所以再经过16 min.答案 166.A,B两只船分别从在东西方向上相距145 km的甲乙两地开出.A从甲地自东向西行驶.B从乙地自北向南行驶,A的速度是40 km h,B 的速度是16 km h,经过________h,AB间的距离最短.解析 设经过x h,A,B相距为y km,则y==(0≤x≤),求得函数的最小值时x的值为.答案 7.某企业投入100万元购入一套设备,该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.为使该设备年平均费用最低,该企业需要更新设备的年数为________.解析 设该企业需要更新设备的年数为x,设备年平均费用为y,则x年后的设备维护费用为2+4+…+2x=x(x+1),所以x年的平均费用为y==x++1.5,由基本不等式得y=x++1.5≥2 +1.5=21.5,当且仅当x=,即x=10时取等号.答案 108.(2016·四川卷改编)某公司为激励创新,计划逐年加大研发奖金投入.若该公司2015年全年投入研发奖金130万元.在此基础上,每年投入的研发奖金比上一年增长12%,则该公司全年投入的研发奖金开始超过200万元的年份是________(参考数据:lg 1.12=0.05,lg 1.3=0.11,lg 2=0.30).解析 设第x年的研发奖金为200万元,则由题意可得130×(1+12%)x=200,∴1.12x=,∴x=log1.12=log1.1220-log1.1213=-===3.8.即3年后不到200万元,第4年超过200万元,即2019年超过200万元.答案 2019二、解答题9.(2016·江苏卷)现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥P-A1B1C1D1,下部分的形状是正四棱柱ABCD-A1B1C1D1(如图所示),并要求正四棱柱的高OO1是正四棱锥的高PO1的4倍.(1)若AB=6 m,PO1=2 m,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6 m,则当PO1为多少时,仓库的容积最大?解 (1)V=×62×2+62×2×4=312(m3).(2)设PO1=x,则O1B1=,B1C1=·,∴SA1B1C1D1=2(62-x2),又由题意可得下面正四棱柱的高为4x.则仓库容积V=x·2(62-x2)+2(62-x2)·4x=x(36-x2).由V′=0得x=2或x=-2(舍去).由实际意义知V在x=2(m)时取到最大值,故当PO1=2 m时,仓库容积最大.10.(2017·南通模拟)某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近似地表示为y=-48x+8 000,已知此生产线年产量最大为210吨.(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?解 (1)每吨平均成本为(万元).则=+-48≥2 -48=32,当且仅当=,即x=200时取等号.∴年产量为200吨时,每吨平均成本最低为32万元.(2)设年获得总利润为R(x)万元.则R(x)=40x-y=40x-+48x-8 000=-+88x-8 000=-(x-220)2+1 680(0≤x≤210).∵R(x)在[0,210]上是增函数,∴x=210时,R(x)有最大值为-(210-220)2+1 680=1 660.∴年产量为210吨时,可获得最大利润1 660万元.能力提升题组(建议用时:30分钟)11.(2017·南京调研)某市对城市路网进行改造,拟在原有a个标段(注:一个标段是指一定长度的机动车道)的基础上,新建x个标段和n个道路交叉口,其中n与x满足n=ax+5.已知新建一个标段的造价为m万元,新建一个道路交叉口的造价是新建一个标段的造价的k倍.(1)写出新建道路交叉口的总造价y(万元)与x的函数关系式;(2)设P是新建标段的总造价与新建道路交叉口的总造价之比.若新建的标段数是原有标段数的20%,且k≥3.问:P能否大于,说明理由.解 (1)依题意得y=mkn=mk(ax+5),x∈N*.(2)法一 依题意x=0.2a,所以P====≤=≤=<.P不可能大于.法二 依题意x=0.2a,所以P====.假设P>,则ka2-20a+25k<0.因为k≥3,所以Δ=100(4-k2)<0,不等式ka2-20a+25k<0无解,假设不成立.P不可能大于.12.(2017·苏、锡、常、镇四市调研)某经销商计划销售一款新型的空气净化器,经市场调研发现以下规律:当每台净化器的利润为x(单位:元,x>0)时,销售量q(x)(单位:百台)与x的关系满足:若x不超过20,则q(x)=;若x大于或等于180,则销售量为零;当20≤x≤180时,q(x)=a-b(a,b为实常数).(1)求函数q(x)的表达式;(2)当x为多少时,总利润(单位:元)取得最大值,并求出该最大值.解 (1)当20≤x≤180时,由得故q(x)=(2)设总利润f(x)=x·q(x),由(1)得f(x)=当0<x≤20时,f(x)==126 000-,又f(x)在(0,20]上单调递增,所以当x=20时,f(x)有最大值120 000.当20<x<180时,f(x)=9 000x-300·x,f′(x)=9 000-450·,令f′(x)=0,得x=80.当20<x<80时,f′(x)>0,f(x)单调递增,当80<x<180时,f′(x)<0,f(x)单调递减,所以当x=80时,f(x)有最大值240 000.当x≥180时,f(x)=0.综上,当x=80元时,总利润取得最大值240 000元.13.(2017·苏北四市调研)如图,某森林公园有一直角梯形区域ABCD,其四条边均为道路,AD∥BC,∠ADC=90°,AB=5 千米,BC=8 千米,CD=3 千米.现甲、乙两管理员同时从A地出发匀速前往D地,甲的路线是AD,速度为6千米/时,乙的路线是ABCD,速度为v千米/时.(1)若甲、乙两管理员到达D的时间相差不超过15分钟,求乙的速度v的取值范围;(2)已知对讲机有效通话的最大距离是5千米.若乙先到D,且乙从A到D的过程中始终能用对讲机与甲保持有效通话,求乙的速度v的取值范围.解 (1)由题意得AD=12 千米,≤,解得≤v≤,故乙的速度v的取值范围是.(2)设经过t小时,甲、乙之间的距离的平方为f(t).由于乙先到达D地,故<2,即v>8.①当0<vt≤5,即0<t≤时,f(t)=(6t)2+(vt)2-2×6t×vt×cos∠DAB=t2.因为v2-v+36>0,所以当t=时,f(t)取最大值,所以×2≤25,解得v≥.②当5<vt≤13,即<t≤时,f(t)=(vt-1-6t)2+9=(v-6)22+9.因为v>8,所以<,(v-6)2>0,所以当t=时,f(t)取最大值,所以(v-6)22+9≤25,解得≤v≤.③当13≤vt≤16,即≤t≤时,f(t)=(12-6t)2+(16-vt)2因为12-6t>0,16-vt>0,所以f(t)在上单调递减,所以当t=时,f(t)取最大值,2+2≤25,解得≤v≤.因为v>8,所以8<v≤.综上所述,v的取值范围是.。

数学一轮复习第二章函数2.9函数模型及其应用学案理

数学一轮复习第二章函数2.9函数模型及其应用学案理

2.9函数模型及其应用必备知识预案自诊知识梳理1.常见的函数模型(1)一次函数模型:f(x)=kx+b(k,b为常数,k≠0);(2)二次函数模型:f(x)=ax2+bx+c(a,b,c为常数,a≠0);(3)反比例函数模型:f(x)=kk(k为常数,k≠0);(4)指数型函数模型:f(x)=ab x+c(a,b,c为常数,a≠0,b〉0,b≠1);(5)对数型函数模型:f(x)=m log a x+n(m,n,a为常数,m≠0,a〉0,a≠1);(6)幂型函数模型:f(x)=ax n+b(a,b,n为常数,a≠0);(7)分段函数模型:y={k1(k),k∈k1,k2(k),k∈k2,k3(k),k∈k3;(8)对勾函数模型:y=x+kk(a为常数,a>0)。

2。

指数、对数、幂函数模型的性质比较性质函数y=a x(a>1)y=log a x(a〉1)y=xα(α〉0)在(0,+∞)内的增减性增长速度越来越快越来越慢相对平稳图像的变化随x的增大逐渐表现为与平行随x的增大逐渐表现为与平行随α值变化而各有不同值的比较存在一个x0,当x〉x0时,有log a x<xα〈a x考点自诊1。

判断下列结论是否正确,正确的画“√”,错误的画“×"。

(1)幂函数增长比一次函数增长更快。

() (2)在(0,+∞)内,随着x的增大,y=a x(a〉1)的增长速度会超过并远远大于y=xα(α〉0)的增长速度.()(3)指数型函数模型,一般用于解决变化较快,短时间内变化量较大的实际问题。

()(4)f(x)=x2,g(x)=2x,h(x)=log2x,当x∈(4,+∞)时,恒有h(x)〈f(x)〈g(x)。

()(5)“指数爆炸”是指数型函数y=a·b x+c(a>0,b>1)增长速度越来越快的形象比喻。

()2。

(2020山东潍坊临朐模拟二,3)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况。

高考数学(文)总复习:创新思维课时规范练(含答案)第二章 第九节 函数模型及其应用

高考数学(文)总复习:创新思维课时规范练(含答案)第二章  第九节  函数模型及其应用

课时规范练A组基础对点练1.下列函数中随x的增大而增长速度最快的是()A.v=1100·ex B.v=100ln xC.v=x100D.v=100×2x答案:A2.(2019·开封质检)用长度为24(单位:米)的材料围成一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为()A.3米B.4米C.6米D.12米解析:设隔墙的长为x(0<x<6)米,矩形的面积为y平方米,则y=x×24-4x2=2x(6-x)=-2(x-3)2+18,所以当x=3时,y取得最大值.答案:A3.某商场销售A型商品,已知该商品的进价是每件3元,且销售单价与日均销售量的关系如表所示:请根据以上数据分析,要使该商品的日均销售利润最大,则此商品的定价(单位:元/件)应为()A.4 B.5.5C.8.5 D.10解析:由题意可设定价为x元/件,利润为y元,则y=(x-3)[400-40(x-4)]=40(-x2+17x-42),故当x=8.5时,y有最大值,故选C.答案:C4.(2019·济南模拟)某种动物繁殖量y只与时间x年的关系为y=a log3(x+1),设这种动物第2年有100只,到第8年它们将发展到()A.200只B.300只C.400只D.500只解析:∵繁殖数量y只与时间x年的关系为y=a log3(x+1),这种动物第2年有100只,∴100=a log 3(2+1),∴a =100,∴y =100log 3(x +1),∴当x =8时,y =100log 3(8+1)=100×2=200.故选A.答案:A5.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x ,y 应为( )A .x =15,y =12B .x =12,y =15C .x =14,y =10D .x =10,y =14解析:由三角形相似得24-y 24-8=x 20, 得x =54(24-y ),由0<x ≤20得,8≤y <24,所以S =xy =-54(y -12)2+180,所以当y =12时,S 有最大值,此时x =15.答案:A6.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y 与投放市场的月数x 之间关系的是( )A .y =100xB .y =50x 2-50x +100C .y =50×2xD .y =100log 2x +100解析:根据函数模型的增长差异和题目中的数据可知,应为指数型函数模型,代入数据验证即可得.答案:C7.(2019·南昌模拟)某电信公司推出两种手机收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内通话时间t (分钟)与电话费S (元)的函数关系如图所示,当通话150分钟时,这两种方式的电话费相差__________.解析:依题意可设S A(t)=20+kt,S B(t)=mt.又S A(100)=S B(100),∴100k+20=100m,得k-m=-0.2,于是S A(150)-S B(150)=20+150k-150m=20+150×(-0.2)=-10,即两种方式的电话费相差10元.答案:10元8.(2019·唐山模拟)某人计划购买一辆A型轿车,售价为14.4万元,购买后轿车一年的保险费、汽油费、年检费、停车费等约需2.4万元,同时汽车年折旧率约为10%(即这辆车每年减少它的价值的10%),试问,大约使用________年后,花费在该车上的费用(含折旧费)达到14.4万元?解析:设使用x年后花费在该车上的费用达到14.4万元.依题意可得,14.4(1-0.9x)+2.4x=14.4.化简得:x-6×0.9x=0,令f(x)=x-6×0.9x.因为f(3)=-1.374<0,f(4)=0.063 4>0,所以函数f(x)在(3,4)上应有一个零点.故大约使用4年后,花费在该车上的费用达到14.4万元.答案:49.一片森林原来面积为a,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22.(1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年?10.某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的 全部零件的出厂单价就降低0.02元,但实际出厂单价不低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x 个,零件的实际出厂单价为p 元,写出函数p =f (x )的表达式;(3)当销售商一次订购多少个时,该厂获得的利润为6 000元?( 工厂售出一个零件的利润=实际出厂单价-成本)解析:(1)设每个零件的实际出厂价格恰好降为51元时,一次订购量为x 0个,则x 0=100+60-510.02=550(个),因此,当一次订购量为550个时,每个零件的实际出厂价格恰好降为51元.(2)当0≤x ≤100时,p =60;当100<x <550时,p =60-0.02(x -100)=62-x 50;当x ≥550时,p =51.所以p =⎩⎪⎨⎪⎧ 60(0≤x ≤100),62-x 50(100<x <550),(x ∈N *),51(x ≥550).(3)设销售商的一次订购量为x 个时,工厂获得的利润为L 元,则L =(p -40)x=⎩⎪⎨⎪⎧ 20x (0≤x ≤100),22x -x 250(100<x <550),(x ∈N *),11x (x ≥550),当0≤x ≤100时,L ≤2 000;当x ≥550时,L ≥6 050; 当100<x <550时,L =22x -x 250.由⎩⎪⎨⎪⎧ 22x -x 250=6 000,100<x <550,解得x =500.B 组 能力提升练11.世界人口在过去40年翻了一番,则每年人口平均增长率约是(参考数据lg2≈0.301 0,100.007 5≈1.017)( )A .1.5%B .1.6%C .1.7%D .1.8% 解析:由题意得(1+x )40=2,∴40lg(1+x )=lg 2,∴lg(1+x )≈0.007 5,∴1+x =100.007 5,∴x ≈0.017=1.7%.故选C.答案:C12.已知某服装厂生产某种品牌的衣服,销售量q (x )(单位:百件)关于每件衣服的利润x (单位:元)的函数解析式为 q (x )=⎩⎨⎧ 1 260x +1,0<x ≤20,90-35x ,20<x ≤180,则当该服装厂所获效益最大时,x =( )A .20B .60C .80D .40 解析:设效益为f (x )则f (x )=100xq (x )=⎩⎨⎧ 126 000x x +1,0<x ≤20,100x (90-35x ),20<x ≤180.当0<x ≤20时,f (x )=126 000x x +1=126 000-126 000x +1,f (x )在区间(0,20]上单调递增,所以当x =20时,f (x )有最大值120 000.当20<x ≤180时,f (x )=9 000x -3005·x x ,则f ′(x )=9 000-4505·x ,令f ′(x )=0,∴x =80.当20<x <80时,f ′(x )>0,f (x )单调递增,当80≤x ≤180时,f ′(x )≤0,f (x )单调递减,所以当x =80时,f (x )有极大值,也是最大值240 000.故选C.答案:C13.某商场对顾客实行购物优惠活动,规定一次性购物付款总额:(1)如果不超过200元,则不给予优惠.(2)如果超过200元但不超过500元,则按标价给予9折优惠.(3)如果超过500元,则500元按第(2)条给予优惠,剩余部分给予7折优惠. 某人单独购买A ,B 商品分别付款100元和450元,假设他一次性购买A ,B 两件商品,则应付款是________元.解析:设商品总额为x 元,应付金额为y 元,则y =⎩⎨⎧ x ,0≤x ≤200,0.9x ,200<x ≤500,0.7x +100,x >500,令0.9x =450,得x =500, 则0.7×(500+100)+100=520(元).答案:52014.(2019·沈阳模拟)一个容器装有细沙a cm 3,细沙从容器底部一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y =a e -bt (cm 3),经过8 min 后发现容器内还有一半的沙子,则再经过________ min ,容器中的沙子只有开始时的八分之一.解析:依题意有a ·e -b ×8=12a ,所以b =ln 28,所以y =a ·e -ln 28t .若容器中的沙子只有开始时的八分之一,则有a ·e -ln 28t =18a ,解得t =24,所以再经过的时间为24-8=16 min.答案:1615.随着中国一带一路的深入发展,中国某陶瓷厂为了适应发展,制定了以下生产计划,每天生产陶瓷的固定成本为14 000元,每生产一件产品,成本增加 210元.已知该产品的日销售量f (x )(单位:件)与产量x (单位:件)之间的关系式为f (x )=⎩⎪⎨⎪⎧ 1625x 2(0≤x ≤400)x -144(400<x <500),每件产品的售价g (x )(单位:元)与产量x 之间的关系式为g (x )=⎩⎪⎨⎪⎧ -58x +750(0≤x ≤400)-x +900(400<x <500).(1)写出该陶瓷厂的日销售利润Q (x )(单位:元)与产量x 之间的关系式;(2)若要使得日销售利润最大,则该陶瓷厂每天应生产多少件产品,并求出最大利润.解析:(1)设总成本为c (x )(单位:元)则c (x )=14 000+210x ,所以日销售利润Q (x )=f (x )g (x )-c (x )=⎩⎪⎨⎪⎧ -11 000x 3+65x 2-210x -14 000(0≤x ≤400),-x 2+834x -143 600(400<x <500).(2)由(1)知,当0≤x ≤400时,Q ′(x )=-31 000x 2+125x -210. 令Q ′(x )=0,解得x =100或x =700(舍去).易知当x ∈[0,100)时,Q ′(x )<0;当x ∈(100,400]时,Q ′(x )>0.所以Q (x )在区间[0,100)上单调递减,在区间(100,400]上单调递增.因为Q(0)=-14 000,Q(400)=30 000,所以Q(x)在x=400时取到最大值,且最大值为30 000. 当400<x<500时,Q(x)=-x2+834x-143 600.当x=-8342×(-1)=417时,Q(x)取得最大值,最大值为Q(x)max=-4172+834×417-143 600=30 289.综上所述,若要使得日销售利润最大,则该陶瓷厂每天应生产417件产品,其最大利润为30 289元.16.(2019·湖北八校联考)已知某工厂每天固定成本是4万元,每生产一件产品成本增加100元,工厂每件产品的出厂价定为a元时,生产x(x>0)件产品的销售收入是R(x)=-14x2+500x(元),P(x)为每天生产x件产品的平均利润(平均利润=总利润总产量).销售商从工厂以每件a元进货后,又以每件b元销售,且b=a+λ(c-a),其中c为最高限价(a<b<c),λ为销售乐观系数,据市场调查,λ由当b-a是c-b,c-a的比例中项时来确定.(1)每天生产量x为多少时,平均利润P(x)取得最大值?并求P(x)的最大值;(2)求乐观系数λ的值;(3)若c=600,当厂家平均利润最大时,求a与b的值.解析:(1)依题意设总利润为L(x),则L(x)=-14x2+500x-100x-40 000=-14x2+400x-40 000(x>0),∴P(x)=-14x2+400x-40 000x=-14x-40 000x+400≤-200+400=200,当且仅当14x=40 000x,即x=400时等号成立.故当每天生产量为400件时,平均利润最大,最大值为200元.(2)由b=a+λ(c-a),得λ=b-a c-a.∵b-a是c-b,c-a的比例中项,∴(b-a)2=(c-b)(c-a),两边同时除以(b -a )2,得1=(c -a )-(b -a )b -a ·c -a b -a =(c -a b -a -1)c -a b -a, ∴1=(1λ-1)·1λ,解得λ=5-12或λ=-5-12(舍去). 故乐观系数λ的值为5-12.(3)∵厂家平均利润最大,∴a =40 000x +100+P (x )=40 000400+100+200=400.由b =a +λ(c -a ),结合(2)可得b -a =λ(c -a )=100(5-1), ∴b =100(5+3).故a 与b 的值分别为400,100(5+3).。

高考数学一轮复习学案:2.9 函数模型及其应用(含答案)

高考数学一轮复习学案:2.9 函数模型及其应用(含答案)

高考数学一轮复习学案:2.9 函数模型及其应用(含答案)2.9函数模型及其应用函数模型及其应用最新考纲考情考向分析1.了解指数函数.对数函数.幂函数的增长特征,结合具体实例体会直线上升.指数增长.对数增长等不同函数类型增长的含义.2.了解函数模型如指数函数.对数函数.幂函数.分段函数等在社会生活中普遍使用的函数模型的广泛应用.考查根据实际问题建立函数模型解决问题的能力,常与函数图象.单调性.最值及方程.不等式交汇命题,题型以解答题为主,中高档难度.1几类函数模型函数模型函数解析式一次函数模型fxaxba,b为常数,a0反比例函数模型fxkxbk,b为常数且k0二次函数模型fxax2bxca,b,c为常数,a0指数函数模型fxbaxca,b,c为常数,b0,a0且a1对数函数模型fxblogaxca,b,c为常数,b0,a0且a1幂函数模型fxaxnba,b为常数,a02.三种函数模型的性质函数性质yaxa1ylogaxa1yxnn0在0,上的增减性单调递增单调递增单调递增增长速度越来越快越来越慢相对平稳图象的变化随x的增大逐渐表现为与y轴平行随x的增大逐渐表现为与x轴平行随n值变化而各有不同值的比较存在一个x0,当xx0时,有logax0时,xa时取最小值2a,当x0的增长速度5“指数爆炸”是指数型函数yabxca0,b0,b1增长速度越来越快的形象比喻题组二教材改编2P102例3某工厂一年中各月份的收入.支出情况的统计图如图所示,则下列说法中错误的是A收入最高值与收入最低值的比是31B结余最高的月份是7月C1至2月份的收入的变化率与4至5月份的收入的变化率相同D前6个月的平均收入为40万元答案D解析由题图可知,收入最高值为90万元,收入最低值为30万元,其比是31,故A正确;由题图可知,7月份的结余最高,为802060万元,故B正确;由题图可知,1至2月份的收入的变化率与4至5月份的收入的变化率相同,故C正确;由题图可知,前6个月的平均收入为1640603030506045万元,故D错误3P104例5生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品x万件时的生产成本为Cx12x22x20万元一万件售价为20万元,为获取更大利润,该企业一个月应生产该商品数量为______万件答案18解析利润Lx20xCx12x182142,当x18时,Lx有最大值4P107A组T4用长度为24的材料围一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为________答案3解析设隔墙的长度为x02.3,x为整数,3x6,xZ.当x6时,y503x6x1153x268x115.令3x268x1150,有3x268x115400,则总利润最大时,该门面经营的天数是________答案300解析由题意,总利润y400x12x2100x20000,0x400,60000100x,x400,当0x400时,y12x300225000,所以当x300时,ymax25000;当x400时,y60000100x20000,综上,当门面经营的天数为300时,总利润最大为25000元函数应用问题典例12分已知美国某手机品牌公司生产某款手机的年固定成本为40万美元,每生产1万部还需另投入16万美元设公司一年内共生产该款手机x万部并全部销售完,每万部的销售收入为Rx万美元,且Rx4006x,040.1写出年利润W万美元关于年产量x万部的函数解析式;2当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大并求出最大利润思维点拨根据题意,要利用分段函数求最大利润列出解析式后,比较二次函数和“对勾”函数的最值的结论规范解答解1当040时,WxRx16x4040000x16x7360.所以W6x2384x40,040.4分2当040时,W40000x16x7360,由于40000x16x240000x16x1600,当且仅当40000x16x,即x5040,时,取等号,所以此时W的最大值为5760.10分综合知,当x32时,W取得最大值6104万美元12分解函数应用题的一般步骤第一步审题弄清题意,分清条件和结论,理顺数量关系;第二步建模将文字语言转化成数学语言,用数学知识建立相应的数学模型;第三步解模求解数学模型,得到数学结论;第四步还原将用数学方法得到的结论还原为实际问题的意义;第五步反思对于数学模型得到的数学结果,必须验证这个数学结果对实际问题的合理性。

高三数学(北师大)配套作业:2-9函数模型及其应用.pdf

高三数学(北师大)配套作业:2-9函数模型及其应用.pdf

第2章 第9节 1.某汽车运输公司购买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y(单位:10万元)与营运年数x(xN*)为二次函数关系(如图所示),则每辆客车营运多少年时,其营运的平均利润最大( ) A.3 B.4 C.5 D.6 【解析】 由题图可得营运总利润y=-(x-6)2+11,则营运的年平均利润=-x-+12, x∈N*,≤-2 +12=2,当且仅当x=,即x=5时取“=”. x=5时营运的平均利润最大. 【答案】 C 2.某种细胞在培养过程中正常情况下,时刻t(单位:分)与细胞数n(单位:个)的部分数据如下: t02060140n128128根据表中数据,推测繁殖到1 000个细胞时的时刻t最接近于( ) A.200 B.220 C.240 D.260 【解析】 由表格中所给数据可以得出n与t的函数关系为n=2,令n=1 000,得2=1 000,又210=1 024,所以时刻t最接近200分. 【答案】 A 3.某公司招聘员工,经过笔试确定面试对象人数,面试对象人数按拟录用人数分段计算,计算公式为: y=其中x代表拟录用人数,y代表面试对象人数.若应聘的面试对象人数为60人,则该公司拟录用人数为( ) A.15 B.40 C.25 D.30 【解析】 根据分段函数关系,面试对象人数为60即y=60,则应用y=2x+10=60,可得x=25,即该公司拟录用人数为25. 【答案】 C 4.(2012·东北三校联考)为了保证信息完全,传输必须使用加密方式,有一种方式其加密、解密原理如下: 明文密文密文明文 已知加密为y=ax-2(x为明文,y为密文),如果明文“3”通过加密后得到密文为“6”,再发送,接受方通过解密得到明文“3”,若接受方接到密文为“14”,则原发的明文是________. 【解析】 依题意y=ax-2中,当x=3时,y=6,故6=a3-2,解得a=2.所以加密为y=2x-2,因此,当y=14时,由14=2x-2,解得x=4. 【答案】 4 5. 杭州某房地产公司要在西湖边的空地ABCDE(如右图所示)上划出一块长方形地面建一公寓,且所划长方形的一条边在ED上,其中ED=100,EA=60,BC=70,DC=80.问:如何设计才能使公寓占地面积最大?并求出最大面积(单位:m). 【解】 如图,设FM=x(0≤x≤30), 因为AGB与BFM相似,所以==,得BF=x, S=(70+x)(80-x)=-x2+x+5 600. 当x=25时,Smax=,此时MB=, 所以当长方形顶点M在AB边上距B为m时,面积最大为m2.课时作业 【考点排查表】 考查考点及角度难度及题号基础中档稍难错题记录一次函数与分段函数模型16,712二次函数与分式函数模型28,1011拟合函数问题34,59,13一、选择题 1.一等腰三角形的周长是20,底边y是关于腰长x的函数,它的解析式为( ) A.y=20-2x(x≤10) B.y=20-2x(x<10) C.y=20-2x(5≤x≤10) D.y=20-2x(5<x<10) 解析:20=y+2x,y=20-2x,又y=20-2x>0且2x>y=20-2x,5<x<10. 【答案】 D 2.某产品的总成本y(万元)与产量x(台)之间的函数关系式是y=3 000+20x-0.1x2,x(0,240),若每台产品的售价为25万元,则生产者不亏本时(销售收入大于等于总成本)的最低产量为( ) A.100台 B.120台 C.150台 D.180台 【解析】 y≤25x,得(x+200)(x-150)≥0,x≥150. 【答案】 C 3.某农贸市场出售西红柿,当价格上涨时,供给量相应增加,而需求量相应减少,具体调查结果如下表: 表1 市场供给量 单价(元/kg)22.533.33.54供给量(1 000 kg)5 06 07 0 08 09 0表2 市场需求量 单价(元/kg)43.53.22.82.42需求量(1 000 kg)5 06 0 07 07 08 0根据以上提供的信息,市场供需平衡点(即供给量和需求量相等时的单价)应在的区间是( ) A.(2.4,2.5) B.(2.5,2.8) C.(2.8,3) D.(3,3.2) 【解析】 由表1、表2可知,当市场供给量为60~70时,市场单价为2.5~3,当市场需求量为65~70时,市场单价为2.8~3.2,市场供需平衡点应在2.8~3内,故选C. 【答案】 C 4.某市2008年新建住房100万平方米,其中有25万平方米经济适用房,有关部门计划以后每年新建住房面积比上一年增加5%,其中经济适用房每年增加10万平方米.按照此计划,当年建造的经济适用房面积首次超过该年新建住房面积一半的年份是(参考数据:1.052=1.10,1.053=1.16,1.054=1.22,1.055=1.28)( ) A.2010年 B.2011年 C.2012年 D.2013年 【解析】 设第n年新建住房面积为an=100(1+5%)n,经济适用房面积为bn=25+10n,由2bn>an得:2(25+10n)>100(1+5%)n,利用已知条件解得n>3,所以在2012年时满足题意.故选C. 【答案】 C 5.(文)某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y与时间x的关系,可选用( ) A.一次函数 B.二次函数 C.指数型函数 D.对数型函数 【解析】 因调整后初期利润增长迅速,后来增长越来越慢,故选D. 【答案】 D (理)某地区的一种特色水果上市时间仅能持续几个月,预测上市初期和后期会因供不应求使价格呈连续上涨的态势,而中期又将出现供大于求使价格连续下跌,为准确研究其价格走势,下面给出的四个价格模拟函数中合适的是(其中p、q为常数,q>1,x[0,5],x=0表示4月1日,x=1表示5月1日……以此类推)( ) A.f(x)=p·qx B.f(x)=px2+qx+1 C.f(x)=x(x-q)2+p D.f(x)=plnx+qx2 【解析】 显然A是单调函数;B:先升后降或先降后升;D:f′(x)=+2qx,令f′(x)=0得p+2qx2=0.x>0,函数f(x)或者没有极值点或者只有一个极值点,也不具备先升后降的特征. 【答案】 C 6. 如图所示是某条公共汽车线路收支差额y与乘客量x的图象(收支差额=车票收入-支出费用),由于目前本条线路在亏损.公司有关人员提出了两条建议:建议()是不改变车票价格,减少支出费用;建议()是不改变支出费用,提高车票价格.下面给出四个图象. 在这些图象中( ) A.反映了建议(),反映了建议() B.反映了建议(),反映了建议() C.反映了建议(),反映了建议() D.反映了建议(),反映了建议() 【解析】 本题比较新颖,考查了学生的阅读能力,识别图形能力,根据图象分析问题的能力.票价的上涨导致乘客量变小.对于图与图都没改变票价,但图收支差额减小;对于图随着乘客量的增加,收支差额也增大,并且当乘客量相同时,收支差增大. 【答案】 B 二、填空题 7.从1999年11月1日起,全国储蓄存款征收利息税,利息税的税率为20%,由各银行储蓄点代扣代收;某人2011年6月1日存入若干万元人民币,年利率为2%,到2012年6月1日取款时被银行扣除利息税138.64元,则该存款人的本金是________元. 【解析】 设存入的本金为x,则x·2%·20%=138.64, x==34 660. 【答案】 34 660 8.汽车的最佳使用年限是年均消耗费用最低的年限(年均消耗费用=年均成本费+年均维修费).设某种汽车的购车的总费用为50 000元;使用中每年的保险费、养路费及汽油费合计为6 000元;前x年的总维修费y满足y=ax2+bx,已知第一年的维修费为1 000元,前两年总维修费为3 000元.则这种汽车的最佳使用年限为________年. 【解析】 依题意,,解得, 设使用x年平均每年使用费用为t,则 t=(50 000+6 000x+500x2+500x) =6 500++500x=6 500+500≥6 500+10 000=16 500, 当且仅当x=10时,等号成立. 【答案】 10 9.为了预防流感,某学校对教室用药熏消毒法进行消毒,已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为y=()t-a(a为常数),如图所示,根据图中提供的信息,回答下列问题: (1)从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系为________; (2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过________小时后,学生才能回到教室. 【解析】 (1)设y=kt,由图象知y=kx过点(0.1,1),则 1=k×0.1,k=10,y=10t(0≤t≤0.1); 由y=()t-a过点(0.1,1)得1=()0.1-a,a=0.1, y=()t-0.1(t>0.1). (2)由()t-0.1≤0.25=得t≥0.6,故至少需经过0.6小时. 【答案】 (1)y= (2)0.6 三、解答题 10.某厂生产一种机器的固定成本为0.5万元,但每生产100台,需增可变成本(即另增加投入)0.25万元.市场对此产品的年需求量为500台,销售的收入函数为f(t)=5t-(万元)(0≤t≤5),其中t是产品售出的数量(单位:百台). (1)把利润表示为年产量的x(x≥0,单位:百台)的函数; (2)年产量是多少时,工厂所得的利润最大? 【解】 (1)设年纯利润为y,则当0≤x≤5时, y=f(x)-0.25x-0.5=-0.5x2+4.75x-0.5, 当x>5时,销售收入为f(5), 故纯收入为y=f(5)-0.25x-0.5=-0.25x+12. 故函数关系式为 y= (2)当0≤x≤5时,y=-0.5(x-4.75)2+10.781 25, 故ymax=10.781 25,此时x=4.75百台, 当x>5时,y<12-0.25×5=10.75, 所以年产量为475台时,工厂利润最大. 11.为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,新上了把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y(元)与月处理量x(吨)之间的函数关系可近似的表示为: y=,且每处理一吨二氧化碳得到可利用的化工产品价值为200元.若该项目不获利,国家将给予补偿. (1)当x[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则国家每月至少需要补贴多少元才能使该项目不亏损? (2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低? 【解】 (1)当x[200,300]时,设该项目获利为S,则 S=200x- =-x2+400x-80 000=-(x-400)2. 所以当x[200,300]时,S<0. 因此,该项目不会获利. 当x=300时,S取得最大值-5 000,所以国家每月至少需要补贴5 000元才能使该项目不亏损. (2)由题意可知,二氧化碳的每吨平均处理成本为: =. 当x[120,144)时,=x2-80x+5 040=(x-120)2+240, 当x=120时,取得最小值240; 当x[144,500)时,=x+-200≥2-200=200. 当且仅当x=,即x=400时,取得最小值200. 200<240,当每月处理量为400吨时,才能使每吨的平均处理成本最低. 12.(文)某城市在发展过程中,交通状况逐渐受到大家更多的关注,据有关统计数据显示,从上午6点到中午12点,车辆通过该市某一路段的用时y(分钟)与车辆进入该路段的时刻t之间的关系可近似地用如下函数给出: y= 求从上午6点到中午12点,通过该路段用时最多的时刻. 【解】 (1)当6≤t<9时, y′=-t2-t+36=-(t2+4t-96) =-(t+12)(t-8). 令y′=0,得t=-12或t=8. 当0<t0.y为增函数. 当t>8时,y′<0,y在(8,9)上递减. 当t=8时,y有最大值. ymax=18.75(分钟). (2)当9≤t≤10时,y=t+是增函数, 当t=10时,ymax=15(分钟). (3)当10<t≤12时,y=-3(t-11)2+18, 当t=11时,ymax=18(分钟). 综上所述,上午8时,通过该路段用时最多,为18.75分钟. (理)某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为了鼓励销售商订购,决定每一次订购量超过100个时,每多订购一个,多订购的全部零件的出厂单价就降0.02元,但实际出厂单价不能低于51元. (1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元? (2)设一次订购量为x个,零件的实际出厂单价为P元,写出函数P=f(x)的表达式. (3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元? 【解】 (1)设每个零件的实际出厂价格恰好降为51元时,一次订购量为x0个,则x0=100+=550.因此 ,当一次订购量为550个时,每个零件的实际出厂价恰好降为51元. (2)当0<x≤100时,P=60; 当100<x<550时,P=60-0.02(x-100)=62-; 当x≥550时,P=51. 所以P=f(x)= (3)设销售商的一次订购量为x个时,工厂获得的利润为L元,则 L=(P-40)x= 当x=500时,L=6000; 当x=1000时,L=11000. 因此,当销售商一次订购500个零件时,该厂获得的利润是6000元;如果订购1000个,利润是11000元. 四、选做题 13.一片森林原来面积为a,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的,已知到今年为止,森林剩余面积为原来的. (1)求每年砍伐面积的百分比; (2)到今年为止,该森林已砍伐了多少年? 【解】 (1)设每年降低的百分比为x(0<x<1), 则a(1-x)10=a,即(1-x)10=, 解得x=1-. (2)设经过m年剩余面积为原来的,则a(1-x)m=a, 即=,=,解得m=5, 故到今年为止,该森林已砍伐了5年.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时提升作业(十二)函数模型及其应用(25分钟60分)一、选择题(每小题5分,共25分)1.(2015·中山模拟)物价上涨是当前的主要话题,特别是菜价,我国某部门为尽快实现稳定菜价,提出四种绿色运输方案.据预测,这四种方案均能在规定的时间T内完成预测的运输任务Q0,各种方案的运输总量Q与时间t的函数关系如图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的是()【解析】选B.由题知运输效率即Qt,即相当于图象上的点(t,Q)与原点连线的斜率,即连线斜率逐步提高.由题知选项A,效率不变,选项C逐步减小,选项D先减小,再增大,选项B为逐步提高,故选B.2.(2015·嘉兴模拟)某汽车运输公司,购买了一批豪华大客车投入客运,据市场分析,每辆客车营运总利润y(万元)与营运年数x的关系如图所示(近似抛物线的一段),则每辆客车营运多少年使其营运年平均利润最大()A.3B.4C.5D.6【解析】选C.求得:y=-(x-6)2+11,y2512(x)12102,x x=-+≤-=所以yx有最大值2,此时x=5.3.牛奶保鲜时间因储藏温度的不同而不同,假定保鲜时间与储藏温度的关系为指数型函数y=kax,若牛奶在0℃的冰箱中,保鲜时间约为100 h,在5℃的冰箱中,保鲜时间约为80 h,那么在10℃时保鲜时间约为() A.49 h B.56 h C.64 h D.72 h【解析】选C.由5100ka,80ka,⎧=⎪⎨=⎪⎩得k=100,a5=45,所以当10℃时,保鲜时间为100·a10=100·(45)2=64(h),故选C.4.(2015·天津模拟)国家规定某行业征税如下:年收入在280万元及以下的税率为p%,超过280万元的部分按(p+2)%征税,有一公司的实际缴税比例为(p+0.25)%,则该公司的年收入是()A.560万元B.420万元C.350万元D.320万元【思路点拨】设年收入为x,构建分段函数模型求解.【解析】选D.设该公司的年收入为x,纳税额为y,则由题意,得y=()()x p%,x 280,280p%x 280p 2%,x 280,⨯≤⎧⎪⎨⨯+-⨯+>⎪⎩万万 依题意有,()()280p%x 280p 2%x ⨯+-⨯+=(p+0.25)%,解之得x=320(万元).【加固训练】(2015·张家界模拟)由于电子技术的飞速发展,计算机的成本不断降低,若每隔5年计算机的价格降低13,现在价格为8 100元的计算机经过15年价格应降为( )A. 2 000元B. 2 400元C. 2 800元D. 3 000元【解析】选B.设经过3个5年,产品价格为y 元,则y=8 100×(1-13)3=2 400.5.图形M(如图所示)是由底为1,高为1的等腰三角形及高为2和3的两个矩形所构成,函数S=S(a)(a ≥0)是图形M 介于平行线y=0及y=a 之间的那一部分面积,则函数S(a)的图象大致是( )【解析】选C.依题意,当0≤a ≤1时,()()2a 2a 1S a 2a a 3a;22-=+=-+当1<a ≤2时,S(a)= 12+2a;当2<a ≤3时,S(a)= 12+2+a=a+52;当a>3时,S(a)= 12+2+3=112,于是S(a)=21a3a,0a1,212a,1a2,25a,2a3,211,a 3.2⎧-+≤≤⎪⎪⎪+<≤⎪⎨⎪+<≤⎪⎪⎪>⎩由解析式可知选C.【一题多解】本题还可以采用如下方法选C.直线y=a在[0,1]上平移时S(a)的变化量越来越小,故可排除选项A,B.而直线y=a在[1,2]上平移时S(a)的变化量比在[2,3]上的变化量大,故可排除选项D.二、填空题(每小题5分,共15分)6.(2015·漳州模拟)有一批材料可以建成200 m长的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样材料隔成三个面积相等的小矩形(如图所示),则围成场地的最大面积为(围墙厚度不计).【解题提示】根据题目中条件,建立二次函数模型,采用配方法求最高值即可.【解析】设矩形场地的宽度为x m,则矩形场地的长为(200-4x)m,面积S=x(200-4x)=-4(x-25)2+2 500.故当x=25时,S取得最大值2 500,即围成场地的最大面积为2 500 m2.答案:2 500 m27.某单位“五一”期间组团包机去上海旅游,其中旅行社的包机费为30 000元,旅游团中的每人的飞机票按以下方式与旅行社结算:若旅游团中的人数在30或30以下,飞机票每张收费1 800元.若旅游团的人数多于30人,则给以优惠,每多1人,机票费每张减少20元,但旅游团的人数最多有75人,那么旅游团的人数为人时,旅行社获得的利润最大.【解析】设旅游团的人数为x人,飞机票为y元,利润为Q元,依题意,①当1≤x≤30时,y =1 800元,此时利润Q=yx-30 000=1 800x-30 000,此时最大值是当x=30时,Qmax=1 800×30-30 000=24 000(元);②当30<x≤75时,y=1 800-20(x-30)=-20x+2 400,此时利润Q=yx-30 000=-20x2+2 400x-30 000=-20(x-60)2+42 000,所以当x=60时,旅行社可获得的最大利润42 000元.综上,当旅游团的人数为60人时,旅行社获得的利润最大.答案:608.(2015·潍坊模拟)某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q(单位:元/100 kg)与上市时间t(单位:天)的数据如下表:时间t 60 100 180 种植成本Q 116 84 116根据上表数据,从下列函数中选取一个函数描述西红柿种植成本Q 与上市时间t 的变化关系.Q=at+b,Q=at2+bc+c,Q=a ·bt,Q=a ·logbt利用你选取的函数,求得:(1)西红柿种植成本最低时的上市天数是 .(2)最低种植成本是 (元/100kg).【解析】根据表中数据可知函数不单调,所以Q=at2+bt+c 且开口向上,对称轴b 60180t 120.2a 2+=-==代入数据3600a 60b c 116,10000a 100b c 84,32400a 180b c 116,++=⎧⎪++=⎨⎪++=⎩得b 2.4,c 224,a 0.01.=-⎧⎪=⎨⎪=⎩所以西红柿种植成本最低时的上市天数是120.最低种植成本是14 400a+120b+c=14 400×0.01+120×(-2.4)+224=80.答案:(1)120 (2)80三、解答题(每小题10分,共20分)9.某校学生社团心理学研究小组在对学生上课注意力集中情况的调查研究中,发现其注意力指数p 与听课时间t 之间的关系满足如图所示的曲线.当t ∈(0,14]时,曲线是二次函数图象的一部分,当t ∈[14,40]时,曲线是函数y=loga(t-5)+83(a>0且a ≠1)图象的一部分.根据专家研究,当注意力指数p 大于等于80时听课效果最佳.(1)试求p=f(t)的函数关系式.(2)老师在什么时段内安排核心内容能使得学生听课效果最佳?请说明理由.【解析】(1)t ∈(0,14]时,设p=f(t)=c(t-12)2+82(c<0),将(14,81)代入得c=-14,t ∈(0,14]时,p=f(t)=-14(t-12)2+82;t ∈[14,40]时,将(14,81)代入y=loga(t-5)+83,得a=13,所以p=f(t)=()(]()(]2131t 1282,t 0,14,4log t 583,t 14,40.⎧--+∈⎪⎨-+∈⎪⎩(2)t ∈(0,14]时,由-14(t-12)2+82≥80,解得12-22≤t≤12+22, 所以t∈[12-22,14],t∈(14,40]时,由log 13(t-5)+83≥80,解得5<t≤32,所以t∈(14,32],所以t∈[12-22,32],即老师在t∈[12-22,32]时段内安排核心内容能使得学生听课效果最佳.10.(2015·徐州模拟)近年来,某企业每年消耗电费约24万元,为了节能减排,决定安装一个可使用15年的太阳能供电设备接入本企业电网,安装这种供电设备的工本费(单位:万元)与太阳能电池板的面积x(单位:平方米)成正比,比例系数约为0.5.为了保证正常用电,安装后采用太阳能和电能互补供电的模式.假设在此模式下,安装后该企业每年消耗的电费C(单位:万元)与安装的这种太阳能电池板的面积x(单位:平方米)之间的函数关系是C(x)=k20x100+(x≥0,k为常数).记F(x)为该企业安装这种太阳能供电设备的费用与该企业15年共消耗的电费之和.(1)试解释C(0)的实际意义,并建立F(x)关于x的函数关系式.(2)当x为多少平方米时,F(x)取得最小值?最小值是多少万元?【解析】(1)C(0)的实际意义是安装这种太阳能电池板的面积为0时的电费,即未安装太阳能供电设备时企业每年消耗的电费为C(0)=k100=24,得k=2 400,所以F(x)=15×2 40020x100++0.5x=1 800x5++0.5x(x≥0).(2)因为F(x)=1 800x5++0.5(x+5)-2.5≥()1 80020.5x5x5⋅++-2.5=57.5,当且仅当1 800x5+=0.5(x+5),即x=55时取等号,所以当x为55平方米时,F(x)取得最小值,最小值为57.5万元.【加固训练】围建一个面积为360 m2的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2 m的进出口,如图所示.已知旧墙的维修费用为45元/m,新墙的造价为180元/m.设利用的旧墙长度为x(单位:m),修建此矩形场地围墙的总费用为y(单位:元).(1)将y表示为x的函数.(2)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.【解析】(1)设矩形的另一边长为a m,则y=45x+180(x-2)+180×2a=225x+360a-360,由已知xa=360,得a=360x,所以y=2360225xx+-360(x>2).(2)因为x>2,所以225x+22 3603602 225xx x≥⋅=10 800,所以y=225x+2360x-360≥10 440.当且仅当225x=2360x时,等号成立.即当x=24 m时,修建围墙的总费用最小,最小总费用是10 440元.(20分钟40分)1.(5分)已知一容器中有A,B两种菌,且在任何时刻A,B两种菌的个数乘积为定值1010,为了简单起见,科学家用PA=lg(nA)来记录A菌个数的资料,其中nA为A菌的个数,则下列判断中正确的个数为()①PA≥1;②若今天的PA值比昨天的PA值增加1,则今天的A菌个数比昨天的A菌个数多了10个;③假设科学家将B菌个数控制为5万个,则此时5<PA<5.5.A.0B.1C.2D.3【解析】选B.当nA=1时PA=0,故①错误;若PA=1,则nA=10,若PA=2,则nA=100,故②错误;设B菌的个数为nB=5×104,所以nA=10410510⨯=2×105,所以PA=lg(nA)=lg 2+5.又因为lg 2≈0.3,所以5<PA<5.5,故③正确.2.(5分)某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边成角为60°(如图),考虑到防洪堤坚固性及石块用料等因素,设计其横断面要求面积为93平方米,且高度不低于3米.记防洪堤横断面的腰长为x米,外周长(梯形的上底线段BC与两腰长的和)为y米.要使防洪堤横断面的外周长不超过10.5米,则其腰长x的范围为()A.[2,4]B.[3,4]C.[2,5]D.[3,5]【解析】选B.根据题意知,93=12(AD+BC)h,其中AD=BC+2×x2=BC+x,h=3x,所以93=12(2BC+x)·3x,得BC=18x-x2,由3h x3,218xBC0x2⎧=≥⎪⎪⎨⎪=->⎪⎩得2≤x<6.所以y=BC+2x=18x+3x2(2≤x<6),由y=18x+3x2≤10.5解得3≤x≤4.因为[3,4]⊆[2,6),所以腰长x的范围是[3,4].故选B.3.(5分)(2014·湖南高考)某市生产总值连续两年持续增加,第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为()A.p q2+B.()()p 1q112++-C.pqD.()()p1q1++-1【解析】选D.设该市这两年生产总值的年平均增长率为x,则由已知,列得(1+x)2=(1+p)(1+q),解得x=()()p1q1++-1.4.(12分)(2015·长春模拟)某产品原来的成本为1 000元/件,售价为1 200元/件,年销售量为1万件,由于市场和顾客要求提高,公司计划投入资金进行产品升级,据市场调查,若投入x万元,每件产品的成本将降低34x,在售价不变的情况下,年销售量将减少2x万件,按上述方式进行产品升级和销售,扣除产品升级资金后的纯利润为f(x)(单位:万元).(1)求f(x)的函数解析式.(2)求f(x)的最大值,以及f(x)取得最大值时x的值.【解题提示】(1)求出升级后每件的成本、利润及年销售量,则利润的函数解析式可求.(2)利用基本不等式求出f(x)的最大值.【解析】(1)依题意,产品升级后,每件的成本为1 000-3x4元,利润为200+3x4元,年销售量为1-2x万件,纯利润为f(x)=3x2 (200)(1)x4x+--=198.5-400x x4-.(2)f(x)=198.5-400xx4-≤198.5-2×400xx4⨯=178.5.等号当且仅当400xx4=,即x=40时成立.所以f(x)取最大值时的x的值为40.【加固训练】如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求B点在AM上,D点在AN上,且对角线MN过C点,已知|AB|=3米,|AD|=2米.(1)要使矩形AMPN的面积大于32平方米,则AN的长度应在什么范围内?(2)当AN的长度是多少时,矩形AMPN的面积最小?并求出最小值.【解析】设AN的长为x(x>2)米,由DN DC ,AN AM =得|AM|=3x x 2-, 所以S 矩形AMPN=|AN|·|AM|=23x x 2-.(1)由S 矩形AMPN>32,得23x x 2->32,又x>2,于是3x2-32x+64>0,解得2<x<83或x>8,即AN 长的取值范围为(2, 83)∪(8,+∞).(2)S 矩形AMPN=()()223x 212x 2123x x 2x 2-+-+=--=()()12123x 21223x 212x 2x 2-++≥-⋅+--=24,当且仅当3(x-2)=12x 2-, 即x=4时,y=23x x 2-取得最小值24.所以当AN=4米时,矩形AMPN 的面积最小,最小为24平方米.5.(13分)(能力挑战题)省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数f(x)与时刻x(时)的关系为f(x)=22x 2|a|2a x 13-+++,x ∈[0,24],其中a 是与气象有关的参数,且a ∈[0,1],若用每天f(x)的最大值作为当天的综合放射性污染指数,并记作M(a).(1)令t=22xx 1+,x ∈[0,24],求t 的取值范围.(2)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性污染指数是否超标?【解析】(1)当x=0时,t=0;当0<x ≤24时,22x 21x 1x x =++≤1(当x=1时取等号),所以0<t ≤1, 综上,t 的取值范围是[0,1].(2)当a ∈[0,1]时,记g(t)=|t-a|+2a+23,则g(t)=2t3a,0t a,32t a,a t1,3⎧-++≤≤⎪⎪⎨⎪++<≤⎪⎩因为g(t)在[0,a]上单调递减,在(a,1]上单调递增,且g(0)=3a+23,g(1)=a+53,g(0)-g(1)=2(a-1 2).故M(a)=()()1 g1,0a,21g0,a1,2⎧≤≤⎪⎪⎨⎪<≤⎪⎩即M(a)=51 a,0a,32213a,a1.32⎧+≤≤⎪⎪⎨⎪+<≤⎪⎩所以当且仅当0≤a≤13时,M(a)≤2.故当0≤a≤13时不超标,当13<a≤1时超标.【加固训练】某投资商到一开发区投资72万元建起一座蔬菜加工厂,第一年共支出12万元,以后每年支出增加4万元,从第一年起每年蔬菜销售收入50万元,设f(n)表示前n年的纯利润总和(f(n)=前n年的总收入-前n年的总支出-投资额).(1)该厂从第几年开始盈利?(2)若干年后,投资商为开发新项目,对该厂有两种处理方法:①年平均纯利润达到最大时,以48万元出售该厂,②纯利润总和达到最大时,以16万元出售该厂,问哪种方案更合算?【解析】(1)由题意,第一年共支出12万元,以后每年支出增加4万元,可知每年的支出构成一个等差数列,用g(n)表示前n年的总支出,所以g(n)=12n+()n n12-×4=2n2+10n(n∈N*),因为f(n)=前n年的总收入-前n年的总支出-投资额,所以f(n)=50n-(2n2+10n)-72=-2n2+40n-72. 由f(n)>0,即-2n2+40n-72>0,解得2<n<18.由n∈N*知,从第三年开始盈利.(2)方案①:年平均纯利润为()f nn=40-2(n+36n)≤16,当且仅当n=6时等号成立.故方案①共获利6×16+48=144(万元),此时n=6.方案②:f(n)=-2(n-10)2+128.当n=10时,f(n)max=128.故方案②共获利128+16=144(万元).比较两种方案,获利都是144万元,但由于方案①只需6年,而方案②需10年,故选择方案①更合算.。

相关文档
最新文档