一次函数与二元一次方程练习
(完整版)二元一次方程组及一次函数专题训练含答案,推荐文档
二元一次方程组与一次函数专题训练一.解答题(共12小题)1.(2011•葫芦岛)甲、乙两列火车分别从A、B两城同时匀速驶出,甲车开往B城,乙车开往A 城.由于墨迹遮盖,图中提供的只是两车距B城的路程s甲(千米)、s乙(千米)与行驶时间t(时)的函数图象的一部分.(1)乙车的速度为 _________ 千米/时;(2)分别求出s甲、s乙与t的函数关系式(不必写出t的取值范围);(3)求出两城之间的路程,及t为何值时两车相遇;(4)当两车相距300千米时,求t的值.2.(2009•台州)如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值;(2)不解关于x,y 的方程组,请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由. 3.已知函数y=kx+b的图象过点A(﹣1,2),B(3,0)(1)求直线AB的解析式;(2)在给出的直角坐标系中,画出y=|x|和y=kx+b 的图象,并根据图象写出方程组的解.4.用图象法求下面二元一次方程组的近似解..5.如下面第一幅图,点A的坐标为(﹣1,1)(1)那么点B,点C的坐标分别为 _________ ;(2)若一个关于x,y 的二元一次方程,有两个解是和请写出这个二元一次方程,并检验说明点C的坐标值是否是它的解.(3)任取(2)中方程的又一个解(不与前面的解雷同),将该解中x的值作为点D的横坐标,y的值作为点D的纵坐标,在下面第一幅图中描出点D;(4)在下面第一幅图中作直线AB与直线AC,则直线AB与直线AC的位置关系是 _________ ,点D与直线AB的位置关系是 _________ .(5)若把直线AB叫做(2)中方程的图象,类似地请在备用图上画出二元一次方程组中两个二元一次方程的图象,并用一句话来概括你对二元一次方程组的解与它图象之间的发现.6.在直角坐标系中,直线L1的解析式为y=2x﹣1,直线L2过原点且L2与直线L1交于点P(﹣2,a).(1)试求a的值;(2)试问(﹣2,a)可以看作是怎样的二元一次方程组的解;(3)设直线L1与x轴交于点A,你能求出△APO的面积吗?试试看;(4)在直线L1上是否存在点M,使点M到x轴和y轴的距离相等?若存在,求出点M的坐标;不存在,说明理由.7.如图,已知直线l1:y=3x+1与y轴交于点A,且和直线l2:y=mx+n交于点P(﹣2,a),根据以上信息解答下列问题:(1)求a的值,判断直线l3:y=﹣nx﹣2m是否也经过点P?请说明理由;(2)不解关于x,y 的方程组,请你直接写出它的解;(3)若直线l1,l2表示的两个一次函数都大于0,此时恰好x>3,求直线l2的函数解析式8.在平面直角坐标系中,直线y=﹣x+4的图象,如图所示(1)在同一坐标系中,作出一次函数y=2x﹣5的图象;(2)用作图象的方法解方程组:(3)求直线y=﹣x+4与一次函数y=2x﹣5的图象与x轴围成的三角形面积.9.二元一次方程x﹣2y=0的解有无数个,其中它有一个解为,所以在平面直角坐标系中就可以用点(2,1)表示它的一个解,(1)请在下图中的平面直角坐标系中再描出三个以方程x﹣2y=0的解为坐标的点;(2)过这四个点中的任意两点作直线,你有什么发现?直接写出结果;(3)以方程x﹣2y=0的解为坐标的点的全体叫做方程x﹣2y=0的图象.想一想,方程x﹣2y=0的图象是什么?(直接回答)(4)由(3)的结论,在同一平面直角坐标系中,画出二元一次方程组的图象(画在图中)、由这两个二元一次方程的图象,能得出这个二元一次方程组的解吗?请将表示其解的点P标在平面直角坐标系中,并写出它的坐标. 10.在平面直角坐标系中,一次函数y=ax+b的图象过点B(﹣1,),与x轴交于点A(4,0),与y轴交于点C,与直线y=kx交于点P,且PO=PA,(1)求a+b的值.(2)求k的值.(3)D为PC上一点,DF⊥x轴于点F,交OP于点E,若DE=2EF,求D点坐标.11.学校准备五一组织老师去隆中参加诸葛亮文化节,现有甲、乙两家旅行社表示对老师优惠,设参加文化节的老师有x人,甲、乙两家旅行社实际收费为y1、y2,且它们的函数图象如图所示,根据图象信息,请你回答下列问题:(1)当参加老师的人数为多少时,两家旅行社收费相同?(2)当参加老师的人数为多少人时,选择甲旅行社合算?(3)如果全共有50人参加时,选择哪家旅行社合算?12.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(2,b)(1)求b的值;(2)不解关于x,y 的方程组,请你直接写出它的解;(3)直线l3:y=nx+2m﹣n是否也经过点P,请说明理由.二元一次方程组与一次函数专题训练参考答案与试题解析一.解答题(共12小题)1.(2011•葫芦岛)甲、乙两列火车分别从A、B两城同时匀速驶出,甲车开往B城,乙车开往A城.由于墨迹遮盖,图中提供的只是两车距B城的路程s甲(千米)、s乙(千米)与行驶时间t(时)的函数图象的一部分.(1)乙车的速度为 120 千米/时;(2)分别求出s甲、s乙与t的函数关系式(不必写出t的取值范围);(3)求出两城之间的路程,及t为何值时两车相遇;(4)当两车相距300千米时,求t的值.考点:一次函数的应用;待定系数法求一次函数解析式;一次函数与二元一次方程(组).专题:数形结合.分析:(1)根据点(1,120)在乙的函数关系式上可得乙车的速度;(2)根据甲的函数关系式为一次函数解析式,乙的函数关系式为正比例函数解析式,找到相应的点代入即可求得相应的函数解析式;(3)让甲的函数关系式的t=0即可求得两城之间的距离,让两个函数解析式的y相等即可求得两车相遇时t的值;(4)让甲的函数关系式减去乙的函数关系式为300或乙的函数关系式减去甲的函数关系式为300即可求得所求的时间.解答:解:(1)120÷1=120千米/时,故答案为120;(1分)(2)设s甲与t的函数关系为s甲=k1t+b,∵图象过点(3,60)与(1,420),∴解得∴s甲与t的函数关系式为s甲=﹣180t+600.(4分)设s乙与t的函数关系式为s乙=k2t,∵图象过点(1,120),∴k2=120.∴s乙与t的函数关系式为s乙=120t.(5分)(3)当t=0,s甲=600,∴两城之间的路程为600千米.(6分)∵s甲=s乙,即﹣180t+600=120t,解得t=2.∴当t=2时,两车相遇.(8分)(4)当相遇前两车相距300千米时,s甲﹣s乙=300,即﹣180t+600﹣120t=300,解得t=1.(9分)当相遇后两车相距300千米时,s乙﹣s甲=300,即 120t+180t﹣600=300.解得t=3.(10分)点评:考查用待定系数法求一次函数解析式以及一次函数解析式的应用;得到两个函数的关系式是解决本题的破点;用数形结合的方法判断出所求值与得到函数关系式的关系是解决本题的难点.2.(2009•台州)如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值;(2)不解关于x,y的方程组,请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由.考点:一次函数与二元一次方程(组).专题:数形结合.分析:(1)将交点P的坐标代入直线l1的解析式中便可求出b的值;(2)由于函数图象交点坐标为两函数解析式组成的方程组的解.因此把函数交点的横坐标当作x的值,纵坐标当作y的值,就是所求方程组的解;(3)将P点的坐标代入直线l3的解析式中,即可判断出P点是否在直线l3的图象上.解答:解:(1)∵(1,b)在直线y=x+1上,∴当x=1时,b=1+1=2;(2)方程组的解是;(3)直线y=nx+m也经过点P.理由如下:∵点P(1,2),在直线y=mx+n上,∴m+n=2,∴2=n×1+m,这说明直线y=nx+m也经过点P.点评:本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上点,就一定满足函数解析式.3.已知函数y=kx+b的图象过点A(﹣1,2),B(3,0)(1)求直线AB的解析式;(2)在给出的直角坐标系中,画出y=|x|和y=kx+b的图象,并根据图象写出方程组的解.考点:待定系数法求一次函数解析式;一次函数的图象;正比例函数的图象;一次函数与二元一次方程(组).分析:(1)设直线AB的解析式为:y=kx+b(k≠0),利用待定系数法把A(﹣1,2),B(3,0),代入函数解析式,即可得到关于k、b的方程组,再解方程组即可;(2)首先画出函数y=|x|和y=﹣x+的图象,两函数图象的交点就是方程组的解.解答:解:(1)设直线AB的解析式为:y=kx+b(k≠0),∵图象过点A(﹣1,2),B(3,0),∴,解得,故直线AB的解析式为:.(2)如图所示:根据图象可得方程组的解是或.点评:此题主要考查了待定系数法求一次函数解析式,以及方程组与函数的关系,解决问题的关键是掌握方程与函数的关系,方程组的解就是两函数图象的交点坐标.4.用图象法求下面二元一次方程组的近似解..考点:一次函数与二元一次方程(组).专题:作图题;数形结合.分析:两条直线的交点坐标应该是这个二元一次方程组的解.先根据方程组求出两直线的解析式,并画出图象(如图),方程3x ﹣y=6的解析式是y=3x ﹣6,经过(2,0)、(3,3)两点,方程x+y=4的解析式是y=4﹣x ,经过(2,2)、(3,1)两点,两条直线的交点坐标(2,2)应该是这个二元一次方程组的解.解答:解:方程3x ﹣y=6的解析式是y=3x ﹣6,经过(2,0)、(3,3)两点,方程x+y=4的解析式是y=4﹣x ,经过(2,2)、(3,1)两点,画出两条直线的图象,如图,两条直线的交点坐标是(2,2),所以这个二元一次方程组的解为是(2,2).点评:本题主要考查了一次函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解. 5.如下面第一幅图,点A 的坐标为(﹣1,1)(1)那么点B ,点C 的坐标分别为 (﹣2,2),(0,0) ;(2)若一个关于x ,y 的二元一次方程,有两个解是和请写出这个二元一次方程,并检验说明点C 的坐标值是否是它的解.(3)任取(2)中方程的又一个解(不与前面的解雷同),将该解中x 的值作为点D 的横坐标,y 的值作为点D 的纵坐标,在下面第一幅图中描出点D ;(4)在下面第一幅图中作直线AB 与直线AC ,则直线AB 与直线AC 的位置关系是 重合 ,点D 与直线AB 的位置关系是 点D 在直线AB 上 .(5)若把直线AB 叫做(2)中方程的图象,类似地请在备用图上画出二元一次方程组中两个二元一次方程的图象,并用一句话来概括你对二元一次方程组的解与它图象之间的发现.考点:一次函数与二元一次方程(组).专题:综合题.分析:(1)由题意,先建立合适的坐标系,再求得点B ,点C 的坐标;(2)由(1)写出两个解,再写出这个二元一次方程,并检验点C 的坐标是否是这个二元一次方程的解(3)先找到点D 的坐标,再描出点D ;(4)分别作出直线AB 、AC ,然后再判断两条直线的位置关系以及点D 和直线AB 的位置关系;(5)通过描点、连线作出两个二元一次方程的图象,可发现两条直线的交点坐标恰好是方程组的解.解答:解:(1)∵点A 的坐标为(﹣1,1),∴点B 的坐标为(﹣2,2),点C 的坐标为(0,0);(2)∴,,这个二元一次方程为x+y=0,∵0+0=0,∴点C 的坐标值是它的解;(3),点D 的坐标为(1,﹣1),(4)由(3)题图知,直线AB 与直线AC 重合,点D 在直线AB 上;(5)如图:直线x+y=4与直线x ﹣y=﹣2的交点为:(1,3);将x=1,y=3代入原方程组知,是原方程组的解;因此二元一次方程组的解,是方程组中两个一次函数图象的交点坐标.点评:此题实际考查的是用图象法解二元一次方程组的方法,比较简单. 6.在直角坐标系中,直线L 1的解析式为y=2x ﹣1,直线L 2过原点且L 2与直线L 1交于点P (﹣2,a ).(1)试求a 的值;(2)试问(﹣2,a )可以看作是怎样的二元一次方程组的解;(3)设直线L 1与x 轴交于点A ,你能求出△APO 的面积吗?试试看;(4)在直线L 1上是否存在点M ,使点M 到x 轴和y 轴的距离相等?若存在,求出点M 的坐标;不存在,说明理由.考点:一次函数与二元一次方程(组).专题:开放型.分析:(1)由于P 是两个函数的交点,因此可将P 点坐标代入直线L 1的解析式中,求出a 的值.(2)由于直线L 2过原点,因此一次函数L 2是个正比例函数,根据P 点坐标,可确定其解析式.联立两个直线解析式所组成的方程组的解,即为两个函数图象的交点坐标.(3)根据直线L 1的解析式,可求出A 点坐标;以OA 为底,P 点纵坐标绝对值为高,可求出△OAP 的积.(4)若点M 到x 轴、y 轴的距离相等,那么点M 的坐标有两种情况:①横坐标与纵坐标相等;②横坐标与纵坐标互为相反数;因此本题要分情况讨论.解答:解:(1)把(﹣2,a )代入y=2x ﹣1,得:﹣4﹣1=a ,解得a=﹣5.(2)由(1)知:点P (﹣2,﹣5);则直线L 2的解析式是y=x ;因此(﹣2,a )可以看作二元一次方程组的解.(3)直线L 1与x 轴交于点A (,0),所以S △APO =××5=.(4)存在点M ,使得点M 到x 轴和y 轴的距离相等.设点M 的坐标为(a ,b );①当a=b时,点M的坐标为(a,a);代入y=2x﹣1得:2a﹣1=a,a=1;即点M的坐标为(1,1);②当a=﹣b时,点M的坐标为(a,﹣a);代入y=2x﹣1得:2a﹣1=﹣a,a=;即点M的坐标为(,﹣).综上所述,存在符合条件的点M坐标为(1,1)或(,﹣).点评:本题是一个开放性问题,综合考查了函数图象交点、图形面积求法等知识.解答(4)题时需注意,由于点M的坐标存在两种情况,因此要分类讨论,以免漏解.7.如图,已知直线l1:y=3x+1与y轴交于点A,且和直线l2:y=mx+n交于点P(﹣2,a),根据以上信息解答下列问题:(1)求a的值,判断直线l3:y=﹣nx﹣2m是否也经过点P?请说明理由;(2)不解关于x,y的方程组,请你直接写出它的解;(3)若直线l1,l2表示的两个一次函数都大于0,此时恰好x>3,求直线l2的函数解析式.考点:一次函数与二元一次方程(组);一次函数图象上点的坐标特征;待定系数法求一次函数解析式.专题:计算题;数形结合.分析:(1)因为(﹣2,a)在直线y=3x+1上,可求出a=﹣5;由点P(﹣2,﹣5)在直线y=mx+n上,可得﹣2m+n=﹣5,将P点横坐标﹣2代入y=﹣nx﹣2m,得y=﹣n×(﹣2)﹣2m=﹣2m+n=﹣5,这说明直线l3也经过点P;(2)因为直线y=3x+1直线y=mx+n交于点P,所以方程组的解就是P点的坐标;(3)因为直线l1,l2表示的两个一次函数都大于0,此时恰好x>3,所以直线l2过点(3,0),又有直线l2过点P(﹣2,﹣5),可得关于m、n的方程组,解方程组即可.解答:解:(1)∵(﹣2,a)在直线y=3x+1上,∴当x=﹣2时,a=﹣5(2分)直线y=﹣nx﹣2m也经过点P,∵点P(﹣2,﹣5)在直线y=mx+n上,∴﹣2m+n=﹣5,∴将P点横坐标﹣2代入y=﹣nx﹣2m,得y=﹣n×(﹣2)﹣2m=﹣2m+n=﹣5,这说明直线l3也经过点P.(4分)(2)解为.(6分)(3)∵直线l1,l2表示的两个一次函数都大于0,此时恰好x>3∴直线l2过点(3,0),(7分)又∵直线l2过点P(﹣2,﹣5)∴解得(8分)∴直线l2的函数解析式为y=x﹣3.(9分)点评:用待定系数法确定函数的解析式,是常用的一种解题方法,另外本题还渗透了数形结合的思想,题出的较好.8.在平面直角坐标系中,直线y=﹣x+4的图象,如图所示(1)在同一坐标系中,作出一次函数y=2x﹣5的图象;(2)用作图象的方法解方程组:(3)求直线y=﹣x+4与一次函数y=2x﹣5的图象与x轴围成的三角形面积.考点:一次函数与二元一次方程(组);一次函数的图象.专题:计算题.分析:(1)正确画出一次函数的图象;(2)先画出一次函数y=2x﹣5的图象,根据两图象即可得出答案;(3)先求出直线y=﹣x+4与一次函数y=2x﹣5的图象与x轴的交点,根据面积公式即可得答案.解答:解:(1)(2)由图象看出两直线的交点为P(3,1),所以方程组的解为;(3)y=﹣x+4与x轴的交点A(4,0),y=2x﹣5的图象与x轴的交点B(,0),三角形面积=×|4﹣|×1=.点评:本题考查了一次函数与二元一次方程组,比较简单,关键是正确的画一次函数y=2x﹣5的图象.9.二元一次方程x﹣2y=0的解有无数个,其中它有一个解为,所以在平面直角坐标系中就可以用点(2,1)表示它的一个解,(1)请在下图中的平面直角坐标系中再描出三个以方程x﹣2y=0的解为坐标的点;(2)过这四个点中的任意两点作直线,你有什么发现?直接写出结果;(3)以方程x﹣2y=0的解为坐标的点的全体叫做方程x﹣2y=0的图象.想一想,方程x﹣2y=0的图象是什么?(直接回答)(4)由(3)的结论,在同一平面直角坐标系中,画出二元一次方程组的图象(画在图中)、由这两个二元一次方程的图象,能得出这个二元一次方程组的解吗?请将表示其解的点P标在平面直角坐标系中,并写出它的坐标.考点:一次函数与二元一次方程(组).专题:综合题.分析:(1)先解出方程x﹣2y=0的三个解,再在平面直角坐标系中利用描点法解答;(2)根据(1)的图象作答;(3)由方程x﹣2y=0变形为y=,即正比例函数,根据正比例函数图象的性质回答;(4)在平面直角坐标系中分别画出x+y=1、2x﹣y=2的图象,两个图象的交点即为所求.解答:解:(1)二元一次方程x﹣2y=0的解可以为:、、、,所以,以方程x ﹣2y=0的解为坐标的点分别为:(2,1)、(4,2)、(1,)、(3,),它们在平面直角坐标系中的图象如下图所示:(2)由(1)图,知,四个点在一条直线上;(3)由原方程,得y=,∵以方程x ﹣2y=0的解为坐标的点的全体叫做方程x ﹣2y=0的图象,∴方程x ﹣2y=0的图象就是正比例函数y=的图象,∵正比例函数y=的图象是经过第一、三象限且过原点的一条直线,∴方程x ﹣2y=0的图象是经过第一、三象限且过原点的一条直线;(4)①对于方程x+y=1,当x=0时,y=1;当y=0时,x=0;所以方程x+y=1经过(0,1),(1,0)这两点;②对于方程2x ﹣y=2,当x=0时,y=﹣1;当y=0时,x=1;所以方程x+y=1经过(0,﹣1),(1,0)这两点;综合①②,在平面直角坐标系中画出的二元一次方程组的图象如下所示:故原方程组的解是,并且能在坐标系中用P (1,0)表示.点评:本题主要考查的是二元一次方程组的解及其直线方程的图象,题目比较长,要注意耐心解答. 10.在平面直角坐标系中,一次函数y=ax+b 的图象过点B (﹣1,),与x 轴交于点A (4,0),与y 轴交于点C ,与直线y=kx 交于点P ,且PO=PA ,(1)求a+b 的值.(2)求k 的值.(3)D 为PC 上一点,DF ⊥x 轴于点F ,交OP 于点E ,若DE=2EF ,求D 点坐标.考点:一次函数与二元一次方程(组).专题:计算题;数形结合;待定系数法.分析:(1)根据题意知,一次函数y=ax+b 的图象过点B (﹣1,)和点A (4,0),把A 、B 代入求值即可;(2)设P (x ,y ),根据PO=PA ,列出方程,并与y=kx 组成方程组,解方程组;(3)设点D (x ,﹣+2),因为点E 在直线y=上,所以E (x ,),F (x ,0),再根据等量关系DE=2EF 列方程求解.建议收藏下载本文,以便随时学习!解答:解:(1)根据题意得:,解方程组得:,∴a+b=﹣+2=,即a+b=;(2)设P(x,y),则点P即在一次函数y=ax+b上,又在直线y=kx上,由(1)得:一次函数y=ax+b的解析式是y=﹣+2,又∵PO=PA,∴,解方程组得:,∴k的值是;(3)设点D(x,﹣+2),则E(x,),F(x,0),∵DE=2EF,∴=2×,解得:x=1,则﹣+2=×1+2=,∴D(1,).点评:本题要求利用图象求解各问题,要认真体会点的坐标,一次函数与一元一次方程组之间的内在联系.11.学校准备五一组织老师去隆中参加诸葛亮文化节,现有甲、乙两家旅行社表示对老师优惠,设参加文化节的老师有x人,甲、乙两家旅行社实际收费为y1、y2,且它们的函数图象如图所示,根据图象信息,请你回答下列问题:(1)当参加老师的人数为多少时,两家旅行社收费相同?(2)当参加老师的人数为多少人时,选择甲旅行社合算?(3)如果全共有50人参加时,选择哪家旅行社合算?考点:一次函数与二元一次方程(组).专题:计算题;应用题.分析:(1)当两函数图象相交时,两家旅行社收费相同,由图象即可得出答案.(2)由图象比较收费y1、y2,即可得出答案.(3)当有50人时,比较收费y1、y2,即可得出答案.解答:解:(1)当两函数图象相交时,两家旅行社收费相同,由图象知为30人;(2)由图象知:当有30人以下时,y1<y2,所以选择甲旅行社合算;(3)由图象知:当有50人参加时,y1>y2,所以选择乙旅行社合算;点评:本题考查了一次函数与二元一次方程组,属于基础题,关键正确理解图象的几何意义.12.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(2,b)(1)求b的值;(2)不解关于x,y的方程组,请你直接写出它的解;(3)直线l3:y=nx+2m﹣n是否也经过点P,请说明理由.考点:两条直线相交或平行问题;一次函数与二元一次方程(组).分析:(1)把点P的坐标代入直线l1:y=x+1,计算即可求出b的值;(2)根据一次函数与二元一次方程组的关系可知,点P的坐标也就是方程组的解解答;(3)把点P坐标代入直线l2,得到关于m、n的等式,再把点P代入直线l3,如果得到同样的m、n的系式,则点P在直线l3上,否则不在.解答:解:(1)∵点P(2,b)在直线l1上,∴2+1=b,解得b=3;(2)∵点P(2,3),∴方程组的解为;(3)在.理由如下:∵点P(2,3)在直线l2:y=mx+n上,∴2m+n=3,当x=2时,直线l3:y=2n+2m﹣n=2m+n=3,所以点P在直线l3:y=nx+2m﹣n上.点评:本题考查了两直线相交的问题,一次函数与二元一次方程组的关系,以及点在直线上的判断,把交点P的坐标代入直线l1求出b的值是解题的关键.。
一次函数与二元一次方程组测试题(含答案)
一次函数与二元一次方程(组) 练习题一、选择题1.图中两直线L 1,L 2的交点坐标可以看作方程组( )的解. A .121x y x y -=⎧⎨-=-⎩ B. 121x y x y -=-⎧⎨-=⎩C .321x y x y -=⎧⎨-=⎩ D. 321x y x y -=-⎧⎨-=-⎩2.把方程x+1=4y+3x化为y=kx+b 的形式,正确的是( ) A .y=13x+1 B .y=16x+14 C .y=16x+1 D .y=13x+143.若直线y=2x+n 与y=mx-1相交于点(1,-2),则( ).A .m=12,n=-52B .m=12,n=-1;C .m=-1,n=-52D .m=-3,n=-324.直线y=12x-6与直线y=-231x-1132的交点坐标是( ).A .(-8,-10)B .(0,-6);C .(10,-1)D .以上答案均不对5.在y=kx+b 中,当x=1时y=2;当x=2时y=4,则k ,b 的值是( ). A .00k b =⎧⎨=⎩ B. 20k b =⎧⎨=⎩ C .31k b =⎧⎨=⎩ D. 02k b =⎧⎨=⎩6.直线kx-3y=8,2x+5y=-4交点的纵坐标为0,则k 的值为( )A .4B .-4C .2D .-2 二、填空题1.点(2,3)在一次函数y=2x-1的________;x=2,y=3是方程2x-y=1的_______.2.已知4,353x y ⎧=⎪⎪⎨⎪=⎪⎩ 是方程组3,12x y xy +=⎧⎪⎨-=⎪⎩的解,那么一次函数y=3-x 和y=2x +1的交点是________.3.一次函数y=3x+7的图像与y 轴的交点在二元一次方程-•2x+•by=•18•上,•则b=_________.4.已知关系x ,y 的二元一次方程3ax+2by=0和5ax-3by=19化成的两个一次函数的图像的交点坐标为(1,-1),则a=_______,b=________.5.已知一次函数y=-32x+m 和y=12x+n 的图像都经过A(-2,•0)•,•则A•点可看成方程组________的解.6.已知方程组230,2360y x y x -+=⎧⎨+-=⎩的解为4,31,x y ⎧=⎪⎨⎪=⎩则一次函数y=3x-3与y=-32x+3的交点P 的坐标是______.三、解答题1.若直线y=ax+7经过一次函数y=4-3x 和y=2x-1的交点,求a 的值.2.(1)在同一直角坐标系中作出一次函数y=x+2,y=x-3的图像. (2)两者的图像有何关系?(3)你能找出一组数适合方程x-y=2,x-y=3吗?_________________,•这说明方程组2,3,x y x y -=-⎧⎨-=⎩ ________.3.如图所示,求两直线的解析式及图像的交点坐标.探究应用拓展性训练1.(学科内综合题)在直角坐标系中,直线L 1经过点(2,3)和(-1,-3),直线L 2经过原点,且与直线L 1交于点(-2,a). (1)求a 的值.(2)(-2,a)可看成怎样的二元一次方程组的解?(3)设交点为P ,直线L 1与y 轴交于点A ,你能求出△APO 的面积吗? 2.(探究题)已知两条直线a 1x+b 1y=c 1和a 2x+b 2y=c 2,当12a a ≠12bb 时,方程组111222,,a xb yc a x b y c +=⎧⎨+=⎩ 有唯一解?•这两条直线相交?你知道当a 1,a 2,b 1,b 2,c 1,c 2分别满足什么条件时,方程组111222,,a x b y c a x b y c +=⎧⎨+=⎩无解?无数多组解?这时对应的两条直线的位置关系是怎样的?3.如图,L 1,L 2•分别表示一种白炽灯和一种节能灯的费用y(费用=灯的售价+电费,单位:元)与照明时间x(h)的函数图像,假设两种灯的使用寿命都是2000h ,照明效果一样. (1)根据图像分别求出L 1,L 2的函数关系式. (2)当照明时间为多少时,两种灯的费用相等?(3)小亮房间计划照明2500h,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法(直接给出答案,不必写出解答过程).11.3.3 一次函数与二元一次方程(组) 同步练习答案:一、选择题1.B 解析:设L 1的关系式为y=kx-1,将x=2,y=3代入,得3=2k-1,解得k=2. ∴L 1的关系式为y=2x-1,即2x-y=1.设L 2的关系式为y=kx+1,将x=2,y=3代入,得3=2k+1,解得k=1. ∴L 2的关系式为y=x+1,即x-y=-1. 故应选B .2.B 解析:∵x+1=4y+3x ,∴4y=x+1-3x ,4y=23x+1,y=16x+14.故应选B . 3.C 解析:把x=1,y=-2代入y=2x +n 得-2=12+n ,n=-2-12,n=-52.把x=1,y=-2代入y=mx-1得-2=m-1,m=-2+1,m=-1,故应选C .4.C 解析:解方程组16,22113131y x y x ⎧=-⎪⎪⎨⎪=--⎪⎩,得10,1,x y =⎧⎨=-⎩∴直线y=12x-6与直线y=-231x-1131的交点为(10,-1),•故应选C .5.B 解析:把1,2,x y =⎧⎨=⎩ 2,4,x y =⎧⎨=⎩分别代入y=kx+b ,得2,24,k b k b +=⎧⎨+=⎩ 解得2,0,k b =⎧⎨=⎩故应选B .6.B 解析:把y=0代入2x+5y=-4,得2x=-4,x=-2. 所以交点坐标为(-2,0).把x=-2,y=0代入kx-3y=8,得-2k=8,k=-4,故应选B . 二、填空题1.解析:当x=2时,y=2x-1=2×2-1=3,∴(2,3)在一次函数y=2x-1的图像上. 即x=2,y=3是方程2x-y=1的解. 答案:图像上 解2.解析:因为方程组3,1,2x y x y +=⎧⎪⎨-=⎪⎩中的两个方程变形后为3,1,2y x xy =-+⎧⎪⎨=+⎪⎩ 所以函数y=3-x 与y=2x +1的交点坐标就是二元一次方程组的解,即为(43,53)。
2019中考数学专题练习-一次函数与二元一次方程(组)的综合应用(含解析)
2019中考数学专题练习-一次函数与二元一次方程(组)的综合应用(含解析)一、单选题1.如图,一次函数y1=ax+b和y2=﹣bx+a(a≠0,b≠0)在同一坐标系的图象.则的解中()A. m>0,n>0B. m>0,n<0C. m<0,n>0D. m<0,n<02.二元一次方程的图象如图所示,则这个二元一次方程为()A. x﹣3y=3B. x+3y=3C. 3x﹣y=1D. 3x+y=13.已知和是二元一次方程ax+by+3=0的两个解,则一次函数y=ax+b (a≠0)的解析式为()A. B. C.D.4.已知方程组的解也是方程kx﹣y=0的解,则k的值为()A. -4B. 4C. -D.5.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A. B. C. D.6.如图,已知函数y=ax+y和y=kx的图象交于点P,则二元一次方程组的解是( )A. B. C. D.7.已知P(x,y)是平面直角坐标系上的一个点,且它的横、纵坐标是一次方程组(a为任意实数)的解,则当a变化时,点P一定不会经过()A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限8.已知和是二元一次方程ax+by+3=0的两个解,则一次函数y=ax+b(a≠0)的解析式为()A. y=﹣2x﹣3B. y=x+C. y=﹣9x+3D. y=-x-9.函数y=ax+b与函数y=cx+d的图象是两条直线,只有一个交点,则二元一次方程组有()A. 无数解B. 无解C. 唯一解D. 不能确定10.如果直线y=3x+6与y=2x﹣4交点坐标为(a,b),则解为的方程组是()A. B. C.D.11.方程组没有解,因此直线y=﹣x+2和直线y=﹣x+在同一平面直角坐标系中的位置关系是()A. 重合B. 平行C. 相交D. 以上三种情况都有可能12.方程组没有解,说明一次函数y=ax+2与y=x+的图象必定()A. 相交B. 平行C. 重合D. 不能确定13.如图中的两直线l1、l2的交点坐标可以看作哪个方程组的解()A. B. C.D.二、填空题14.如图,已知一次函数y=2x+b和y=kx﹣3(k≠0)的图象交于点P(4,﹣6),则二元一次方程组的解是________15.若一次函数y=3x+7的图象与y轴的交点坐标满足二元一次方程﹣2x+my=18,则m的值为________ .16.一次函数y1=kx+b与y2=x+a的图象如图所示,则关于x、y的方程组的解为________.17.用图象法解方程组.18.如图中的两条直线l1,l2可以看作方程组________的解.19.如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x,y的二元一次方程组的解是________.三、解答题20.若正比例函数y=﹣x的图象与一次函数y=x+m的图象交于点A,且点A的横坐标为﹣1.(1)求该一次函数的解析式;(2)直接写出方程组的解.21.利用一次函数的图象解二元一次方程组:.22.已知:一次函数y=3x﹣5与y=2x+b的图象的交点的坐标为P(1,﹣2).求:方程组的解和b的值.四、综合题23.已知二元一次方程2x﹣y=2.(1)请任意写出此方程的三组解;(2)若为此方程的一组解,我们规定(x0,y0)为某一点的坐标,请根据你在(1)中写出的三组解,对应写出三个点的坐标,并将这三个点描在平面直角坐标系中;(3)观察这三个点的位置,你发现了什么?24.在直角坐标系中,直线l1经过(2,3)和(﹣1,﹣3),直线l2经过原点O,且与直线l1交于点P(﹣2,a).(1)求a的值;(2)(﹣2,a)可看成怎样的二元一次方程组的解?(3)设直线l1与y轴交于点A,你能求出△APO的面积吗?25.如图,直线PA是一次函数y=x+1的图象,直线PB是一次函数y=﹣2x+2的图象.(1)求A、B、P三点坐标.(2)求△PAB的面积.答案解析部分一、单选题1.如图,一次函数y1=ax+b和y2=﹣bx+a(a≠0,b≠0)在同一坐标系的图象.则的解中()A. m>0,n>0B. m>0,n<0C. m<0,n>0D. m<0,n<0 【答案】A【考点】一次函数与二元一次方程(组)【解析】【解答】解:方程组的解就是一次函数y1=ax+b和y2=﹣bx+a(a≠0,b≠0)图象的交点,∵两函数图象交点在第一象限,∴m>0,n>0,故选:A.【分析】方程组的解就是一次函数y1=ax+b和y2=﹣bx+a(a≠0,b≠0)图象的交点,根据交点所在象限确定m、n的取值范围.2.二元一次方程的图象如图所示,则这个二元一次方程为()A. x﹣3y=3B. x+3y=3C. 3x﹣y=1D. 3x+y=1【答案】A【考点】一次函数与二元一次方程(组)【解析】【解答】解:直线过点(3,0),(0,﹣1).代入y=kx+b,得到二元一次方程组解方程组得到.∴二元一次方程为y=,移向,并将系数化为1得到x﹣3y=3.故选A.【分析】两点确定一条直线,找到直线上的任意两点代入函数关系式y=kx+b,解出k,b,就是直线的方程.3.已知和是二元一次方程ax+by+3=0的两个解,则一次函数y=ax+b (a≠0)的解析式为()A. B. C.D.【答案】D【考点】一次函数与二元一次方程(组)【解析】【解答】∵和是二元一次方程ax+by+3=0的两个解,∴,解得:,∴一次函数y=ax+b(a≠0)的解析式为:.故选:D.【分析】由已知方程的解,可以把这对数值代入方程,得到两个含有未知数a ,b的二元一次方程,联立方程组求解,从而可以求出a ,b的值,进一步得出解析式即可.4.已知方程组的解也是方程kx﹣y=0的解,则k的值为()A. -4B. 4C. -D.【答案】C【考点】一次函数与二元一次方程(组)【解析】【解答】解:解方程组,得:;将x、y的值代入kx﹣y=0中,得4k+1=0,解得k=﹣.故选C.【分析】先解方程组,求出x、y的值,然后代入kx﹣y=0中,即可求出k的值.5.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A. B. C. D.【答案】D【考点】一次函数与二元一次方程(组)【解析】【分析】由于函数图象交点坐标为两函数解析式组成的方程组的解.因此本题应先用待定系数法求出两条直线的解析式,联立两个函数解析式所组成的方程组即为所求的方程组.根据给出的图象上的点的坐标,(0,-1)、(1,1)、(0,2);分别求出图中两条直线的解析式为y=2x-1,y=-x+2,因此所解的二元一次方程组是.故选D.6.如图,已知函数y=ax+y和y=kx的图象交于点P,则二元一次方程组的解是( )A. B. C. D.【答案】B【考点】一次函数与二元一次方程(组)【解析】【分析】根据一次函数y=ax+b和正比例函数y=kx的图象可知,点P就是一次函数y=ax+b和正比例函数y=kx的交点,即二元一次方程组的解.【解答】根据题意可知,二元一次方程组的解就是一次函数y=ax+b和正比例函数y=kx的图象的交点P的坐标,由一次函数y=ax+b和正比例函数y=kx的图象,得二元一次方程组的解是.故选B.【点评】本题考查了一次函数与二元一次方程(组)的关系,比较简单,解题的关键是熟知方程组的解与一次函数y=ax+b和正比例函数y=kx的图象交点P之间的联系,考查了学生对题意的理解能力.7.已知P(x,y)是平面直角坐标系上的一个点,且它的横、纵坐标是一次方程组(a为任意实数)的解,则当a变化时,点P一定不会经过()A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限【答案】C【考点】一次函数与二元一次方程(组)【解析】【解答】解:解方程组得:,∵当x=3a+2<0时,解得:a<﹣,∴此时y=﹣2a+4>0,∴当x<0时y>0,∴点P一定不会经过第三象限,故选C.【分析】首先用含有a的代数式表示出x、y的值,然后分析x、y不能同时为负数得到其不会经过第三象限.8.已知和是二元一次方程ax+by+3=0的两个解,则一次函数y=ax+b(a≠0)的解析式为()A. y=﹣2x﹣3B. y=x+C. y=﹣9x+3D. y=-x-【答案】D【考点】一次函数与二元一次方程(组)【解析】【解答】解:∵和是二元一次方程ax+by+3=0的两个解,∴,解得:,∴一次函数y=ax+b(a≠0)的解析式为y=-x-故选:D.【分析】由已知方程的解,可以把这对数值代入方程,得到两个含有未知数a,b的二元一次方程,联立方程组求解,从而可以求出a,b的值,进一步得出解析式即可.9.函数y=ax+b与函数y=cx+d的图象是两条直线,只有一个交点,则二元一次方程组有()A. 无数解B. 无解C. 唯一解D. 不能确定【答案】C【考点】一次函数与二元一次方程(组)【解析】【解答】解:因为函数y=ax+b与函数y=cx+d的图象是两条直线,则y=ax+b和y=cx+d是两个二元一次方程.它们有一个交点,即二元一次方程组有唯一解,故选C.【分析】函数的直线的交点即为函数所组成的方程组的解,方程组有几个解就是要看有几个交点.10.如果直线y=3x+6与y=2x﹣4交点坐标为(a,b),则解为的方程组是()A. B. C.D.【答案】D【考点】一次函数与二元一次方程(组)【解析】【解答】解:∵直线y=3x+6与y=2x﹣4交点坐标为(a,b),∴解为的方程组是,即,故选D.【分析】由于函数图象交点坐标为两函数解析式组成的方程组的解.那么所求方程组的解即为两函数的交点坐标.11.方程组没有解,因此直线y=﹣x+2和直线y=﹣x+在同一平面直角坐标系中的位置关系是()A. 重合B. 平行C. 相交D. 以上三种情况都有可能【答案】B【考点】一次函数与二元一次方程(组)【解析】【解答】解:∵方程组没有解,∴直线y=﹣x+2和直线y=﹣x+在同一平面直角坐标系中没有交点,∴直线y=﹣x+2和直线y=﹣x+在同一平面直角坐标系中的位置关系是平行.故选B.【分析】根据平行线的定义解答.12.方程组没有解,说明一次函数y=ax+2与y=x+的图象必定()A. 相交B. 平行C. 重合D. 不能确定【答案】B【考点】一次函数与二元一次方程(组)【解析】【解答】解:∵方程组没有解,∴一次函数y=ax+2与y=x+的图象必定平行.故选B.【分析】两个方程组成的方程组无解,那么这两个方程表示的两条直线平行.13.如图中的两直线l1、l2的交点坐标可以看作哪个方程组的解()A. B. C.D.【答案】A【考点】一次函数与二元一次方程(组)的综合应用【解析】【解答】由于直线l1经过点(0,-1),(3,-2);因此直线l1的解析式为y=- x-1;同理可求得直线l2的解析式为y=-2x+4;因此直线l1,l2的交点坐标可以看作方程组的解.故答案为:A.【分析】先用待定系数法求出两条直线的解析式,联立两直线解析式所组成的方程组,即可.二、填空题14.如图,已知一次函数y=2x+b和y=kx﹣3(k≠0)的图象交于点P(4,﹣6),则二元一次方程组的解是________【答案】【考点】一次函数与二元一次方程(组)【解析】【解答】解:∵一次函数y=2x+b和y=kx﹣3(k≠0)的图象交于点P(4,﹣6),∴点P(4,﹣6)满足二元一次方程组;∴方程组的解是.故答案为.【分析】两个一次函数的交点坐标为P(4,﹣6),那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.15.若一次函数y=3x+7的图象与y轴的交点坐标满足二元一次方程﹣2x+my=18,则m的值为________ .【答案】【考点】一次函数与二元一次方程(组)【解析】【解答】解:一次函数y=3x+7中,令x=0,则y=7,即一次函数与y轴的交点是(0,7);把x=0,y=7代入﹣2x+my=18,得:7m=18,即m=,故答案为:【分析】本题可先求出直线y=3x+7与y轴的交点坐标,然后将其代入二元一次方程中,可求出m的值.16.一次函数y1=kx+b与y2=x+a的图象如图所示,则关于x、y的方程组的解为________.【答案】【考点】一次函数与二元一次方程(组)【解析】【解答】解:由图象得:一次函数y1=kx+b与y2=x+a的图象的交点坐标为(3,1.6),∴关于x、y的方程组的解为;故答案为:.【分析】由函数图象可知,两函数的交点坐标就是方程组的解.17.用图象法解方程组.【答案】解:由题意得,两函数图象如下图:由图象可知两函数的图象交于点(3,﹣2),∴方程组的解为.【考点】一次函数与二元一次方程(组)【解析】【分析】由题意将函数y=﹣2x+4与函数y=﹣x﹣1的图象分别在坐标轴上画出来,其交点就是方程组的解.18.如图中的两条直线l1,l2可以看作方程组________的解.【答案】【考点】一次函数与二元一次方程(组)【解析】【解答】解:设l1的解析式为y=kx+b,把(1,3),(0,1)代入得,解得:,所以直线l1的解析式为:y=2x+1,同样方法得到直线l2的解析式为:y=﹣x+4,所以两条直线l1,l2的交点可以看作方程组的解.故答案为.【分析】先利用待定系数法求出两直线的解析式,然后根据方程组的解就是两个相应的一次函数图象的交点坐标进行求解.19.如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x,y的二元一次方程组的解是________.【答案】【考点】一次函数与二元一次方程(组)【解析】【解答】解:函数y=ax+b和y=kx的图象交于点P(﹣4,﹣2),即x=﹣4,y=﹣2同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故答案为:.【分析】由图可知:两个一次函数的交点坐标为(﹣4,﹣2);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.三、解答题20.若正比例函数y=﹣x的图象与一次函数y=x+m的图象交于点A,且点A的横坐标为﹣1.(1)求该一次函数的解析式;(2)直接写出方程组的解.【答案】解:(1)将x=﹣1代入y=﹣x,得y=1,则点A坐标为(﹣1,1).将A(﹣1,1)代入y=x+m,得﹣1+m=1,解得m=2,所以一次函数的解析式为y=x+2;(2)方程组的解为.【考点】一次函数与二元一次方程(组)【解析】【分析】(1)先将x=﹣1代入y=﹣x,求出y的值,得到点A坐标,再将点A坐标代入y=x+m,利用待定系数法可得一次函数的解析式;(2)方程组的解就是正比例函数y=﹣x的图象与一次函数y=x+m的交点,根据交点坐标即可写出方程组的解.21.利用一次函数的图象解二元一次方程组:.【答案】解:如图,两个一次函数y=﹣x+ 与y=3x﹣2的交点坐标为(1,1);因此方程组的解.【考点】一次函数与二元一次方程(组)【解析】【分析】先把两个方程化成一次函数的形式,然后在同一坐标系中画出它们的图象,交点的坐标就是方程组的解.22.已知:一次函数y=3x﹣5与y=2x+b的图象的交点的坐标为P(1,﹣2).求:方程组的解和b的值.【答案】解:∵一次函与y=3x﹣5与y=2x+的图象的交点的坐标为P(1,﹣2)∴方程组的解是,将点P(1,﹣2)的坐标代y=2x+b,得b=﹣4.【考点】一次函数与二元一次方程(组)【解析】【分析】直接根据一次函数和二元一次方程组的关系求解.四、综合题23.已知二元一次方程2x﹣y=2.(1)请任意写出此方程的三组解;(2)若为此方程的一组解,我们规定(x0,y0)为某一点的坐标,请根据你在(1)中写出的三组解,对应写出三个点的坐标,并将这三个点描在平面直角坐标系中;(3)观察这三个点的位置,你发现了什么?【答案】(1)解:,,(2)解:(0,﹣2);(1,0);(2,2)(3)解:这三个点在一条直线上.【考点】一次函数与二元一次方程(组)【解析】【分析】本题中实际求的是直线y=2x﹣2.求出方程的三组解实际上是求直线y=2x ﹣2上的三个点的坐标.求出的这三个点自然都在直线y=2x﹣2上.24.在直角坐标系中,直线l1经过(2,3)和(﹣1,﹣3),直线l2经过原点O,且与直线l1交于点P(﹣2,a).(1)求a的值;(2)(﹣2,a)可看成怎样的二元一次方程组的解?(3)设直线l1与y轴交于点A,你能求出△APO的面积吗?【答案】(1)解:∵直线l1经过(2,3)和(﹣1,﹣3),∴解得:,∴直线l1的解析式为:y=2x﹣1,把P(﹣2,a)代入y=2x﹣1得:a=2×(﹣2)﹣1=﹣5(2)解:设l2的解析式为y=kx,把P(﹣2,﹣5)代入得﹣5=﹣2k,解得k= ,所以l2的解析式为y= x,所以点(﹣2,﹣5)可以看作是解二元一次方程组所得(3)解:对于y=2x﹣1,令x=0,解得y=﹣1,则A点坐标为(0,﹣1),所以S△APO= ×2×1=1【考点】一次函数与二元一次方程(组)【解析】【分析】(1)首先利用待定系数法求得直线的解析式,然后直接把P点坐标代入可求出a的值;(2)利用待定系数法确定l2得解析式,由于P(﹣2,a)是l1与l2的交点,所以点(﹣2,﹣5)可以看作是解二元一次方程组所得;(3)先确定A点坐标,然后根据三角形面积公式计算.25.如图,直线PA是一次函数y=x+1的图象,直线PB是一次函数y=﹣2x+2的图象.(1)求A、B、P三点坐标.(2)求△PAB的面积.【答案】(1)解:把y=0代入y=x+1得x+1=0,解得x=﹣1,则A点坐标为(﹣1,0);把y=0代入y=﹣2x+2得﹣2x+2=0,解得x=1,则B点坐标为(1,0);解方程组得,所以P点坐标为(,)(2)解:S△PAB= ×(1+1)× =【考点】一次函数与二元一次方程(组)【解析】【分析】(1)A,B两点在x轴上,因此纵坐标为0,代入解析式可得横坐标;C点坐标为两个函数解析式连列方程组的解。
一次函数与二元一次方程经典例题
一次函数与二元一次方程经典例题在学习一次函数和二元一次方程时,我们常常会遇到一些经典的例题。
这些题目就像一把钥匙,能够帮我们打开理解这些数学概念的大门。
今天,我们就来聊聊这些题目,看看怎么用简单易懂的方式搞定它们。
1. 一次函数的基本概念首先,咱们得弄清楚什么是一线函数。
一次函数就像是你和朋友之间的关系——简单、直接。
它的标准形式是 ( y = mx + b ),其中 ( m ) 是斜率,决定了函数的倾斜度,而 ( b ) 是截距,表示函数在 y 轴上的起点。
1.1 例题讲解假设我们有这样一个问题:某商店的商品定价是一个一次函数,价格 ( y ) 与数量( x ) 之间的关系是 ( y = 5x + 20 )。
这就是说每增加一个商品,价格增加 5 元,而基本价格是 20 元。
那么,如果你买了 3 个商品,价格是多少呢?只需将 ( x = 3 ) 代入公式:( y = 5 times 3 + 20 ),计算结果就是 35 元。
这种题目简单却很实用,掌握了之后,你可以轻松应对类似的定价问题。
1.2 一线函数的应用一次函数在实际生活中有很多应用,比如说汽车的油耗。
假设油耗是每公里 8 元基本加 50 元的固定费用,这也是一个一次函数模型。
如果你知道了你的行程长度,就可以用它来计算出你的油费啦。
2. 二元一次方程的基本概念说到二元一次方程,那就稍微复杂一点。
它涉及到两个变量,常见的形式是 ( ax + by = c )。
这里的 ( x ) 和 ( y ) 就像是两个好朋友,它们的关系要通过这条方程来描述。
2.1 例题讲解比如,假设你买了 2 个苹果和 3 个香蕉,总共花了 15 元。
如果苹果每个 2 元,香蕉每个 3 元。
我们可以用二元一次方程来表示这个问题。
方程可以写成:( 2x + 3y = 15 ),其中 ( x ) 是苹果的数量,( y ) 是香蕉的数量。
为了找出 ( x ) 和 ( y ) 的具体值,我们需要解这个方程。
鲁教版七年级二元一次方程组与一次函数练习50题及参考答案(难度系数0.8)
七年级二元一次方程组与一次函数(难度系数0.8)一、单选题(共24题;共48分)1.已知一次函数的图象与直线y=﹣x+1平行,且过点(8,2),那么此一次函数的解析式为()A. y=﹣x﹣2B. y=﹣x﹣6C. y=﹣x+10D. y=﹣x﹣1【答案】C【考点】两一次函数图像相交或平行问题2.如图所示,l1反映了某公司产品的销售收入和销售数量的关系,l2反映产品的销售成本与销售数量的关系,根据图象判断公司盈利时的销售量为()A. 小于4万件B. 大于4万件C. 等于4万件D. 大于或等于4万件【答案】B【考点】两一次函数图像相交或平行问题,通过函数图像获取信息并解决问题3.如图,以两条直线l1,l2的交点坐标为解的方程组是( )A. B. C. D.【答案】C【考点】一次函数与二元一次方程(组)的综合应用4.在平面直角坐标系中,方程2x+3y=4所对应的直线为a,方程3x+2y=4所对应的直线为b,直线a与b的交点为P(m,n),下列说法错误的是( )A. 是方程2x+3y=4的解B. 是方程3x+2y=4的解C. 是方程组的解D. 以上说法均错误【答案】 D【考点】两一次函数图像相交或平行问题5.如图,正比例函数 y =2x 与一次函数 y =kx +4 的图象交于点 A(m,2) ,则不等式 2x <kx +4 的解集为( ).A. B. C. D.【答案】 C【考点】两一次函数图像相交或平行问题6.若直线y =3x+6与直线y =2x+4的交点坐标为(a , b ),则解为 {x =a y =b 的方程组是( )A.B. C. D.【答案】 C【考点】一次函数与二元一次方程(组)的综合应用7.已知直线 y =12x +5 与一条经过原点的直线l 平行,则这条直线l 的函数关系式为( )A.B. C. D. y=2x 【答案】 B【考点】两一次函数图像相交或平行问题,一次函数图像与坐标轴交点问题8.已知两个一次函数 y 1 , y 2 的图象相互平行,它们的部分自变量与相应的函数值如下表: 则m 的值是( )A.B.C.D. 【答案】 A【考点】两一次函数图像相交或平行问题9.如图,函数 y 1=mx 和 y 2=x +3 的图象相交于点 A(−1,2) ,则关于x 的不等式 mx >x +3 的解集是( )A. x <−1B. x >−1C. x <−2D. x >−2【答案】 A【考点】一次函数与二元一次方程(组)的综合应用10.在同一平面直角坐标系中,直线y=x-2与直线y=- 12 x-b 的交点一定不在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】 B【考点】两一次函数图象相交或平行问题11.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象如图所示,则所列的二元一次方程组是( )A. {x −y −2=03x −2y −1=0B. {2x −y −1=03x −2y −1=0C. {2x −y −1=03x +2y −5=0D. {x +y −2=02x −y −1=0 【答案】 D【考点】一次函数与二元一次方程(组)的综合应用12.如图,函数 y =ax +b 和 y =−13x 的图象交于点P ,则根据图象可得,关于x ,y 的二元一次方程组 {−a x +y =b x +3y =0 中的解是 ( )A. {x =3y =−1B. {x =−3y =−1C. {x =−3y =1D. {x =−1y =3【答案】 C【考点】一次函数与二元一次方程(组)的综合应用13.若一次函数y 1=k 1x+b 1与一次函数y 2=k 2x+b 2的图象没有交点,则方程组 {k 1x -y =−b 1k 2x -y =−b 2的解的情况是( ) A. 有无数组解 B. 有两组解 C. 只有一组解 D. 没有解【答案】 D【考点】一次函数与二元一次方程(组)的综合应用14.若方程组 {−mx +y =n ex +y =f 的解为 {x =4y =6,则直线y=mx+n 与y=﹣ex+f 的交点坐标为( ) A. (﹣4,6) B. (4,6) C. (4,﹣6) D. (﹣4,﹣6)【答案】 B【考点】一次函数与二元一次方程(组)的综合应用15.函数y=4x ﹣2与y=﹣4x ﹣2的交点坐标为( )A. (﹣2,0)B. (0,﹣2)C. (0,2)D. (2,0)【答案】B【考点】一次函数与二元一次方程(组)的综合应用16.如图,直线y 1=x +b 与y 2=kx -1相交于点P ,点P 的横坐标为-1,则关于x 的不等式x +b >kx -1的解集在数轴上表示正确的是( )A.B. C. D.【答案】 A 【考点】两一次函数图像相交或平行问题17.如图,一次函数 y =kx +b ( k 、 b 为常数,且 k ≠0 )与正比例函数 y =ax ( a 为常数,且 a ≠0 )相交于点 P ,则不等式 kx +b <ax 的解集是( )A. x >1B. x <1C. x >2D. x <2【答案】 C【考点】两一次函数图像相交或平行问题18.下列说法错误的结论有( )( 1 )相等的角是对顶角;(2)平面内两条直线的位置是相交,垂直,平行;(3)若∠A 与B ∠互补,则 12∠A 与12∠B 互余,(4)同位角相等.A. 1个B. 2个C. 3个D. 4个【答案】C【考点】两一次函数图像相交或平行问题,余角、补角及其性质,对顶角、邻补角,同位角、内错角、同旁内角19.在同一平面内,两条直线可能的位置关系是( )A. 平行B. 相交C. 平行或相交D. 平行、相交或垂直【答案】C【考点】两条直线相交或平行问题20.图中两直线 l 1 , l 2 的交点坐标可以看作方程组( )的解.A. {x −y =12x −y =−1B. {x −y =−12x −y =1C. {x −y =32x −y =−1D. {x −y =−32x −y =−1【答案】 B【考点】一次函数与二元一次方程(组)的综合应用21.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象如图所示,则所解的二元一次方程组是( )A. B. C. D.【答案】 D【考点】两一次函数图像相交或平行问题22.如图,两个一次函数图象的交点坐标为(2,4),则关于x ,y 的方程组 {y =k1x +b 1y =k 2x +b 2 的解为()A. {x =2y =4B. {x =4y =2C. {x =−4y =0D. {x =3y =0【答案】 A【考点】一次函数与二元一次方程(组)的综合应用23.用图象法解方程组 {x −2y =42x +y =4 时,下列选项中的图象正确的是( )A. B. C. D.【答案】C【考点】一次函数与二元一次方程(组)的综合应用24.以方程组 {y =−x +2y =x +1 的解为坐标的点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【考点】一次函数与二元一次方程(组)二、填空题(共23题;共26分)25.直线y =kx ﹣1与y =2x 平行,则y =kx ﹣1的图象不经过第________象限.【答案】 二【考点】两一次函数图象相交或平行问题26.在平面直角坐标系内,一次函数y =k 1x+b 1与y =k 2x+b 2的图象如图所示,则关于x ,y 的方程组 {y −k 1x =b 1y −k 2x =b 2的解是________.【答案】 {x =2y =1【考点】一次函数与二元一次方程(组)的综合应用27.如图,同一直角坐标系中,一次函数y 1=k 1x +b 与正比例函数y 2=k 2x 的图象如图所示,则满足y 1≥y 2的x 的取值范围是________.【答案】 x≤-2【考点】两一次函数图象相交或平行问题28.如图,已知函数y =3x +b 和y =ax -3的图象交于点P(-2,-5),则根据图象可得不等式3x +b >ax -3的解集是________.【答案】 x >-2【考点】一次函数与二元一次方程(组)的综合应用29.已知直线y=kx+b 经过点(﹣2,3),并且与直线y=-2x+1平行,那么b=________.【答案】 -1【考点】待定系数法求一次函数解析式,两一次函数图像相交或平行问题30.如图, l 1 表示某产品一天的销售收入与销售量的关系; l 2 表示该产品一天的销售成本与销售量的关系。
数学八年级下册:第17讲 一次函数与二元一次方程第1套真题
数学八年级下册:第17讲一次函数与二元一次方程一、单选题1. 若一次函数y1=k1x+b1与一次函数y2=k2x+b2的图象没有交点,则方程组的解的情况是A . 有无数组解B . 有两组解C . 只有一组解D . 没有解2. 用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象如图所示,则所列的二元一次方程组是()A .B .C .D .3. 如图,函数和的图象交于点P,则根据图象可得,关于x,y的二元一次方程组中的解是A .B .C .D .4. 若方程组的解为,则直线y=mx+n与y=﹣ex+f的交点坐标为()A . (﹣4,6)B . (4,6)C . (4,﹣6)D . (﹣4,﹣6)5. 已知函数,,的图象交于一点,则值为().A .B .C .D .6. 以一个二元一次方程组中的两个方程作为一次函数画图象,所得的两条直线()A . 有一个交点B . 有无数个交点C . 没有交点D . 以上都有可能7. 在直角坐标系中,若一点的纵横坐标都是整数,则称该点为整点.设k为整数,当直线y=x﹣2与y=kx+k的交点为整点时,k的值可以取()A . 4个B . 5个C . 6个D . 7个8. 一次函数y1=kx+b与y2=x+a的图象如图,则下列结论中①k<0;②a>0;③当x<3时,y1<y2;④方程组的解是.正确的个数是()A . 1个B . 2个C . 3个D . 4个9. 若直线x+2y=2m与直线2x+y=2m+3(m为常数)的交点在第四象限,则整数m的值为()A . -3,-2,-1,0B . -2,-1,0,1C . -1,0,1,2D . 0,1,2,310. 若方程组有无穷多组解,则2k+b2的值为()A . 4B . 5C . 8D . 1011. 某校九年级(2)班40名同学这“希望工程”捐款,共捐款100元,捐款情况如下表:捐款(元)1234人数67表格中捐款2元和3元的人数不小心被墨水污染已看不清楚,若设捐款2元的有x名同学,捐款3元的有y名同学,假设(x,y)是两个一次函数图象的交点,则这两个一次函数解析式分别是()A . y=27﹣x与y=x+22B . y=27﹣x与y= x+C . y=27﹣x与y= x+33D . y=27﹣x与y= x+3312. 已知P(x,y)是平面直角坐标系上的一个点,且它的横、纵坐标是一次方程组(a为任意实数)的解,则当a变化时,点P一定不会经过()A . 第一象限B . 第二象限C . 第三象限D . 第四象限二、填空题13. 若二元一次方程组的解是则一次函数的图象与一次函数的图象的交点坐标为________.14. 如图,直线与直线相交于点,则方程组的解是________.15. 如图,已知一次函数y=kx-b与y= x的图像相交于点A,则关于x的方程的解x=________.16. 在平面直角坐标系xOy中,二元一次方程ax+by=c的图象如图所示.则当x=3时,y的值为________.17. 若一次函数y=3x+7的图象与y轴的交点坐标满足二元一次方程﹣2x+my=18,则m的值为________.18. 若一次函数y=3x-5的图像l1与y=2x+1的图像l2相交于点P,则点P的坐标是。
一次函数与二元一次方程不等式的关系题库
一次函数与方程、不等式的关系一.选择题1.如图,直线y=kx+b经过A(2,1),B(﹣1,﹣2)两点,则不等式x>kx+b>﹣2的解集为()A.x<2 B.x>﹣1 C.x<1或x>2 D.﹣1<x<22.若函数y=kx﹣b的图象如图所示,则关于x的不等式k(x﹣3)﹣b>0的解集为()A.x<2 B.x>2 C.x<5 D.x>53.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<14.如图,直线y=kx+b与y轴交于点(0,3)、与x轴交于点(a,0),当a满足﹣3≤a<0时,k的取值范围是()A.﹣1≤k<0 B.1≤k≤3 C.k≥1 D.k≥35.同一直角坐标系中,一次函数y1=k1x+b与正比例函数y2=k2x的图象如图所示,则满足y1≥y2的x取值范围是()A.x≤﹣2 B.x≥﹣2 C.x<﹣2 D.x>﹣26.一次函数y=3x+b和y=ax﹣3的图象如图所示,其交点为P(﹣2,﹣5),则不等式3x+b >ax﹣3的解集在数轴上表示正确的是()A.B.C.D.7.如图,直线y=﹣x+2与y=ax+b(a≠0且a,b为常数)的交点坐标为(3,﹣1),则关于x的不等式﹣x+2≥ax+b的解集为()A.x≥﹣1 B.x≥3 C.x≤﹣1 D.x≤38.如图,表示阴影区域的不等式组为()A .B .C .D .9.已知一次函数y=kx+b的图象如图,则关于x的不等式k(x﹣4)﹣2b>0的解集为()A.x>﹣2 B.x<﹣2 C.x>2 D.x<310.如图,函数y=kx和y=﹣x+4的图象相交于点A(3,m)则不等式kx≥﹣x+4的解集为()A.x≥3 B.x≤3 C.x≤2 D.x≥211.一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a<0,b<0;③当x=3时,y1=y2;④不等式kx+b>x+a的解集是x<3,其中正确的结论个数是()A.0 B.1 C.2 D.312.如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b<2x的解集为()A.x>0 B.0<x<1 C.1<x<2 D.x>213.如图,直线y=﹣x+m与y=x+3的交点的横坐标为﹣2,则关于x的不等式﹣x+m>x+3>0的取值范围为()A.x>﹣2 B.x<﹣2 C.﹣3<x<﹣2 D.﹣3<x<﹣114.如图,直线y=kx+b交坐标轴于A(﹣3,0)、B(0,1)两点,则不等式﹣kx﹣b<0的解集为()A.x>﹣3 B.x<﹣3 C.x>3 D.x<315.一次函数y=k1x+b1和y=k2x+b2的图象如图所示,自变量为x时对应的函数值分别为y1,y2.若﹣3<y1<y2,则x的取值范围是()A.x<﹣1 B.﹣5<x<1 C.﹣5<x<﹣1 D.﹣1<x<116.同一平面直角坐标系中,一次函数y=k1x+b的图象与正比例函数y=k2x的图象如图所示,则关于x的方程k1x﹣2b>k2x的解为()A.x>﹣2 B.x<﹣2 C.x<2 D.x<417.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则方程2x=ax+4的解集为()A.x=B.x=3 C.x=﹣D.x=﹣318.如图所示,一次函数y=kx+b(k、b为常数,且k≠0)与正比例函数y=ax(a为常数,且a≠0)相交于点P,则不等式kx+b>ax的解集是()A.x>1 B.x<1 C.x>2 D.x<219.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,关于x 的不等式k2x>k1x+b的解集为()A.x>﹣1 B.x<﹣1 C.x<﹣2 D.无法确定20.如图,函数y=kx(k≠0)和y=ax+4(a≠0)的图象相交于点A(2,3),则不等式kx>ax+4的解集为()A.x>3 B.x<3 C.x>2 D.x<221.如图,已知直线y1=ax+b与y2=mx+n相交于点A(2,﹣1),若y1>y2,则x的取值范围是()A.x<2 B.x>2 C.x<﹣1 D.x>﹣122.如图是一次函数y=kx+b的图象,当y<2时,x的取值范围是()A.x<1 B.x>1 C.x<3 D.x>323.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k2x>k1x+b的解集为()A.x>3 B.x<3 C.x>﹣1 D.x<﹣124.如图,函数y=ax﹣1的图象过点(1,2),则不等式ax﹣1>2的解集是()A.x<1 B.x>1 C.x<2 D.x>225.如图,已知直线y1=x+a与y2=kx+b相交于点P(﹣1,2),则关于x的不等式x+a>kx+b 的解集正确的是()A.x>1 B.x>﹣1 C.x<1 D.x<﹣126.如图,直线y1=k1x+a与y2=k2x+b的交点坐标为(1,2),则使y1≥y2的x的取值范围为()A.x≥1 B.x≥2 C.x≤1 D.x≤227.如图,直线y=kx+b经过点A(0,4),点B(﹣2,0),不等式0<kx+b<4的解集是()A.x<﹣2 B.﹣2<x<﹣1 C.﹣2<x<0 D.﹣1<x<028.若函数y=kx+b(k,b为常数)的图象如图所示,那么当y>0时,x的取值范围是()A.x>2 B.x<2 C.x<1 D.x>129.一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集是()A.x>﹣2 B.x<﹣2 C.x>﹣4 D.x<﹣430.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≤ax+4的解集为()A.x B.x≥3 C.x D.x≤3(1.D 2.C 3.C 4.C 5.A 6.C 7.D 8.D 9.B 10.A 11.D 12.C 13.C 14.A 15.B 16.D 17.A 18.D 19.C20.C 21.B 22.C 23.D 24.B 25.B 26.A 27.C 28.B29.C 30.A )1.若不等式ax<b的解集为x>2,则一次函数y=ax+b的图象大致是()A.B.C.D.2.如图,函数y=3x与y=kx+b的图象交于点A(2,6),则不等式3x<kx+b的解集为()A.x<4 B.x<2 C.x>2 D.x>43.如图,两直线y2=﹣x+3与y1=2x相交于点A,下列错误的是()A.x<3时,y1﹣y2>3 B.当y1>y2时,x>1C.y1>0且y2>0时,0<x<3 D.x<0时,y1<0且y2>34.如图直线l1:y=ax+b,与直线l2:y=mx+a交于点A(1,3),那么不等式ax+b<mx+n 的解集是()A.x>3 B.x<3 C.x>1 D.x<15.如图,一次函数y=kx+b的图象与两坐标轴交于两点,则不等式kx+b>0的解集是()A.x<5 B.x>5 C.x<3 D.x>36.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0:③b>0;④x<2时,kx+b<x+a中,正确的个数是()A.1 B.2 C.3 D.47.已知一次函数y=kx+b的图象如图所示,则当x<0时,y的取值范围是()A.y>1 B.y<﹣2 C.﹣2<y<0 D.﹣2<y<28.已知一次函数y=kx+b(k,b是常数,且k≠0),x与y的部分对应值如下表所示:X ﹣2 ﹣1 0y 3 2 1则不等式kx+b<bx+k的解集为()A.x>﹣1 B.x<1 C.x>﹣3 D.x>19.如图,已知函数y1=3x+b和y2=ax﹣3的图象交于点P(﹣2,﹣5),则不等式3x+b>ax ﹣3的解集为()A.x>﹣2 B.x<﹣2 C.x>﹣5 D.x<﹣510.如图,函数y=3x和y=ax+4的图象相交于点A(1,3),则不等式2x≥ax+4的解集为()A.x≥1 B.x≤3 C.x≤1 D.x≥311.已知关于x的不等式ax+1>0(a≠0)的解集是x<1,则直线y=ax+1与x轴的交点是()A.(0,1)B.(﹣1,0)C.(0,﹣1)D.(1,0)12.函数y=kx+b(k、b为常数,k≠0)的图象如图,则关于x的不等式kx+b>0的解集为()A.x>0 B.x<0 C.x<2 D.x>213.若函数y=kx+b的图象如图所示,那么当y>0时,x的取值范围是()A.x>1 B.x>2 C.x<1 D.x<214.如图,一次函数y=ax+b的图象经过A、B两点,则关于x的不等式ax+b<0的解集是()A.x<﹣1 B.x<2 C.x>﹣1 D.x>215.观察函数y1和y2的图象,当x=0,两个函数值的大小为()A.y1>y2B.y1<y2C.y1=y2D.y1≥y216.如图,直线y=kx+b经过点A,B,则不等式kx+b<0的解集是()A.x>1 B.x<1 C.x<0 D.0<x<117.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为()A.x≥B.x≤3 C.x≤D.x≥318.如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集在数轴上表示正确的是()A.B.C.D.19.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n>0的整数解为()A.﹣1 B.﹣5 C.﹣4 D.﹣320.如图,函数y=2x和y=ax+5的图象交于点A(m,3),则不等式2x<ax+5的解集是()A.x<B.x<3 C.x>D.x>321.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为()A.x=﹣1 B.x=2 C.x=0 D.x=322.如图,一次函数y=kx+b的图象经过A、B两点,则不等式kx+b<0的解集是()A.x<0 B.0<x<1 C.x<1 D.x>123.如图,直线y1=kx+b过点A(0,2)且与直线y2=mx交于点P(﹣1,﹣m),则关于x 的不等式组mx>kx+b>mx﹣2的解集为()A.x<﹣1 B.﹣2<x<0 C.﹣2<x<﹣1 D.x<﹣224.如图,在同一平面直角坐标系内,直线l1:y=kx+b与直线l2:y=mx+n分别与x轴交于点(﹣2,0)与(5,0),则不等式组的解集为()A.x<﹣2 B.x>5 C.﹣2<x<5 D.无解25.一次函数y=kx+b的图象如图所示,不等式kx+b>0的解集是()A.x>2 B.x>4 C.x<2 D.x<426.如图,在平面直角坐标系中,点P(,a)在直线y=2x+2与直线y=2x+4之间,则a的取值范围是()A.2<a<4 B.1<a<3 C.1<a<2 D.0<a<227.如图所示,一次函数y=ax+b与x轴的交点为A(2,0),交y轴于B(0,1),那么不等式ax+b<0的解集为()A.x>1 B.x<1 C.x>2 D.x<228.如图,y=kx+b的图象经过点(1,2),则不等式kx+b>2的解集为()A.x>1 B.x<1 C.x>2 D.x<229.如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,1),关于x的不等式x+m>kx ﹣1的解集是()A.x≥﹣1 B.x>﹣1 C.x≤﹣1 D.x<﹣130.如图,已知:函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是()A.x>﹣5 B.x>﹣2 C.x>﹣3 D.x<﹣2(1.D 2.B 3.A 4.D 5.A 6.B 7.B 8.B 9.A 10.A 11.D 12.C 13.D 14.B 15.A 16.A 17.A 18.A 19.D20.A 21.A 22.D 23.C 24.A 25.C 26.B 27.C 28.A29.B 30.B )1.如图,一次函数y1=x+b与y2=kx﹣2的图象相交于点P,若点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣2的解集是()A.x<﹣2 B.x>﹣2 C.x<﹣1 D.x>﹣12.观察图中的函数图象,可以得到关于x的不等式ax﹣bx<c的解为()A.x<﹣2 B.x<4 C.x>﹣2 D.x>43.如图,函数y=2x和y=ax+4的图象相交于点A(1,2),则不等式2x≥ax+4的解集为()A.x<1 B.x>1 C.x≤1 D.x≥14.已知平面直角坐标系上的动点A(x,y),满足x=1+2a,y=1﹣a,其中﹣2≤a≤3,有下列四个结论:①﹣3≤x≤7 ②﹣2≤y≤0 ③0≤x+y≤5 ④若x≤0,则0≤y≤3.其中正确的结论是()A.②④B.②C.①③D.③④5.如图,直线y=kx+b交坐标轴于A(﹣4,0),B(0,3),则不等式kx+b<0的解集为()A.x>3 B.﹣4<x<3 C.x>﹣4 D.x<﹣46.已知函数y1=x+b1与函数y2=﹣x+b2的图象如图所示,则不等式y1<y2的解集为()A.x>1 B.x<1 C.x<0 D.x<27.如图,已知函数y=x+b和y=ax+4的图象交点为P,则不等式x+b>ax+4的解集为()A.x>1 B.x<1 C.x≥1 D.x≤18.如图,函数y=2x+2的图象与直线y=kx的交点横坐标为﹣,则2x+2>kx的解集是()A.x>﹣1 B.x<﹣1 C.x>﹣D.x<﹣9.如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,1),则关于x的不等式x+m>kx﹣1的解集在数轴上表示正确的是()A.B.C.D.10.如图,已知一次函数y=kx+b的图象经过A、B两点,那么不等式kx+b>0的解集是()A.x>5 B.x<5 C.x>3 D.x<3.11.已知一次函数y=kx+b的图象如图所示,当x<2时,y的取值范围是()A.y>0 B.y<2 C.y<0 D.﹣4<y<012.如图,直线y=kx+b与坐标轴的两交点分别为A(2,0)和B(0,﹣3),则不等式kx+b+3≤0的解为()A.x≤0 B.x≥0 C.x≥2 D.x≤213.一次函数y=kx+b(k≠0)的图象如图,当y<0时,x的取值范围是()A.x>﹣3 B.x<﹣3 C.x<﹣2 D.x<014.如图,直线y1=k1x+a与y2=k2x+b的交点坐标为(1,2),则使y2<y1的取值范围为()A.x>1 B.x>2 C.x<1 D.x<215.一次函数y1=mx+n(m≠0,m,n为常数)与一次函数y2=ax+b(a≠0,a,b为常数)的图象如图所示,这两个函数的图象交点在y轴上,那么使y1、y2的值都大于0的x的取值范围是()A.x>1 B.x<﹣1 C.x<1 D.﹣1<x<216.如图,一次函数y1=﹣x+7与正比例函数y2=x的图象交于点A,若y1>y2,则自变量x的取值范围是()A.x>3 B.x<3 C.x>4 D.x<417.如图,直线y=kx+b交坐标轴于A(3,0)、B(0,5)两点,则不等式kx+b<0的解集为()A.x<3 B.x>3 C.x<5 D.x>518.观察两个函数y1和y2的图象,当x=1时,这两个函数的函数值的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.不确定19.已知的图象如图所示,当y<0时,x的取值范围是()A.x>﹣3 B.x<﹣3 C.x>1 D.x<120.如图,直线y=kx+b交坐标轴于A(﹣2,0)、B(0,3)两点,则不等式kx+b>0的解集是()A.x>﹣2 B.x>3 C.x<﹣2 D.x<321.已知不等式ax+b<0的解集是x<﹣2,下列有可能是直线y=ax+b的图象是()A.B.C.D.22.已知不等式ax+b<0的解集是x<﹣2,下列哪个图象有可能是直线y=ax+b()A.B.C.D.23.一次函数y=mx+n的图象如图所示,则方程mx+n=0的解为()A.x=2 B.y=2 C.x=﹣3 D.y=﹣324.如图,直线y=x+b交x轴于点A(﹣2,0),则不等式x+b<0解集是()A.x<﹣2 B.x<2 C.x>﹣2 D.x>225.若函数y=ax+b(a≠0)的图象如图所示,则不等式ax+b≥0的解集是()A.x≥3 B.x≤3 C.x=3 D.x≥﹣26.函数的图象与x、y轴分别交于点A、B,点P(x,y)为直线AB上的一动点(x>0),过P作PC⊥y轴于点C,若使△PBC的面积大于△AOB的面积,则P的横坐标x 的取值范围是()A.0<x<3 B.x>3 C.3<x<6 D.x>627.如图,函数y=﹣2x和y=kx+b的图象相交于点A(m,3),则关于x的不等式kx+b+2x >0的解集为()A.x>B.x<m C.x>m D.x>﹣28.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<B.x<3 C.x>D.x>329.如图,直线y=kx+b交坐标轴于A(﹣2,0),B(0,3)两点,则不等式kx+b>0的解集是()A.x>3 B.﹣2<x<3 C.x<﹣2 D.x>﹣230.如图所示,函数y=ax+b和a(x﹣1)﹣b>0的图象相交于(﹣1,1),(2,2)两点.当y1>y2时,x的取值范围是()A.x<﹣1 B.﹣1<x<2 C.x>2 D.x<﹣1或x>2(1.D 2.C 3.D 4.C 5.D 6.B 7.A 8.C 9.D 10.B 11.C 12.A 13.A 14.A 15.D 16.B 17.B 18.B 19.B20.A 21.C 22.C 23.C 24.A 25.B 26.D 27.D 28.A29.D 30.D )1.已知一次函数y=kx+b(k、b是常数,且k≠0),x与y的部分对应值如表所示,那么不等式kx+b<0的解集是()x ﹣2 ﹣1 0 1 2 3y 3 2 1 0 ﹣1 ﹣2A.x<0 B.x>0 C.x>1 D.x<22.如图,直线y1=kx+b过点A(0,2),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b>mx﹣2的解集是()A.1<x<2 B.0<x<2 C.0<x<1 D.1<x3.如图,过A点的一次函数y=kx+b的图象与正比例函数y=2x的图象相交于点B,则不等式0<2x<kx+b的解集是()A.x<1 B.x<0或x>1 C.0<x<1 D.x>14.如图,直线y=2x和y=ax+4交于点A,则不等式2x<ax+4的解集为()A.x<B.x<3 C.x>D.x>3(1.C 2.A 3.C 4.A)1.如图,在平面直角坐标系中,线段AB的端点坐标为A(﹣2,4),B(4,2),直线y=kx ﹣2与线段AB有交点,则k的值不可能是()A.﹣5 B.﹣2 C.3 D.52.如图,直线l:y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,则a可能在()A.1<a<2 B.﹣2<a<0 C.﹣3≤a≤﹣2 D.﹣10<a<﹣43.一次函数y=ax﹣1和y=bx+5的图象如图所示,则a、b的值是()A.a=3,b=2 B.a=2,b=3 C.a=1,b=﹣1 D.a=﹣1,b=14.如图是小亮在同一直角坐标系内作的三个一次函数的图象l1、l2、l3,根据它们的位置,l1、l2、l3的解析式应分别是()A.y=x,y=﹣x+2,y=﹣x﹣2 B.y=﹣x+2,y=x,y=﹣x﹣2C.y=x,y=﹣x﹣2,y=﹣x+2 D.y=﹣x+2,y=﹣x﹣2,y=x5.如图,直线y1=﹣x+m与y2=kx+n相交于点A,若点A的横坐标为2,则下列结论中错误的是()A.k>0 B.m>nC.当x<2时,y2>y1D.2k+n=m﹣26.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表:进球数0 1 2 3 4 5人数 1 5 x y 3 2其中进2个球的有x人,进3个球的有y人,若(x,y)恰好是两条直线的交点坐标,则这两条直线的解析式是()A.y﹣x=9与3y﹣2x=22 B.y+x=9与3y﹣2x=22C.y+x=9与3y+2x=22 D.y=x+9与3y+2x=227.函数y1=x+1与y2=ax+b(a≠0)的图象如图所示,这两个函数图象的交点在y轴上,那么使y1,y2的值都大于零的x的取值范围是()A.x>﹣1 B.x>2 C.x<2 D.﹣1<x<28.如图,等腰三角形ABO中,底边OA在y轴的正半轴上,且OA=3,点B在第二象限.若直线y=﹣x+1恰好经过点B,则△ABO的面积是()A.B.C.2 D.39.如图,在平面直角坐标系中,线段AB的端点坐标为A(﹣3,5)、B(2,3),如果直线y=kx﹣1与线段AB有交点,则k的值不可能是()A.﹣5 B.﹣1 C.3 D.510.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x<1时,y2<0;④当x<3时,y1<y2中正确的个数是()A.0 B.1 C.2 D.311.如图,过点Q(0,3.5)的一次函数与正比例函数y=2x的图象相交于点P,能表示这个一次函数图象的解析式是()A.y=B.y=C.y=D.y=﹣12.如图,在平面直角坐标系中,直线l1⊥x轴于点(1,0),直线l2⊥x轴于点(2,0),直线l3⊥x轴于点(3,0)…直线l n⊥x轴于点(n,0).函数y=x的图象与直线l1,l2,l3,…l n 分别交于点A1,A2,A3A n,.函数y=2x的图象与直线l1,l2,l3,…l n分别交于点B1,B2,B3B n.△OA1B1的面积记为S1,四边形A1A2B2B1的面积记为S2,四边形A2A3B3B2的面积记为S3,四边形A n﹣1A n B n B n﹣1的面积记为S n,则S2014=()A.2012 B.2013 C.2013.5 D.201413.图象与直线y=﹣x+2平行的函数是()A.y=x﹣2 B.y=x C.y=﹣x D.y=﹣2x14.一次函数y1=k1x+a和y2=k2x+b的图象如图所示,下列结论正确的有()①a>0;②y1随x的增大而减小;③k1>k2;④当x<3时,y1<y2.A.1个B.2个C.3个D.4个15.如图,直线y=﹣x+5与直线y=﹣x+b交于点P,若点P的纵坐标为3,则b的值为()A.3 B.3.5 C.4 D.4.516.如图,点A、B的坐标分别为(1,0)、(0,1),点P是第一象限内直线y=﹣x+3上的一个动点,当点P的横坐标逐渐增大时,四边形OAPB的面积()A.逐渐增大 B.逐渐减小 C.先减小后增大 D.不变17.一次函数y=ax+b与y=abx(ab≠0),在同一平面直角坐标系里的图象应该是()A.B.C.D.(1.B 2.D 3.C 4.B 5.C 6.C 7.D 8.B 9.B 10.B 11.D 12.C 13.C 14.B 15.C 16.D 17.C )二.填空题1.如图,一次函数y=kx+b(k>0)的图象与x轴的交点坐标为(﹣2,0),则关于x的不等式kx+b<0的解集是.2.已知一次函数y=ax+b(a、b是常数,a≠0)函数图象经过(﹣1,4),(2,﹣2)两点,下面说法中:(1)a=2,b=2;(2)函数图象经过(1,0);(3)不等式ax+b>0的解集是x <1;(4)不等式ax+b<0的解集是x<1;正确的说法有.(请写出所有正确说法的序号)3.如图是一次函数的y=kx+b图象,则关于x的不等式kx+b>0的解集为.4.函数y=kx+b(k≠0)的图象如图所示,则不等式kx+b<0的解集为.5.一次函数y=kx+b(k、b为常数,且k≠0)的图象如图所示.根据图象信息可求得关于x 的方程kx+b=﹣3的解为.6.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x>ax+4的解集为.7.如图,函数y=2x和y=ax+5的图象相交于A(m,3),则不等式2x<ax+5的解集为.8.如图,函数y=﹣2x和y=kx+b的图象相交于点A(m,3),则关于x的不等式kx+b+2x >0的解集为.9.如图所示,函数y1=|x|和y2=x+的图象相交于(﹣1,1),(2,2)两点.当y1>y2时,x的取值范围是.10.已知一次函数y=kx+b的图象如图,则关于x的不等式kx+b﹣1≤0的解集是.11.如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集.12.如图,已知函数y=kx+2与函数y=mx﹣4的图象交于点A,根据图象可知不等式kx+2<mx﹣4的解集是.13.如图,直线y=kx+b经过A(3,1),B(﹣1,﹣3)两点,则不等式x>kx+b>﹣3的解为.14.某通讯公司推出了①②两种收费方式,收费y1,y2(元)与通讯时间x(分钟)之间的函数关系如图所示,则使不等式kx+30<x成立的x的取值范围是.15.如图,直线y=kx+b与坐标轴的两个交点分别为A(2,0),B(0,﹣3),则不等式kx+b+3≥0的解为.16.已知一次函数y=﹣2x+a与y=x+b的图象如图所示,则关于x的不等式﹣2x+a≤x+b的解集是.(1.x<-2 2.(2)(3)3.x>-2 4.x<1 5.x=-4 6.x> 7.x< 8.x>-9.x<-1或x>2 10.x≥0 11.x>-1 12.x>-3 13.-1<x<3 14.x>300 15.x≥0 16.x≥-1)1.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式kx+b<4x+2<0的解集为.2.如图,一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2相交于点P,则关于x的不等式k1x+b1>k2x+b2的解集是.3.在平面直角坐标系中,将直线y=kx+1绕(0,1)逆时针旋转90°后,刚好经过点(﹣1,2),则不等式0<kx+1<﹣2x的解集为.4.如图,正比例函数y=2x与一次函数y=kx+4的图象交于点A(m,2),则不等式2x<kx+4的解集为.5.如图,过A点的一次函数y=kx+b的图象与正比例函数y=2x的图象相交于点B,则关于x的不等式kx+b>2x的解集是.6.如图,直线l1:y=k1x+b与直线l2:y=k2x交于点(﹣1,3),则关于x的不等式k2x>k1x+b 的解集为.7.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式kx+b<4x+2<0 的解集为.8.已知点P(x,y)位于第二象限,并且y≤x+4,x、y为整数,若以P为圆心,PO为半径画圆,则可以画出个半径不同的圆来.9.已知直线y=2x﹣b经过点(1,﹣1),则关于x的不等式2x﹣b≥0的解集是.10.已知直线y=2x+m经过点(﹣1,0),则关于x的不等式2x+m≥0的解集是.11.如图,已知一次函数y=ax+b(a≠0)和y=kx(k≠0)的图象交于点P(﹣4,﹣2),则不等式ax+b>kx的解是.12.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1>y2中,正确的序号是.13.已知一次函数y=ax+b中,x和y的部分对应值如表:x ﹣2 ﹣1 0 1.5 2 3y 6 4 2 ﹣1 ﹣2 ﹣4那么方程ax+b=0的解是.14.如图,直线y=kx+b(k<0)与x轴交于点(3,0),关于x的不等式kx+b>0的解集是.15.已知关于x的不等式kx﹣2>0(k≠0)的解集是x<﹣3,则直线y=﹣kx+2与x轴的交点是.16.如图,在同一平面直角坐标系中作出相应的两个一次函数的图象,则不等式组的解为.17.已知关于x的一元一次不等式组有解,则直线y=﹣x+b不经过第象限.18.如图,已知一次函数y=kx+b,观察图象回答下列问题:x时,kx+b<0.19.如图,直线L1:y=x+3与直线L2:y=ax+b相交于点A(m,4),则关于x的不等式x+3≤ax+b 的解集是.20.已知一次函数y=ax+b的图象如图,根据图中信息请写出不等式ax+b≥2的解集为.21.如图:函数y=2x和y=ax+4的图象交于点A(m,2),不等式2x<ax+4的解集为.22.某单位准备和一个体车主或一国营出租车公司中的一家签订月租车合同,设汽车每月行驶x千米,个体车主收费y1元,国营出租车公司收费为y2元,观察下列图象可知,当x 时,选用个体车较合算.23.如图,直线y1=kx+b经过点A(﹣1,﹣2)和点B(﹣2,0),直线y2=2x经过点A,当y1<y2时,x的取值范围是.24.直线l1:y=kx与直线l2:y=ax+b在同一平面直角坐标系中的图象如图,则关于x的不等式ax+b>kx的解集为.25.一次函数y=kx+b与反比例函数的图象交于A、B两点(如图),则0<<kx+b的解集是.26.已知一次函数y=kx+b(k、b为常数,k≠0)的图象如图所示,则kx+b>﹣2的解集为.27.如图,直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b的解集为.28.如图,一次函数y=kx+b与x轴、y轴分别交于A、B两点,则不等式kx+b>1的解集是.29.如图,一次函数y=kx+b(k、b为常数,且k≠0)与正比例函数y=ax(a为常数,且a≠0)相交于点P,则不等式kx+b≤ax的解集是.30.如图,函数y=ax+4和y=bx的图象相交于点A,则不等式ax+4<0的解集为,不等式bx≥ax+4的解集为.(1.-1<x<-2.x<-2 3.-1<x<-4.x<1 5.x<1 6.x<-1 7.-1<x<-8.4 9.x≥10.x≥-1 11.x<-4 12.①②③13.x=1 14.x<3 15.(-3,0)16.x>3 17.三18.<2.5 19.x≤1 20.x≥0 21.x<1 22.>150023.x>-1 24.x<1 25.x<-1 26.x>0 27.x<-1 28.x<029.x≥2 30.x>7x≥2)1.一次函数y1=kx+b与y2=﹣x+c的图象如图,则kx+b≥﹣x+c的解集是.2.如图,函数y=ax和y=bx+c的图象相交于点A(1,2),则不等式ax>bx+c的解集为.3.如图,函数y=﹣2x和y=ax+4的图象相交于A(m,3),则关于x的不等式0<ax+4<﹣2x的解集是.4.如图,一次函数y=kx+b(k<0)的图象过点(0,﹣2),则不等式kx+b<﹣2的解集是.5.y=kx+b(k≠0)的图象如图所示,当y<0时,x的取值范围是.6.如图,已知一次函数y=kx+b,观察图象回答下列问题:x时,kx+b>0.7.已知函数y1=k1x+b1与函数y2=k2x+b2的图象如图所示,则不等式y1<y2的解集是.8.如图,直线y1=kx+b过点A(0,2),且与直线y2=mx交于点P(1,m),则不等式mx >kx+b>mx﹣4的解.9.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x 的不等式0<k2x<k1x+b的解集为.10.如图,直线y=kx+b和y=mx都经过点A(﹣1,﹣2),则不等式mx<kx+b的解集为.11.一次函数的图象如图所示,当x>0时,y.12.观察图象,当x时,y>3?13.如图,已知函数y1=2x﹣1和y2=x﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式y1>y2的解集是.14.如图,函数y1=|x|,y2=x+.当y1>y2时,x的范围是.15.如图,已知函数y1=3x+b和y2=ax﹣3的图象交于点P(﹣2,﹣5),则不等式3x+b>ax ﹣3的解集为.16.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是.17.一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是.18.如图,直线y=kx+b过A(﹣1,2)、B(﹣2,0)两点,则0≤kx+b≤﹣2x的解集为.19.如图,已知函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是.20.根据如图的部分函数图象,可得不等式ax+b>mx+n的解集为.21.一次函数y=kx+b(k≠0)中两个变量x、y的部分对应值如下表所示:x …﹣2 ﹣1 0 1 2 …y …8 5 2 ﹣1 ﹣4 …那么关于x的不等式kx+b≥﹣1的解集是.22.如图,直线y=kx+b经过A(﹣1,1)和B(﹣3,0)两点,则关于x的不等式组0<kx+b<﹣x的解集为.23.如图,已知函数y=ax+2与y=bx﹣3的图象交于点A(2,﹣1),则根据图象可得不等式ax>bx﹣5的解集是.24.直线y=kx+3经过点A(﹣3,2),不等式﹣2x﹣4≤kx+3<3的解集是.25.如图直线y=kx+b过A(1,3),则不等式组kx+b≥3x>0的解集是.26.如图,函数y=2x和y=ax+5的图象相交于A(m,3),则不等式0<2x<ax+5的解集为.27.如图,直线y=kx+b经过A(,0)、B(2,1),则不等式0<2kx+2b≤x的解集为.28.如图,两直线y1=ax+2与y2=x相交于P点,当y2<y1≤2时,x的取值范围是.29.如图,已知函数y=3x+1和y=ax﹣3的图象交于点P(m,﹣5),则根据图象可得不等式3x+1<ax﹣3的解集是.30.如图,函数y=kx和的图象相交于A (a,2),则不等式的解集为.(1.x>3 2.x>1 3.-6<x<-4.x>0 5.x>1 6.>2.5 7.x<1 8.1<x<39.-1<x<0 10.x<-1 11.>-2 12.>4 13.x>-2 14.x<-1,x>2 15.x>-2 16.x<4 17.x<-2 18.-2≤x≤-1 19.x>-2 20.x<4 21.x≤1 22.-3<x<-1 23.x<2 24.-3≤x<0 25.0<x≤1 26.0<x< 27.<x≤2 28.0≤x<3 29.x<-2 30.)1.直线l1:y=k1x+b与直线l2:y=k2x+c在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b<k2x+c的解集为.2.如图,已知函数y=x+b和y=ax+4的图象交点为P,则不等式x+b>ax+4的解集为.3.如图.函数y=kx+b(k、b为常数,k≠0)的图象如图,则关于x的不等式kx+b>0的解集为.4.如图,已知函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式ax﹣3<3x+b<0的解集是.5.如图直线y=﹣x+m与y=nx+5n(n≠0)的交点的横坐标为﹣2,则关于﹣x+m>nx+5n>0的整数解为.6.已知函数y1、y2与自变量x的关系分别由下表给出,那么满足y1>y2的自变量x的取值是.x ﹣1 0 1 2 3y1 3 2 1 0 ﹣1x ﹣1 0 1 2 3y2﹣3 ﹣1 1 3 57.如图,已知一次函数y1=﹣x+b的图象与y轴交于点A(0,4),y2=kx﹣2的图象与x轴交于点B(1,0).那么使y1>y2成立的自变量x的取值范围是.8.如图,直线y=kx+b交坐标轴于A(2,0)、B(0,3),当x>0时,y的取值范围是.9.如图,若y1≥y2,则x的取值范围是.10.已知一次函数y=kx+b与y=mx+n的图象如图所示,若0<kx+b<mx+n,则x的取值范围为.11.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3<2x+b的解集是.12.如图,已知函数y1=ax+b和y2=kx的图象交于点P,则根据图象可得,当y1<y2时,x 的取值范围是.13.如图,函数y=﹣3x和y=kx+b的图象相交于点A(m,3),则关于x的不等式kx+b+3x <0的解集为.14.如图,一次函数y=kx+b与y=mx+n的图象交于点P(2,﹣1),则由函数图象,得不等式kx+b>mx+n的解集为.15.在平面直角坐标系中,函数y=kx+b与y=2x的图象交于点P(m,2),则不等式2x>kx+b 的解集为.16.如图,一次函数y=kx+b的图象与x轴的交点坐标为(2,0),则下列说法:①y随x 的增大而减小;②b>0;③关于x的方程kx+b的解为x=2;④kx+b<0的解集是x<2.其中说法正确的有.(把你认为说法正确的序号都填上).17.如图,一次函数y=kx+b(k,b是常数,k≠0)的图象经过A、B两点,则一元一次方程kx+b=0的解是;不等式kx+b>0的解集是.18.已知一次函数y=kx+b的图象如图,则不等式kx+b>0的解集是.。
《用二元一次方程组确定一次函数表达式》基础练习
5.7 用二元一次方程组确定一次函数表达式一、解答题1.已知一次函数的图象过点M(3,2 ),N(-1,-6 )两点,求一次函数的表达式. 2.如图一次函数b=的图象经过点A和点B,求一次函数的表达式.kxy+3.在弹性限度内,弹簧的长度y(cm )是所挂物体质量x(kg)的一次函数.当所挂物体的质量为3kg时,弹簧长16cm;当所挂物体的质量为4kg时,弹簧长度为16.5cm.求y与x之间的函数关系式.4.已知直线l与直线1=xy的交点的纵坐标-y的交点的横坐标为2,与直线82+=x+为7,求直线的解析式.5.如图,表示小王骑自行车和小李骑摩托车者沿相同的路线由甲地到乙地行驶过程的函数图象,两地相距80千米,请根据图象解决下列问题:⑴1l 是 车行驶过程的函数图象,2l 是 车行驶过程的函数图象. ⑵哪一个人出发早?早多长时间?哪一个人早到达目的地?早多长时间?⑶求出两个人在途中行驶的速度是多少?⑷分别求出表示自行车和摩托车行驶过程的函数解析式,并求出自变量x 的取值范围.参考答案1.解:设一次函数表达式为b kx y +=,依题意得:⎩⎨⎧+-=-+=bk b k 632解得:⎩⎨⎧-==42b k答:一次函数表达式为42-=x y2.解:依题意得:⎩⎨⎧+=-+-=bk b k 233解得:⎩⎨⎧=-=12b k 答:一次函数表达式为12+-=x y3.解:设y 与x 之间的函数关系式为b kx y +=,依题意得:⎩⎨⎧+=+=b k b k 45.16316 解得:⎩⎨⎧==5.145.0b k答:y 与x 之间的函数关系式为5.145.0+=x y4.解:设直线l 的解析式为b kx y +=∵12+=x y ,当2=x 时,5=y∴8+-=x y ,当7=y 时,1=x依题意得:⎩⎨⎧+=+=b k b k 725 解得:⎩⎨⎧=-=92b k答:直线l 的解析式为92+-=x y 。
北师大版八年级数学上册第五章《二元一次方程与一次函数》课时练习题(含答案)
北师大版八年级数学上册第五章《6.二元一次方程与一次函数》课时练习题(含答案)一、单选题1.直线2y x =与直线5y x =-+的交点为( )A .()5,10B .510,33⎛⎫ ⎪⎝⎭C .()4,8D .47,33⎛⎫ ⎪⎝⎭ 2.一次函数26y x =-+的图象与两坐标轴围成的三角形的面积是( )A .6B .9C .12D .183.已知关于x ,y 的方程组32y x b y x =-+⎧⎨=-+⎩的解是1x y m=-⎧⎨=⎩,则直线y x b =-+与32y x =-+的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.在同一平面直角坐标系中,一次函数y ax b =+与()0y mx n a m =+<<的图象如图所示,小星根据图象得到如下结论:①在一次函数y mx n =+的图象中,y 的值随着x 值的增大而增大;②方程组y ax b y mx n-=⎧⎨-=⎩的解为32x y =-⎧⎨=⎩; ③方程0mx n +=的解为2x =;④当0x =时,1ax b +=-.其中结论正确的个数是( )A .1B .2C .3D .45.若直线21y x =+与y x b =-+的交点在第一象限,则b 的值可以是( )A .2B .1C .0D .1-6.如图所示,在直角坐标系中的两条直线分别是1y x =-+和25y x =-,那么方程组251y x y x =-⎧⎨=-+⎩的解是( )A .21x y =⎧⎨=-⎩B .12x y =-⎧⎨=⎩C .01x y =⎧⎨=⎩D .10x y =⎧⎨=⎩7.若直线1l 经过点()0,4,2l 经过点()3,2,且1l 与2l 关于x 轴对称,则1l 与2l 的交点坐标为( )A .()2,0-B .()2,0C .()6,0-D .()6,08.如图,在平面直角坐标系中,点()3,A a 是直线2y x =与直线y x b =+的交点,点B 是直线y x b =+与y 轴的交点,点P 是x 轴上的一个动点,连接P A ,PB ,则PA PB +的最小值是( )A .6B .35C .9D .310二、填空题9.在平面直角坐标系中,O 为坐标原点,若直线y =x +3分别与x 轴,直线y =-2x 交于点A ,B ,则△AOB 的面积为 _____.10.在平面直角坐标系中,一次函数y =kx +b 和y =mx +n 相交于点(2,﹣1),则关于x ,y的方程组y kx b y mx n =+⎧⎨=+⎩的解是______. 11.如果直线y =12x +n 与直线y =mx -1的交点坐标为(1,-2),那么m =________,n =________.12.如图,在同一平面直角坐标系中,直线l 1:y 14=x 12+与直线l 2:y =kx +3相交于点A ,则方程组11423y x y kx ⎧=+⎪⎨⎪=+⎩的解为 ___.13.已知二元一次方程组522x y x y -=-⎧⎨+=-⎩的解为41x y =-⎧⎨=⎩,则在同一平面直角坐标系中,直线l 1:y =x +5与直线l 2:y =-12x -1的交点坐标为____.三、解答题14.在同一平面直角坐标系中画出正比例函数y =x 和一次函数y =﹣x +2的图象,并求出这两个函数图象与x 轴围成的三角形面积.x+2,且l1与x轴交于点A,直线l2经过定点B(4,15.如图,直线l1的函数表达式为y=120),C(﹣1,5),直线l1与l2交于点D.(1)求直线l2的函数表达式;(2)求△ADB的面积;(3)在x轴上是否存在一点E,使△CDE的周长最短?若存在,请直接写出点E的坐标;若不存在,请说明理由.16.如图,一次函数y=x+2的图象经过点A(2,4),B(n,﹣1).(1)求n的值;(2)请判断点P(﹣2,4)在不在该直线上.(3)连接OA,OB,求△OAB的面积.x+1,与x轴、y轴分别交于A,B两点,以线段17.如图,已知直线m的解析式为y=﹣12AB为直角边在第一象限内作等腰Rt△ABC,且∠BAC=90°,点P为直线x=1上的动点,且△ABP的面积与△ABC的面积相等.(1)求△ABC 的面积;(2)求点P 的坐标.18.如图1,在平面直角坐标xOy 中,直线1l :1y x =+与x 抽交于点A ,直线2l :33y x =-与x 轴交于点B ,与1l 相交于C 点.(1)请直接写出点A ,点B ,点C 的坐标:A _________,B ________,C _______. (2)如图2,动直线x t =分别与直线1l 、2l 交于P 、Q 两点.①若2PQ =,求t 的值;②若存在2AQC ABC S S =△△,求出此时点Q 的坐标;若不存在,请说明理由.19.如图1,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于点C.(1)若直线AB解析式为y=﹣2x+12,求:①求点C的坐标;②求△OAC的面积.(2)在(1)的条件下,若P是x轴上的一个动点,直接写出当△POC是等腰三角形时P的坐标.(3)如图2,作∠AOC的平分线OF,若AB OF⊥,垂足为E,OA=4,P是线段AC上的动点,过点P作OC,OA的垂线,垂足分别为M,N,试问PM+PN的值是否变化,若不变,求出PM+PN的值;若变化,请说明理由。
(完整版)一次函数与二元一次方程专题
一次函数与二元一次方程专题一.选择题(共10小题)1.如图,两个一次函数图象的交点坐标为(2,4),则关于x,y的方程组的解为()A.B.C.D.2.如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x、y的二元一次方程组的解是()A.B.C.D.3.已知直线y=2x与y=﹣x+b的交点为(﹣1,a),则方程组的解为()A.B.C.D.4.如图,在平面直角坐标系中,直线l1:y=x+3与直线l2:y=mx+n交于点A(﹣1,b),则关于x、y的方程组的解为()A.B.C.D.5.直线l是以二元一次方程8x﹣4y=5的解为坐标所构成的直线,则该直线不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.用图象法解方程组时,下图中正确的是()A.B.C.D.7.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象如图所示,则所解的二元一次方程组是()A.B.C.D.8.若关于x,y的二元一次方程组的解是,则直线与y=﹣x+5的交点坐标为()A.(4,1) B.(1,4) C.(﹣4,1)D.(2,1)9.如果是方程组的解,则一次函数y=mx+n的解析式为(()A.y=﹣x+2 B.y=x﹣2 C.y=﹣x﹣2 D.y=x+210.某校九年级(2)班40名同学这“希望工程”捐款,共捐款100元,捐款情况如下表:捐款(元)1234人数67表格中捐款2元和3元的人数不小心被墨水污染已看不清楚,若设捐款2元的有x名同学,捐款3元的有y名同学,假设(x,y)是两个一次函数图象的交点,则这两个一次函数解析式分别是()A.y=27﹣x与y=x+22 B.y=27﹣x与y=x+C.y=27﹣x与y=x+33 D.y=27﹣x与y=x+33二.填空题(共10小题)11.已知一次函数y=﹣mx+4和y=3x﹣n的图象交于点P(3,1),则关于x的方程组的解是.12.如果方程组无解,那么直线y=(﹣k+1)x﹣3不经过第象限.13.如图,一次函数y=kx1+b1的图象l1与y=kx2+b2的图象l2相交于点P,则方程组的解是.14.如图,已知两条直线l1、l2的交点可看作是某方程组的解,则这个方程组为.15.如图,点A的坐标可以看成是方程组的解.16.一次函数y=x+1与y=ax+3的图象交于点P,且点P的横坐标为1,则关于x,y的方程组的解是.17.如图,已知一次函数y=2x+b和y=kx﹣3(k≠0)的图象交于点P,则二元一次方程组的解是.18.如图,直线l1:y=x+2与直线l2:y=kx+b相交于点P(m,4),则方程组的解是.19.已知直线y=2x与y=﹣x+b的交点为(﹣1,a),则方程组的解为.20.如图所示,直线L1的解析式是y=2x﹣1,直线L2的解析式是y=x+1,则方程组的解是.三.解答题(共10小题)21.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值;(2)不解关于x、y的方程组,请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由.22.如图,(1)点A的坐标可以看成是方程组的解.(写出解答过程)(2)求出两直线与y轴所围成的三角形的面积.23.某县在实施“村村通”工程中,决定在A、B两村之间修一条公路,甲、乙两个工程队分别从A、B两村同时开始相向修路,施工期间,甲队改变了一次修路速度,乙队因另有任务提前离开,余下的任务由甲队单独完成,直到公路修通,甲、乙两个工程队各自所修公路的长度y(米)与修路时间x(天)之间的函数图象如图所示.(1)求甲队前8天所修公路的长度;(2)求甲工程队改变修路速度后y与x之间的函数关系式;(3)求这条公路的总长度.24.汽车出发前油箱有油50L,行驶若干小时后,在加油站加油若干升.图象表示的是从出发后,油箱中剩余油量y(L)与行驶时间t(h)之间的关系.(1)汽车行驶h后加油,中途加油L;(2)求加油前油箱剩余油量y与行驶时间t的函数关系式;(3)已知加油前、后汽车都以70km/h匀速行驶,如果加油站距目的地210km,那么要到达目的地,油箱中的油是否够用?请说明理由.25.已知在平面直角坐标系xOy中,已知一次函数y=kx+b(k≠0)的图象经过点A(﹣2,1)、B(4,4).求这个一次函数的解析式.26.已知y与x成一次函数,当x=0时,y=3,当x=2时,y=7.(1)写出y与x之间的函数关系式.(2)当x=4时,求y的值.27.已知y﹣3与x+5成正比例,且当x=2时,y=17.求:(1)y与x的函数关系;(2)当x=5时,y的值.28.已知一次函数的图象经过A(﹣2,﹣3),B(1,3)两点.(1)求这个一次函数的解析式;(2)求这个一次函数的图象与两坐标轴围成的三角形的面积.29.甲、乙两辆汽车沿同一路线从A地前往B地,甲以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙在甲出发2小时后匀速前往B地,设甲、乙两车与A地的路程为s(千米),甲车离开A 地的时间为t(时),s与t之间的函数图象如图所示.(1)求a和b的值.(2)求两车在途中相遇时t的值.(3)当两车相距60千米时,t=时.30.某公司一辆绿化洒水车以每分50升的速度给一片树林浇水,一段时间后关闭洒水阀门,行驶到一片草坪处,以另一洒水速度匀速给草坪浇水,直到洒水车内的水全部用光,洒水车内的水量y(升)与时间x(分)之间的函数图象如图所示.(1)求a的值;(2)求洒水车给草坪浇水时y与x之间的函数关系式.(3)当x=13时,洒水车共浇水多少升?一次函数与二元一次方程专题参考答案与试题解析一.选择题(共10小题)1.(2017•昌平区二模)如图,两个一次函数图象的交点坐标为(2,4),则关于x,y的方程组的解为()A.B.C.D.【分析】根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案.【解答】解:∵直线y1=k1x+b1与y2=k2x+b2的交点坐标为(2,4),∴二元一次方程组的解为,故答案为A【点评】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.2.(2016•临清市二模)如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x、y的二元一次方程组的解是()A.B.C.D.【分析】由图可知:两个一次函数的交点坐标为(﹣3,1);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【解答】解:函数y=ax+b和y=kx的图象交于点P(﹣3,1),即x=﹣3,y=1同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故选C.【点评】本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.3.(2016春•单县期末)已知直线y=2x与y=﹣x+b的交点为(﹣1,a),则方程组的解为()A.B.C.D.【分析】根据一次函数图象上点的坐标特征确定两直线的交点坐标,然后根据函数图象交点坐标为两函数解析式组成的方程组的解选择答案.【解答】解:把(﹣1,a)代入y=2x得a=﹣2,则直线y=2x与y=﹣x+b的交点为(﹣1,﹣2),则方程组的解为.故选D.【点评】本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.4.(2016秋•滕州市期末)如图,在平面直角坐标系中,直线l1:y=x+3与直线l2:y=mx+n交于点A(﹣1,b),则关于x、y的方程组的解为()A.B.C.D.【分析】首先将点A的横坐标代入y=x+3求得其纵坐标,然后即可确定方程组的解.【解答】解:∵直线l1:y=x+3与直线l2:y=mx+n交于点A(﹣1,b),∴当x=﹣1时,b=﹣1+3=2,∴点A的坐标为(﹣1,2),∴关于x、y的方程组的解是,故选C.【点评】本题考查了一次函数与二元一次方程组的知识,解题的关键是了解方程组的解与函数图象的交点坐标的关系.5.(2016春•迁安市期末)直线l是以二元一次方程8x﹣4y=5的解为坐标所构成的直线,则该直线不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先用含x的代数式表示y可得一次函数解析式,再根据一次函数图象与系数的关系即可求解.【解答】解:∵8x﹣4y=5,∴y=2x﹣,∵k=2>0,b=﹣<0,∴图象经过第一、三、四象限,即不经过第二象限.故选B.【点评】此题考查了一次函数与二元一次方程,任何一个二元一次方程都可以化成一个一次函数.同时考查了一次函数图象与系数的关系.6.(2015秋•连云港期末)用图象法解方程组时,下图中正确的是()A.B.C.D.【分析】将方程组的两个方程,化为y=kx+b的形式;然后再根据两个一次函数的解析式,判断符合条件的函数图象.【解答】解:解方程组的两个方程可以转化为:y=x﹣2和y=﹣2x+4;只有C符合这两个函数的图象.故选C.【点评】一般地,每个二元一次方程组都对应着两个一次函数,也就是两条直线.从“数”的角度看,解方程组就是求使两个函数值相等的自变量的值以及此时的函数值.从“形”的角度看,解方程组就是相当于确定两条直线的交点坐标.7.(2016春•长春期中)用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象如图所示,则所解的二元一次方程组是()A.B.C.D.【分析】由于函数图象交点坐标为两函数解析式组成的方程组的解.因此本题应先用待定系数法求出两条直线的解析式,联立两个函数解析式所组成的方程组即为所求的方程组.【解答】解:根据给出的图象上的点的坐标,(0,﹣1)、(1,1)、(0,2);分别求出图中两条直线的解析式为y=2x﹣1,y=﹣x+2,因此所解的二元一次方程组是.故选A.【点评】本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.8.(2015秋•兴化市校级月考)若关于x,y的二元一次方程组的解是,则直线与y=﹣x+5的交点坐标为()A.(4,1) B.(1,4) C.(﹣4,1)D.(2,1)【分析】二元一次方程可以化为一次函数,两个二元一次方程组的解就是两个函数的交点坐标.【解答】解:∵二元一次方程组的解是,∴直线与y=﹣x+5的交点坐标为(4,1).故选A.【点评】本题主要考查了一次函数与二元一次方程组,满足解析式的点就在函数的图象上,在函数图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.9.(2014•泗县校级模拟)如果是方程组的解,则一次函数y=mx+n的解析式为(()A.y=﹣x+2 B.y=x﹣2 C.y=﹣x﹣2 D.y=x+2【分析】把方程组的解代入方程组得到关于m、n的方程组,然后求出m、n的值,再代入函数解析式即可得解.【解答】解:根据题意,将代入方程组,得,即,①×2得,6m﹣2n=2…③,②﹣③得,3m=3,∴m=1,把m=1代入①,得,3﹣n=1,∴n=2,∴一次函数解析式为y=x+2.故选D.【点评】本题考查了一次函数与二元一次方程组,根据方程组的解的定义得到关于m、n的方程组并求出m、n的值是解题的关键.10.(2013•荆州模拟)某校九年级(2)班40名同学这“希望工程”捐款,共捐款100元,捐款情况如下表:捐款(元)1234人数67表格中捐款2元和3元的人数不小心被墨水污染已看不清楚,若设捐款2元的有x名同学,捐款3元的有y名同学,假设(x,y)是两个一次函数图象的交点,则这两个一次函数解析式分别是()A.y=27﹣x与y=x+22 B.y=27﹣x与y=x+C.y=27﹣x与y=x+33 D.y=27﹣x与y=x+33【分析】本题的等量关系是:捐1元的人数+捐2元的人数+捐3元的人数+捐4元的人数=40人,1元的捐款+2元的捐款+3元的捐款+4元的捐款=100元.由此可得出方程组,求出未知数的解,进而代入各选项解析式,即可得出答案.【解答】解:设捐款2元的有x人,捐款3元的有y人,则,解之得:.则捐款2元的有15人,捐款3元的有12人,当x=15,y=12时,只有代入A使得两函数解析式左右相等,故选:A.【点评】此题主要考查了二元一次方程组的应用以及两函数交点问题,解题关键是求出x,y的值.二.填空题(共10小题)11.(2017春•云梦县期中)已知一次函数y=﹣mx+4和y=3x﹣n的图象交于点P (3,1),则关于x的方程组的解是.【分析】根据方程组的解即为函数图象的交点坐标解答.【解答】解:∵一次函数y=﹣mx+4和y=3x﹣n的图象交于点P(3,1),∴方程组的解是;故答案为:【点评】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.12.(2017春•威海期中)如果方程组无解,那么直线y=(﹣k+1)x﹣3不经过第二象限.【分析】方程组无解,即直线y=﹣x+1与y=(2k+1)x﹣3平行,那么﹣1=2k+1,求出k的值,进而求解即可.【解答】解:∵方程组无解,∴直线y=﹣x+1与y=(2k+1)x﹣3平行,∴﹣1=2k+1,解得k=﹣1,在直线y=2x﹣3中,∵2>0,﹣3<0,∴直线y=2x﹣3经过第一、三、四象限,不经过第二象限.故答案为二.【点评】本题考查了一次函数与二元一次方程组的关系,一次函数图象与系数的关系,求出k的值是解题的关键.13.(2016•莘县二模)如图,一次函数y=kx1+b1的图象l1与y=kx2+b2的图象l2相交于点P,则方程组的解是.【分析】根据二元一次方程组的解即为两直线的交点坐标解答.【解答】解:由图可知,方程组的解是.故答案为:.【点评】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.14.(2016•重庆校级二模)如图,已知两条直线l1、l2的交点可看作是某方程组的解,则这个方程组为.【分析】根据函数图象可以分别求得直线l1、l2的函数解析式,从而可以解答本题.【解答】解:由函数图象可知,直线l1过点(0,),(2,3),设解析式为:y=k1+b,则,解得,,即直线l1的解析式为:y=;直线l2过点(0,0),(2,3),设解析式为y=k2x,则3=2k2,得k2=,即直线l2的解析式为:y=,故这个方程组为:,故答案为:.【点评】本题考查一次函数与二元一次方程组,解题的关键是明确一次函数与二元一次方程组的关系,利用数形结合的思想解答问题.15.(2016春•安陆市期末)如图,点A的坐标可以看成是方程组的解.【分析】先利用待定系数法分别求出两直线的解析式,然后根据函数图象交点坐标为两函数解析式组成的方程组的解即可得到答案.【解答】解:设过点(0,5)和点(2,3)的解析式为y=kx+b,则,解得,所以该一次函数解析式为y=﹣x+5;设过点(0,﹣1)和点(2,3)的解析式为y=mx+n,则,解得,所以该一次函数解析式为y=2x﹣1,所以点A的坐标可以看成是方程组解.故答案为.【点评】本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.也考查了待定系数法求次函数解析式.16.(2016秋•郓城县期末)一次函数y=x+1与y=ax+3的图象交于点P,且点P 的横坐标为1,则关于x,y的方程组的解是.【分析】先把x=1代入y=x+1,得出y=2,则两个一次函数的交点P的坐标为(1,2);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【解答】解:把x=1代入y=x+1,得出y=2,函数y=x+1和y=ax+3的图象交于点P(1,2),即x=1,y=2同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故答案为.【点评】本题考查了一次函数与二元一次方程组的联系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.17.(2016秋•南海区期末)如图,已知一次函数y=2x+b和y=kx﹣3(k≠0)的图象交于点P,则二元一次方程组的解是.【分析】根据图象可得两个一次函数的交点坐标为P(4,﹣6),那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【解答】解:∵一次函数y=2x+b和y=kx﹣3(k≠0)的图象交于点P(4,﹣6),∴点P(4,﹣6)满足二元一次方程组,∴方程组的解是.故答案为.【点评】本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.18.(2016春•沙坪坝区期中)如图,直线l1:y=x+2与直线l2:y=kx+b相交于点P(m,4),则方程组的解是.【分析】由两条直线的交点坐标(m,4),先求出m,再求出方程组的解即可.【解答】解:∵y=x=2经过P(m,4),∴4=m+2,∴m=2,∴直线l1:y=x+2与直线l2:y=kx+b相交于点P(2,4),∴,故答案为【点评】本题考查一次函数的交点与方程组的解的关系、待定系数法等知识,解题的关键是理解方程组的解就是两个函数图象的交点坐标,属于中考常考题型.19.(2016秋•曲江区校级期中)已知直线y=2x与y=﹣x+b的交点为(﹣1,a),则方程组的解为.【分析】根据一次函数图象上点的坐标特征确定两直线的交点坐标,然后根据函数图象交点坐标为两函数解析式组成的方程组的解选择答案.【解答】解:把(﹣1,a)代入y=2x得a=﹣2,则直线y=2x与y=﹣x+b的交点为(﹣1,﹣2),则方程组的解为.故答案为:.【点评】本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.20.(2015•西藏一模)如图所示,直线L1的解析式是y=2x﹣1,直线L2的解析式是y=x+1,则方程组的解是.【分析】二元一次方程组的解就是组成二元一次方程组的两个方程的公共解,即直线l1与l2的交点的坐标.【解答】解:根据题意知,二元一次方程组的解就是直线l1与l2的交点的坐标,又∵交点坐标(2,3),∴原方程组的解是:.故答案是:【点评】本题考查了一次函数与二元一次方程组.二元一次方程组的解就是组成该方程组的两条直线的图象的交点.三.解答题(共10小题)21.(2016春•浠水县期末)如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P (1,b).(1)求b的值;(2)不解关于x、y的方程组,请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由.【分析】(1)直接把P(1,b)代入y=x+1可求出b的值;(2)利用方程组的解就是两个相应的一次函数图象的交点坐标求解;(3)根据一次函数图象上点的坐标特征进行判断.【解答】解:(1)把P(1,b)代入y=x+1得b=1+1=2;(2)由(1)得P(1,2),所以方程组的解为;(3)直线l3:y=nx+m经过点P.理由如下:因为y=mx+n经过点P(1,2),所以m+n=2,所以直线y=nx+m也经过P点.【点评】本题考查了一次函数与二元一次方程(组):方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.利用一次函数图象上点的坐标特征对(3)进行判断.22.(2014秋•陕西校级月考)如图,(1)点A的坐标可以看成是方程组的解.(写出解答过程)(2)求出两直线与y轴所围成的三角形的面积.【分析】(1)先利用待定系数法分别求出两直线的解析式,然后根据函数图象交点坐标为两函数解析式组成的方程组的解即可得到答案;(2)根据函数图象与坐标轴的交点坐标和两函数的交点坐标利用三角形的面积公式进行计算即可.【解答】解:(1)设过点(0,5)和点(2,3)的解析式为y=kx+b,则,解得,所以该一次函数解析式为y=﹣x+5;设过点(0,﹣1)和点(2,3)的解析式为y=mx+n,则,解得,所以该一次函数解析式为y=2x﹣1,所以点A的坐标可以看成是方程组解.故答案为:;(2)围成的三角形的面积为:S=[5﹣(﹣1)]×2=6.【点评】本题考查了一次函数与二元一次方程(组)的知识,函数图象交点坐标为两函数解析式组成的方程组的解.也考查了待定系数法求次函数解析式.23.(2017•农安县模拟)某县在实施“村村通”工程中,决定在A、B两村之间修一条公路,甲、乙两个工程队分别从A、B两村同时开始相向修路,施工期间,甲队改变了一次修路速度,乙队因另有任务提前离开,余下的任务由甲队单独完成,直到公路修通,甲、乙两个工程队各自所修公路的长度y(米)与修路时间x(天)之间的函数图象如图所示.(1)求甲队前8天所修公路的长度;(2)求甲工程队改变修路速度后y与x之间的函数关系式;(3)求这条公路的总长度.【分析】(1)由函数图象在x=8时相交可知:前8天甲、乙两队修的公路一样长,结合修路长度=每日所修长度×修路天数可计算出乙队前8天所修的公路长度,从而得出结论;(2)设甲工程队改变修路速度后y与x之间的函数关系式为y=kx+b,代入图象中点的坐标可列出关于k和b的二元一次方程组,解方程组即可得出结论;(3)由图象可知乙队修的公路总长度,再根据(2)得出的解析式求出甲队修的公路的总长度,二者相加即可得出结论.【解答】解:(1)由图象可知前八天甲、乙两队修的公路一样长,乙队前八天所修公路的长度为840÷12×8=560(米),答:甲队前8天所修公路的长度为560米.(2)设甲工程队改变修路速度后y与x之间的函数关系式为y=kx+b,将点(4,360),(8,560)代入,得,解得.故甲工程队改变修路速度后y与x之间的函数关系式为y=50x+160(4≤x≤16).(3)当x=16时,y=50×16+160=960;由图象可知乙队共修了840米.960+840=1800(米).答:这条公路的总长度为1800米.【点评】本题考查了一次函数的性质、代数系数法求函数解析式,解题的关键:(1)由图象交点得出前8天甲、乙两队修的公路一样长;(2)代入点的坐标得出关于k、b的二元一次方程组;(3)代入x值求y值.本题属于基础题,难度不大,解决给题型题目是,结合图象中的点,代入函数解析式得出方程(或方程组)是关键.24.(2017•青羊区模拟)汽车出发前油箱有油50L,行驶若干小时后,在加油站加油若干升.图象表示的是从出发后,油箱中剩余油量y(L)与行驶时间t(h)之间的关系.(1)汽车行驶3h后加油,中途加油31L;(2)求加油前油箱剩余油量y与行驶时间t的函数关系式;(3)已知加油前、后汽车都以70km/h匀速行驶,如果加油站距目的地210km,那么要到达目的地,油箱中的油是否够用?请说明理由.【分析】(1)根据函数图象3小时时油箱油量变多解答;(2)利用待定系数法求一次函数解析式解答;(3)求出加油前行驶的路程和用油量,再求出从加油站到目的地所需要的油量,然后判断即可.【解答】解:(1)从图象中可以看出,汽车行驶3小时后加油,中途加油45﹣14=31升;(2)因为函数图象过点(0,50)和(3,14),所以设函数关系式为y=kt+b,则,解得,因此,y=﹣12t+50;(3)油箱中的油够用.∵汽车加油前行驶了3小时,行驶了3×70=210(km),用去了50﹣14=36升油,而目的地距加油站还有210km,∴要达到目的地还需36升油,而中途加油31升后有油45升,即油箱中的剩余油量是45升,所以够用.因此,要到达目的地油箱中的油够用.【点评】本题考查了一次函数的应用,读懂题目信息并准确识图,观察出油箱中的油量的变化是解题的关键.25.(2017春•普陀区期中)已知在平面直角坐标系xOy中,已知一次函数y=kx+b(k≠0)的图象经过点A(﹣2,1)、B(4,4).求这个一次函数的解析式.【分析】根据点A、B的坐标利用待定系数法求出一次函数的解析式,此题得解.【解答】解:(1)∵一次函数y=kx+b的图象经过点A(﹣2,1)、B(4,4).∴,解得:.∴这个一次函数的解析式为:y=x+2.【点评】本题考查了待定系数法求一次函数解析式,熟练掌握利用待定系数法求一次函数解析式的方法是解题的关键.26.(2017春•沙坪坝区期中)已知y与x成一次函数,当x=0时,y=3,当x=2时,y=7.(1)写出y与x之间的函数关系式.(2)当x=4时,求y的值.【分析】(1)根据点的坐标,利用待定系数法求出一次函数关系式即可;(2)将x=4代入一次函数关系式中,求出y值即可.【解答】解:(1)设y与x之间的函数关系式为y=kx+b,将(0,3)、(2,7)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=2x+3.(2)当x=4时,y=2x+3=2×4+3=11.【点评】本题考查了待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)根据点的坐标利用待定系数法求出一次函数关系式;(2)将x=4代入一次函数关系式求出y值.27.(2016秋•二道区校级期末)已知y﹣3与x+5成正比例,且当x=2时,y=17.求:(1)y与x的函数关系;(2)当x=5时,y的值.【分析】(1)由y﹣3与x+5成正比例,设y﹣3=k(x+5),把x与y的值代入求。
(完整版)一次函数与二元一次方程专题
一次函数与二元一次方程专题一.选择题(共10小题)1.如图,两个一次函数图象的交点坐标为(2,4),则关于x,y的方程组的解为()A.B.C.D.2.如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x、y的二元一次方程组的解是()A.B.C.D.3.已知直线y=2x与y=﹣x+b的交点为(﹣1,a),则方程组的解为()A.B.C.D.4.如图,在平面直角坐标系中,直线l1:y=x+3与直线l2:y=mx+n交于点A(﹣1,b),则关于x、y的方程组的解为()A.B.C.D.5.直线l是以二元一次方程8x﹣4y=5的解为坐标所构成的直线,则该直线不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.用图象法解方程组时,下图中正确的是()A.B.C.D.7.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象如图所示,则所解的二元一次方程组是()A.B.C.D.8.若关于x,y的二元一次方程组的解是,则直线与y=﹣x+5的交点坐标为()A.(4,1) B.(1,4) C.(﹣4,1)D.(2,1)9.如果是方程组的解,则一次函数y=mx+n的解析式为(()A.y=﹣x+2 B.y=x﹣2 C.y=﹣x﹣2 D.y=x+210.某校九年级(2)班40名同学这“希望工程”捐款,共捐款100元,捐款情况如下表:捐款(元)1234人数67表格中捐款2元和3元的人数不小心被墨水污染已看不清楚,若设捐款2元的有x名同学,捐款3元的有y名同学,假设(x,y)是两个一次函数图象的交点,则这两个一次函数解析式分别是()A.y=27﹣x与y=x+22 B.y=27﹣x与y=x+C.y=27﹣x与y=x+33 D.y=27﹣x与y=x+33二.填空题(共10小题)11.已知一次函数y=﹣mx+4和y=3x﹣n的图象交于点P(3,1),则关于x的方程组的解是.12.如果方程组无解,那么直线y=(﹣k+1)x﹣3不经过第象限.13.如图,一次函数y=kx1+b1的图象l1与y=kx2+b2的图象l2相交于点P,则方程组的解是.14.如图,已知两条直线l1、l2的交点可看作是某方程组的解,则这个方程组为.15.如图,点A的坐标可以看成是方程组的解.16.一次函数y=x+1与y=ax+3的图象交于点P,且点P的横坐标为1,则关于x,y的方程组的解是.17.如图,已知一次函数y=2x+b和y=kx﹣3(k≠0)的图象交于点P,则二元一次方程组的解是.18.如图,直线l1:y=x+2与直线l2:y=kx+b相交于点P(m,4),则方程组的解是.19.已知直线y=2x与y=﹣x+b的交点为(﹣1,a),则方程组的解为.20.如图所示,直线L1的解析式是y=2x﹣1,直线L2的解析式是y=x+1,则方程组的解是.三.解答题(共10小题)21.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值;(2)不解关于x、y的方程组,请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由.22.如图,(1)点A的坐标可以看成是方程组的解.(写出解答过程)(2)求出两直线与y轴所围成的三角形的面积.23.某县在实施“村村通”工程中,决定在A、B两村之间修一条公路,甲、乙两个工程队分别从A、B两村同时开始相向修路,施工期间,甲队改变了一次修路速度,乙队因另有任务提前离开,余下的任务由甲队单独完成,直到公路修通,甲、乙两个工程队各自所修公路的长度y(米)与修路时间x(天)之间的函数图象如图所示.(1)求甲队前8天所修公路的长度;(2)求甲工程队改变修路速度后y与x之间的函数关系式;(3)求这条公路的总长度.24.汽车出发前油箱有油50L,行驶若干小时后,在加油站加油若干升.图象表示的是从出发后,油箱中剩余油量y(L)与行驶时间t(h)之间的关系.(1)汽车行驶h后加油,中途加油L;(2)求加油前油箱剩余油量y与行驶时间t的函数关系式;(3)已知加油前、后汽车都以70km/h匀速行驶,如果加油站距目的地210km,那么要到达目的地,油箱中的油是否够用?请说明理由.25.已知在平面直角坐标系xOy中,已知一次函数y=kx+b(k≠0)的图象经过点A(﹣2,1)、B(4,4).求这个一次函数的解析式.26.已知y与x成一次函数,当x=0时,y=3,当x=2时,y=7.(1)写出y与x之间的函数关系式.(2)当x=4时,求y的值.27.已知y﹣3与x+5成正比例,且当x=2时,y=17.求:(1)y与x的函数关系;(2)当x=5时,y的值.28.已知一次函数的图象经过A(﹣2,﹣3),B(1,3)两点.(1)求这个一次函数的解析式;(2)求这个一次函数的图象与两坐标轴围成的三角形的面积.29.甲、乙两辆汽车沿同一路线从A地前往B地,甲以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙在甲出发2小时后匀速前往B地,设甲、乙两车与A地的路程为s(千米),甲车离开A 地的时间为t(时),s与t之间的函数图象如图所示.(1)求a和b的值.(2)求两车在途中相遇时t的值.(3)当两车相距60千米时,t=时.30.某公司一辆绿化洒水车以每分50升的速度给一片树林浇水,一段时间后关闭洒水阀门,行驶到一片草坪处,以另一洒水速度匀速给草坪浇水,直到洒水车内的水全部用光,洒水车内的水量y(升)与时间x(分)之间的函数图象如图所示.(1)求a的值;(2)求洒水车给草坪浇水时y与x之间的函数关系式.(3)当x=13时,洒水车共浇水多少升?一次函数与二元一次方程专题参考答案与试题解析一.选择题(共10小题)1.(2017•昌平区二模)如图,两个一次函数图象的交点坐标为(2,4),则关于x,y的方程组的解为()A.B.C.D.【分析】根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案.【解答】解:∵直线y1=k1x+b1与y2=k2x+b2的交点坐标为(2,4),∴二元一次方程组的解为,故答案为A【点评】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.2.(2016•临清市二模)如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x、y的二元一次方程组的解是()A.B.C.D.【分析】由图可知:两个一次函数的交点坐标为(﹣3,1);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【解答】解:函数y=ax+b和y=kx的图象交于点P(﹣3,1),即x=﹣3,y=1同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故选C.【点评】本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.3.(2016春•单县期末)已知直线y=2x与y=﹣x+b的交点为(﹣1,a),则方程组的解为()A.B.C.D.【分析】根据一次函数图象上点的坐标特征确定两直线的交点坐标,然后根据函数图象交点坐标为两函数解析式组成的方程组的解选择答案.【解答】解:把(﹣1,a)代入y=2x得a=﹣2,则直线y=2x与y=﹣x+b的交点为(﹣1,﹣2),则方程组的解为.故选D.【点评】本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.4.(2016秋•滕州市期末)如图,在平面直角坐标系中,直线l1:y=x+3与直线l2:y=mx+n交于点A(﹣1,b),则关于x、y的方程组的解为()A.B.C.D.【分析】首先将点A的横坐标代入y=x+3求得其纵坐标,然后即可确定方程组的解.【解答】解:∵直线l1:y=x+3与直线l2:y=mx+n交于点A(﹣1,b),∴当x=﹣1时,b=﹣1+3=2,∴点A的坐标为(﹣1,2),∴关于x、y的方程组的解是,故选C.【点评】本题考查了一次函数与二元一次方程组的知识,解题的关键是了解方程组的解与函数图象的交点坐标的关系.5.(2016春•迁安市期末)直线l是以二元一次方程8x﹣4y=5的解为坐标所构成的直线,则该直线不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先用含x的代数式表示y可得一次函数解析式,再根据一次函数图象与系数的关系即可求解.【解答】解:∵8x﹣4y=5,∴y=2x﹣,∵k=2>0,b=﹣<0,∴图象经过第一、三、四象限,即不经过第二象限.故选B.【点评】此题考查了一次函数与二元一次方程,任何一个二元一次方程都可以化成一个一次函数.同时考查了一次函数图象与系数的关系.6.(2015秋•连云港期末)用图象法解方程组时,下图中正确的是()A.B.C.D.【分析】将方程组的两个方程,化为y=kx+b的形式;然后再根据两个一次函数的解析式,判断符合条件的函数图象.【解答】解:解方程组的两个方程可以转化为:y=x﹣2和y=﹣2x+4;只有C符合这两个函数的图象.故选C.【点评】一般地,每个二元一次方程组都对应着两个一次函数,也就是两条直线.从“数”的角度看,解方程组就是求使两个函数值相等的自变量的值以及此时的函数值.从“形”的角度看,解方程组就是相当于确定两条直线的交点坐标.7.(2016春•长春期中)用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象如图所示,则所解的二元一次方程组是()A.B.C.D.【分析】由于函数图象交点坐标为两函数解析式组成的方程组的解.因此本题应先用待定系数法求出两条直线的解析式,联立两个函数解析式所组成的方程组即为所求的方程组.【解答】解:根据给出的图象上的点的坐标,(0,﹣1)、(1,1)、(0,2);分别求出图中两条直线的解析式为y=2x﹣1,y=﹣x+2,因此所解的二元一次方程组是.故选A.【点评】本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.8.(2015秋•兴化市校级月考)若关于x,y的二元一次方程组的解是,则直线与y=﹣x+5的交点坐标为()A.(4,1) B.(1,4) C.(﹣4,1)D.(2,1)【分析】二元一次方程可以化为一次函数,两个二元一次方程组的解就是两个函数的交点坐标.【解答】解:∵二元一次方程组的解是,∴直线与y=﹣x+5的交点坐标为(4,1).故选A.【点评】本题主要考查了一次函数与二元一次方程组,满足解析式的点就在函数的图象上,在函数图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.9.(2014•泗县校级模拟)如果是方程组的解,则一次函数y=mx+n的解析式为(()A.y=﹣x+2 B.y=x﹣2 C.y=﹣x﹣2 D.y=x+2【分析】把方程组的解代入方程组得到关于m、n的方程组,然后求出m、n的值,再代入函数解析式即可得解.【解答】解:根据题意,将代入方程组,得,即,①×2得,6m﹣2n=2…③,②﹣③得,3m=3,∴m=1,把m=1代入①,得,3﹣n=1,∴n=2,∴一次函数解析式为y=x+2.故选D.【点评】本题考查了一次函数与二元一次方程组,根据方程组的解的定义得到关于m、n的方程组并求出m、n的值是解题的关键.10.(2013•荆州模拟)某校九年级(2)班40名同学这“希望工程”捐款,共捐款100元,捐款情况如下表:捐款(元)1234人数67表格中捐款2元和3元的人数不小心被墨水污染已看不清楚,若设捐款2元的有x名同学,捐款3元的有y名同学,假设(x,y)是两个一次函数图象的交点,则这两个一次函数解析式分别是()A.y=27﹣x与y=x+22 B.y=27﹣x与y=x+C.y=27﹣x与y=x+33 D.y=27﹣x与y=x+33【分析】本题的等量关系是:捐1元的人数+捐2元的人数+捐3元的人数+捐4元的人数=40人,1元的捐款+2元的捐款+3元的捐款+4元的捐款=100元.由此可得出方程组,求出未知数的解,进而代入各选项解析式,即可得出答案.【解答】解:设捐款2元的有x人,捐款3元的有y人,则,解之得:.则捐款2元的有15人,捐款3元的有12人,当x=15,y=12时,只有代入A使得两函数解析式左右相等,故选:A.【点评】此题主要考查了二元一次方程组的应用以及两函数交点问题,解题关键是求出x,y的值.二.填空题(共10小题)11.(2017春•云梦县期中)已知一次函数y=﹣mx+4和y=3x﹣n的图象交于点P (3,1),则关于x的方程组的解是.【分析】根据方程组的解即为函数图象的交点坐标解答.【解答】解:∵一次函数y=﹣mx+4和y=3x﹣n的图象交于点P(3,1),∴方程组的解是;故答案为:【点评】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.12.(2017春•威海期中)如果方程组无解,那么直线y=(﹣k+1)x﹣3不经过第二象限.【分析】方程组无解,即直线y=﹣x+1与y=(2k+1)x﹣3平行,那么﹣1=2k+1,求出k的值,进而求解即可.【解答】解:∵方程组无解,∴直线y=﹣x+1与y=(2k+1)x﹣3平行,∴﹣1=2k+1,解得k=﹣1,在直线y=2x﹣3中,∵2>0,﹣3<0,∴直线y=2x﹣3经过第一、三、四象限,不经过第二象限.故答案为二.【点评】本题考查了一次函数与二元一次方程组的关系,一次函数图象与系数的关系,求出k的值是解题的关键.13.(2016•莘县二模)如图,一次函数y=kx1+b1的图象l1与y=kx2+b2的图象l2相交于点P,则方程组的解是.【分析】根据二元一次方程组的解即为两直线的交点坐标解答.【解答】解:由图可知,方程组的解是.故答案为:.【点评】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.14.(2016•重庆校级二模)如图,已知两条直线l1、l2的交点可看作是某方程组的解,则这个方程组为.【分析】根据函数图象可以分别求得直线l1、l2的函数解析式,从而可以解答本题.【解答】解:由函数图象可知,直线l1过点(0,),(2,3),设解析式为:y=k1+b,则,解得,,即直线l1的解析式为:y=;直线l2过点(0,0),(2,3),设解析式为y=k2x,则3=2k2,得k2=,即直线l2的解析式为:y=,故这个方程组为:,故答案为:.【点评】本题考查一次函数与二元一次方程组,解题的关键是明确一次函数与二元一次方程组的关系,利用数形结合的思想解答问题.15.(2016春•安陆市期末)如图,点A的坐标可以看成是方程组的解.【分析】先利用待定系数法分别求出两直线的解析式,然后根据函数图象交点坐标为两函数解析式组成的方程组的解即可得到答案.【解答】解:设过点(0,5)和点(2,3)的解析式为y=kx+b,则,解得,所以该一次函数解析式为y=﹣x+5;设过点(0,﹣1)和点(2,3)的解析式为y=mx+n,则,解得,所以该一次函数解析式为y=2x﹣1,所以点A的坐标可以看成是方程组解.故答案为.【点评】本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.也考查了待定系数法求次函数解析式.16.(2016秋•郓城县期末)一次函数y=x+1与y=ax+3的图象交于点P,且点P 的横坐标为1,则关于x,y的方程组的解是.【分析】先把x=1代入y=x+1,得出y=2,则两个一次函数的交点P的坐标为(1,2);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【解答】解:把x=1代入y=x+1,得出y=2,函数y=x+1和y=ax+3的图象交于点P(1,2),即x=1,y=2同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故答案为.【点评】本题考查了一次函数与二元一次方程组的联系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.17.(2016秋•南海区期末)如图,已知一次函数y=2x+b和y=kx﹣3(k≠0)的图象交于点P,则二元一次方程组的解是.【分析】根据图象可得两个一次函数的交点坐标为P(4,﹣6),那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【解答】解:∵一次函数y=2x+b和y=kx﹣3(k≠0)的图象交于点P(4,﹣6),∴点P(4,﹣6)满足二元一次方程组,∴方程组的解是.故答案为.【点评】本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.18.(2016春•沙坪坝区期中)如图,直线l1:y=x+2与直线l2:y=kx+b相交于点P(m,4),则方程组的解是.【分析】由两条直线的交点坐标(m,4),先求出m,再求出方程组的解即可.【解答】解:∵y=x=2经过P(m,4),∴4=m+2,∴m=2,∴直线l1:y=x+2与直线l2:y=kx+b相交于点P(2,4),∴,故答案为【点评】本题考查一次函数的交点与方程组的解的关系、待定系数法等知识,解题的关键是理解方程组的解就是两个函数图象的交点坐标,属于中考常考题型.19.(2016秋•曲江区校级期中)已知直线y=2x与y=﹣x+b的交点为(﹣1,a),则方程组的解为.【分析】根据一次函数图象上点的坐标特征确定两直线的交点坐标,然后根据函数图象交点坐标为两函数解析式组成的方程组的解选择答案.【解答】解:把(﹣1,a)代入y=2x得a=﹣2,则直线y=2x与y=﹣x+b的交点为(﹣1,﹣2),则方程组的解为.故答案为:.【点评】本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.20.(2015•西藏一模)如图所示,直线L1的解析式是y=2x﹣1,直线L2的解析式是y=x+1,则方程组的解是.【分析】二元一次方程组的解就是组成二元一次方程组的两个方程的公共解,即直线l1与l2的交点的坐标.【解答】解:根据题意知,二元一次方程组的解就是直线l1与l2的交点的坐标,又∵交点坐标(2,3),∴原方程组的解是:.故答案是:【点评】本题考查了一次函数与二元一次方程组.二元一次方程组的解就是组成该方程组的两条直线的图象的交点.三.解答题(共10小题)21.(2016春•浠水县期末)如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P (1,b).(1)求b的值;(2)不解关于x、y的方程组,请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由.【分析】(1)直接把P(1,b)代入y=x+1可求出b的值;(2)利用方程组的解就是两个相应的一次函数图象的交点坐标求解;(3)根据一次函数图象上点的坐标特征进行判断.【解答】解:(1)把P(1,b)代入y=x+1得b=1+1=2;(2)由(1)得P(1,2),所以方程组的解为;(3)直线l3:y=nx+m经过点P.理由如下:因为y=mx+n经过点P(1,2),所以m+n=2,所以直线y=nx+m也经过P点.【点评】本题考查了一次函数与二元一次方程(组):方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.利用一次函数图象上点的坐标特征对(3)进行判断.22.(2014秋•陕西校级月考)如图,(1)点A的坐标可以看成是方程组的解.(写出解答过程)(2)求出两直线与y轴所围成的三角形的面积.【分析】(1)先利用待定系数法分别求出两直线的解析式,然后根据函数图象交点坐标为两函数解析式组成的方程组的解即可得到答案;(2)根据函数图象与坐标轴的交点坐标和两函数的交点坐标利用三角形的面积公式进行计算即可.【解答】解:(1)设过点(0,5)和点(2,3)的解析式为y=kx+b,则,解得,所以该一次函数解析式为y=﹣x+5;设过点(0,﹣1)和点(2,3)的解析式为y=mx+n,则,解得,所以该一次函数解析式为y=2x﹣1,所以点A的坐标可以看成是方程组解.故答案为:;(2)围成的三角形的面积为:S=[5﹣(﹣1)]×2=6.【点评】本题考查了一次函数与二元一次方程(组)的知识,函数图象交点坐标为两函数解析式组成的方程组的解.也考查了待定系数法求次函数解析式.23.(2017•农安县模拟)某县在实施“村村通”工程中,决定在A、B两村之间修一条公路,甲、乙两个工程队分别从A、B两村同时开始相向修路,施工期间,甲队改变了一次修路速度,乙队因另有任务提前离开,余下的任务由甲队单独完成,直到公路修通,甲、乙两个工程队各自所修公路的长度y(米)与修路时间x(天)之间的函数图象如图所示.(1)求甲队前8天所修公路的长度;(2)求甲工程队改变修路速度后y与x之间的函数关系式;(3)求这条公路的总长度.【分析】(1)由函数图象在x=8时相交可知:前8天甲、乙两队修的公路一样长,结合修路长度=每日所修长度×修路天数可计算出乙队前8天所修的公路长度,从而得出结论;(2)设甲工程队改变修路速度后y与x之间的函数关系式为y=kx+b,代入图象中点的坐标可列出关于k和b的二元一次方程组,解方程组即可得出结论;(3)由图象可知乙队修的公路总长度,再根据(2)得出的解析式求出甲队修的公路的总长度,二者相加即可得出结论.【解答】解:(1)由图象可知前八天甲、乙两队修的公路一样长,乙队前八天所修公路的长度为840÷12×8=560(米),答:甲队前8天所修公路的长度为560米.(2)设甲工程队改变修路速度后y与x之间的函数关系式为y=kx+b,将点(4,360),(8,560)代入,得,解得.故甲工程队改变修路速度后y与x之间的函数关系式为y=50x+160(4≤x≤16).(3)当x=16时,y=50×16+160=960;由图象可知乙队共修了840米.960+840=1800(米).答:这条公路的总长度为1800米.【点评】本题考查了一次函数的性质、代数系数法求函数解析式,解题的关键:(1)由图象交点得出前8天甲、乙两队修的公路一样长;(2)代入点的坐标得出关于k、b的二元一次方程组;(3)代入x值求y值.本题属于基础题,难度不大,解决给题型题目是,结合图象中的点,代入函数解析式得出方程(或方程组)是关键.24.(2017•青羊区模拟)汽车出发前油箱有油50L,行驶若干小时后,在加油站加油若干升.图象表示的是从出发后,油箱中剩余油量y(L)与行驶时间t(h)之间的关系.(1)汽车行驶3h后加油,中途加油31L;(2)求加油前油箱剩余油量y与行驶时间t的函数关系式;(3)已知加油前、后汽车都以70km/h匀速行驶,如果加油站距目的地210km,那么要到达目的地,油箱中的油是否够用?请说明理由.【分析】(1)根据函数图象3小时时油箱油量变多解答;(2)利用待定系数法求一次函数解析式解答;(3)求出加油前行驶的路程和用油量,再求出从加油站到目的地所需要的油量,然后判断即可.【解答】解:(1)从图象中可以看出,汽车行驶3小时后加油,中途加油45﹣14=31升;(2)因为函数图象过点(0,50)和(3,14),所以设函数关系式为y=kt+b,则,解得,因此,y=﹣12t+50;(3)油箱中的油够用.∵汽车加油前行驶了3小时,行驶了3×70=210(km),用去了50﹣14=36升油,而目的地距加油站还有210km,∴要达到目的地还需36升油,而中途加油31升后有油45升,即油箱中的剩余油量是45升,所以够用.因此,要到达目的地油箱中的油够用.【点评】本题考查了一次函数的应用,读懂题目信息并准确识图,观察出油箱中的油量的变化是解题的关键.25.(2017春•普陀区期中)已知在平面直角坐标系xOy中,已知一次函数y=kx+b(k≠0)的图象经过点A(﹣2,1)、B(4,4).求这个一次函数的解析式.【分析】根据点A、B的坐标利用待定系数法求出一次函数的解析式,此题得解.【解答】解:(1)∵一次函数y=kx+b的图象经过点A(﹣2,1)、B(4,4).∴,解得:.∴这个一次函数的解析式为:y=x+2.【点评】本题考查了待定系数法求一次函数解析式,熟练掌握利用待定系数法求一次函数解析式的方法是解题的关键.26.(2017春•沙坪坝区期中)已知y与x成一次函数,当x=0时,y=3,当x=2时,y=7.(1)写出y与x之间的函数关系式.(2)当x=4时,求y的值.【分析】(1)根据点的坐标,利用待定系数法求出一次函数关系式即可;(2)将x=4代入一次函数关系式中,求出y值即可.【解答】解:(1)设y与x之间的函数关系式为y=kx+b,将(0,3)、(2,7)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=2x+3.(2)当x=4时,y=2x+3=2×4+3=11.【点评】本题考查了待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)根据点的坐标利用待定系数法求出一次函数关系式;(2)将x=4代入一次函数关系式求出y值.27.(2016秋•二道区校级期末)已知y﹣3与x+5成正比例,且当x=2时,y=17.求:(1)y与x的函数关系;(2)当x=5时,y的值.【分析】(1)由y﹣3与x+5成正比例,设y﹣3=k(x+5),把x与y的值代入求。
一次函数与二元一次方程习题
一次函数与二元一次方程(组) 同步练习题一、选择题1.图中两直线L 1,L 2的交点坐标可以看作方程组( )的解.A .121x y x y -=⎧⎨-=-⎩ B. 121x y x y -=-⎧⎨-=⎩ C .321x y x y -=⎧⎨-=⎩ D. 321x y x y -=-⎧⎨-=-⎩2.把方程x+1=4y+3x 化为y=kx+b 的形式,正确的是( ) A .y=13x+1 B .y=16x+14 C .y=16x+1 D .y=13x+143.若直线y=2x +n 与y=mx-1相交于点(1,-2),则( ). A .m=12,n=-52 B .m=12,n=-1; C .m=-1,n=-52 D .m=-3,n=-324.直线y=12x-6与直线y=-231x-1132的交点坐标是( ). A .(-8,-10) B .(0,-6); C .(10,-1) D .以上答案均不对5.在y=kx+b 中,当x=1时y=2;当x=2时y=4,则k ,b 的值是( ).A .00k b =⎧⎨=⎩ B. 20k b =⎧⎨=⎩ C .31k b =⎧⎨=⎩ D. 02k b =⎧⎨=⎩6.直线kx-3y=8,2x+5y=-4交点的纵坐标为0,则k 的值为( )A .4B .-4C .2D .-2二、填空题1.点(2,3)在一次函数y=2x-1的________;x=2,y=3是方程2x-y=1的_______.2.已知4,353x y ⎧=⎪⎪⎨⎪=⎪⎩是方程组3,12x y x y +=⎧⎪⎨-=⎪⎩的解,那么一次函数y=3-x 和y=2x +1的交点是________. 3.一次函数y=3x+7的图像与y 轴的交点在二元一次方程-•2x+•by=•18•上,•则b=_________.4.已知关系x ,y 的二元一次方程3ax+2by=0和5ax-3by=19化成的两个一次函数的图像的交点坐标为(1,-1),则a=_______,b=________.5.已知一次函数y=-32x+m 和y=12x+n 的图像都经过A(-2,•0)•,•则A•点可看成方程组________的解.6.已知方程组230,2360y x y x -+=⎧⎨+-=⎩的解为4,31,x y ⎧=⎪⎨⎪=⎩则一次函数y=3x-3与y=-32x+3的交点P 的坐标是______. 三、解答题1.若直线y=ax+7经过一次函数y=4-3x 和y=2x-1的交点,求a 的值.2.(1)在同一直角坐标系中作出一次函数y=x+2,y=x-3的图像.(2)两者的图像有何关系?(3)你能找出一组数适合方程x-y=2,x-y=3吗?_________________,•这说明方程组2,3,x y x y -=-⎧⎨-=⎩________. 3.如图所示,求两直线的解析式及图像的交点坐标.探究应用拓展性训练1.(学科内综合题)在直角坐标系中,直线L 1经过点(2,3)和(-1,-3),直线L 2经过原点,且与直线L 1交于点(-2,a). (1)求a 的值.(2)(-2,a)可看成怎样的二元一次方程组的解?(3)设交点为P ,直线L 1与y 轴交于点A ,你能求出△APO 的面积吗?2.(探究题)已知两条直线a 1x+b 1y=c 1和a 2x+b 2y=c 2,当12a a ≠12b b 时,方程组111222,,a xb yc a x b y c +=⎧⎨+=⎩ 有唯一解?•这两条直线相交?你知道当a 1,a 2,b 1,b 2,c 1,c 2分别满足什么条件时,方程组111222,,a x b y c a x b y c +=⎧⎨+=⎩无解?无数多组解?这时对应的两条直线的位置关系是怎样的?3.(2004年福州卷)如图,L 1,L 2•分别表示一种白炽灯和一种节能灯的费用y(费用=灯的售价+电费,单位:元)与照明时间x(h)的函数图像,假设两种灯的使用寿命都是2000h ,照明效果一样.(1)根据图像分别求出L 1,L 2的函数关系式.(2)当照明时间为多少时,两种灯的费用相等?(3)小亮房间计划照明2500h ,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法(直接给出答案,不必写出解答过程).。
二元一次方程与一次函数同步练习题精选
二元一次方程与一次函数同步练习题精选一.选择题(共10小题)1.如图,直线y=﹣x+a与直线y=x+b的交于点(2,﹣1),则方程组的解是()A.B.C.D.2.如图,已知直线y=x+m与y=kx﹣1相交于点P(﹣1,1),则关于x的方程组的解是()A.B.C.D.3.如图,两个一次函数图象的交点坐标为(2,4),则关于x,y的方程组的解为()A.B.C.D.4.在平面直角坐标系xOy中,一次函数y=kx和y=﹣x+3的图象如图所示,则二元一次方程组的解是()A.B.C.D.5.在平面直角坐标系中,方程2x+3y=4所对应的直线为a,方程3x+2y=4所对应的直线为b直线a与b的交点为P(m,n),下列说法错误的是()A.是方程2x+3y=4的解B.是方程3x+2y=4的解C.是方程组的解D.以上说法均错误6.如图,两条直线的交点坐标(2,3)可以看作两个二元一次方程的公共解,其中一个方程是x+1=y,则另一个方程是()A.2x﹣y=﹣1B.2x﹣y=1C.2x+y=﹣1D.3x﹣y=﹣1 7.若一次函数y=kx+b与y=﹣x+1的图象相交于点M(m,﹣1),则关于x,y的二元一次方程组的解是()A.B.C.D.8.如图,直线y=﹣x+3与y=mx+n交点的横坐标为1,则关于x、y的二元一次方程组的解为()A.B.C.D.9.如图,直线y=k1x+b1和直线y=k2x+b2相交于点,则关于x,y的方程组的解为()A.B.C.D.10.在同一平面直角坐标系中,一次函数y=ax+b与y=mx+n(a<m<0)的图象如图所示.小星根据图象得到如下结论:①在一次函数y=mx+n的图象中,y的值随着x值的增大而增大;②方程组的解为;③方程mx+n=0的解为x=2;④当x=0时,ax+b=﹣1.其中结论正确的个数是()A.1B.2C.3D.4二.填空题(共5小题)11.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x、y的方程组的解是.12.如图,一次函数y=kx+b与y=﹣x+4的图象相交于点P(m,1),则关于x、y的二元一次方程组的解是.13.如图,直线y=x−3与直线y=mx(m≠0)交于点P,则关于x,y的二元一次方程组的解为.14.在同一平面直角坐标系中,直线y=﹣x+4与y=2x+m相交于点A(3,n),则关于x,y的方程组的解是.15.规定:二元一次方程ax+by=c有无数组解,每组解记为P(x,y),称P(x,y)为隐点.在平面直角坐标系中将这些隐点连接会得到一条直线,称这条直线是隐点的明线.(1)设P(0,﹣2),Q(1,﹣)是明线t2x+hy=6的两个隐点,关于x,y的方程(t2+2)x﹣(t2+h﹣4)y=5的正整数解为;(2)已知m,n为实数,且满足|m|+n2=9,若P(|m|,n2)是明线2x﹣3y=s的一个隐点,明线中s的最大值与最小值的和为.三.解答题(共3小题)16.已知一次函数y=ax﹣5与y=2x+b的图象的交点坐标为A(1,﹣2).(1)直接写出关于x,y的方程组的解;(2)求a,b的值.17.已知二元一次方程x+y=4,将方程的解列成下列表格的形式:x﹣3﹣1ny7m如果将方程x+y=4的解中未知数x的值看作点的横坐标,未知数y的值看作这个点的纵坐标,这样方程x+y=4的每一个解,就可以对应直角坐标系中的一个点,例如:解对应的点的坐标是(1,3).(1)①表格中的m=,n=;②根据以上确定对应点坐标的方法,若表格中给出的三个解对应点依次A,B,C,分别写出A,B,C的坐标,并在所给的直角坐标系中画出这三个点;(2)在表中空着的五个格中,再列举x+y=4几组不同的解,并在直角坐标系中画出对应点,根据结果猜想x+y=4的解对应的点所组成的图形是什么图形,写出它的两个特征(图形在坐标系中的分布位置、图形随x,y的变化而变化的趋势等);(3)若点P(a,b),G(﹣a,b+3)恰好都落在x+y=4的解对应的点组成的图象上,求a,b的值.18.【活动回顾】:七年级下册教材中我们曾探究过“以方程x+y=5的解为坐标(x的值为横坐标、y的值为纵坐标)的点的特性”,了解了二元一次方程的解与其图象上点的坐标的关系.发现:以方程x+y=5的解为坐标的所有点组成的图象与一次函数y=﹣x+5的图象相同,是同一条直线;结论:一般的,以一个二元一次方程的解为坐标的点组成的图象与相应的一次函数的图象相同,是一条直线.示例:如图1,我们在画方程x﹣y=0的图象时,可以取点A(﹣1,﹣1)和B(2,2),作出直线AB.【解决问题】:(1)请你在图2所给的平面直角坐标系中画出二元一次方程组中的两个以二元一次方程的解为坐标的点组成的图象(提示:依据“两点确定一条直线”,画出图象即可,无需写过程);(2)观察图象,两条直线的交点坐标为,由此你得出这个二元一次方程组的解是;【拓展延伸】:(3)已知二元一次方程ax+by=7的图象经过两点A(1,2)和B(4,1),试求a+b的值.(4)在同一平面直角坐标系中,一次函数y=x+3图象l1和一次函数y=x﹣1的图象l₂,如图3所示.请根据图象,直接判断方程组的解的情况(不需要说明理由).。
中考数学《一次函数与二元一次方程(组)的综合应用》专项练习题及答案
中考数学《一次函数与二元一次方程(组)的综合应用》专项练习题及答案一、单选题1.已知一次函数 y =x +1 和一次函数 y =2x −2 的图象的交点坐标是 (3,4) ,据此可知方程组{x −y =−12x −y =2 的解为( ) A .{x =3y =4B .{x =4y =3C .{x =−3y =−4D .{x =−4y =−32.如图,直线y =kx+b 交x 轴于点A (﹣2,0),直线y =mx+n 交x 轴于点B (5,0),这两条直线相交于点C (2,c ),则关于x 的不等式组 {kx +b <0mx +n >0的解集为( )A .x <5B .1<x <5C .﹣2<x <5D .x <﹣23.用图象法解二元一次方程组{kx −y +b =0x −y +2=0时,小英所画图象如图所示,则方程组的解为( )A .{x =1y =2B .{x =2y =1C .{x =1y =2.5D .{x =1y =34.已知直线y =2x 与y =﹣x+b 的交点(﹣1,a ),则方程组 {2x −y =0x +y =b 的解为( ) A .{x =1y =2B .{x =−1y =2C .{x =1y =−2D .{x =−1y =−25.如图,已知函数y=ax+b 和y=kx 的图象交于点P ,则根据图象可得关于x ,y 的二元一次方程组{y =ax +b y =kx的解是( )A .{x =−2y =−4B .{x =−4y =−2C .{x =2y =−4D .{x =−4y =26.下面四条直线,其中直线上每个点的坐标都是二元一次方程2x ﹣y=2的解的是( )A .B .C .D .7.在平面直角坐标系中,直线l 1:y =x+3与直线l 2:y =mx+n 交于点A (﹣1,2),则关于x 、y 的方程组{y =x +3y =mx +n 的解为( ) A .{x =2y =1B .{x =2y =−1C .{x =−1y =2D .{x =−1y =−28.如图,是在同一坐标系内作出的一次函数l 1、l 2的图象,设l 1:y =k 1x+b 1,l 2:y =k 2x+b 2,则方程组 {y =k 1x +b 1y =k 2x +b 2的解是( )A .{x =−2y =2B .{x =−2y =3C .{x =−3y =3D . {x =−3y =49.如图,l 1经过点(0,1.5)和(2,3),l 2经过原点和点(2,3),以两条直线l 1,l 2的交点坐标为解的方程组是( )A .{3x −4y =−63x −2y =0B .{−3x +4y =63x +2y =0C .{3x −4y =63x −2y =0D .{3x −4y =63x +2y =010.直线 y =2x −3 与直线 y =x −1 的交点坐标是( )A .(2,1)B .(4,3)C .(2,−1)D .(−2,1)11.已知直线y=3x ﹣3与y=﹣32x+b 的交点的坐标为(43,a ),则方程组{−3x +y +3=03x +2y −2b =0的解是( )A .{x =43y =−1B .{x =43y =1C .{x =−43y =−1D .{x =−43y =112.如图,已知一次函数y=ax+b 和y=kx 的图象相交于点P ,则根据图象可得二元一次方程组 的解是( )A .{x =−4y =−2B .{x =−2y =−4C .{x =2y =4D .{x =2y =−4二、填空题13.已知方程组{x +y =12x −y =2的解为{x =1y =0,则一次函数y=﹣x+1和y=2x ﹣2的图象的交点坐标为14.如图,直线l 1的解析式是y =2x -1,直线l 2的解析式是y =x +1,则方程组 {x −y =−12x −y =1 的解是 .15.一次函数y =3x -5与y =2x +b 的图象的交点的坐标为P(1,-2),则方程组 {y =3x −5y =2x +b 中b的值为 .16.如图,已知函数y=x ﹣2和y=﹣2x+1的图象交于点P (1,﹣1),根据图象可得方程组{x −y =22x +y =1的解是 .17.已知函数y=2x+1和y=﹣x ﹣2的图象交于点P ,点P 的坐标为(﹣1,﹣1),则方程组{2x −y +1=0x +y +2=0的解为 . 18.我们规定:当k ,b 为常数,k≠0,b≠0,k≠b 时,一次函数y =kx+b 与y =bx+k 互为交换函数,例如:y =5x+2的交换函数为y =2x+5.一次函数y =kx+2与它的交换函数图象的交点横坐标为 .三、综合题19.如图,在平面直角坐标系中,点O 为坐标原点,直线y =2x ﹣1与直线y = 34 x+ 32交于点A ,过点A 作x 轴的垂线,点B 为垂足,点C 的横坐标为﹣1,点C 在直线y =2x ﹣1上,连接BC .(1)求点A的坐标;(2)求∠CBO的度数.20.如图,在直角坐标系中,直线y=−43x+4与分别于x、y轴交于点A,B,点C在x轴上CD∠AB.垂足为D,交y轴于点E (0,3).(1)求∠AOB的面积;(2)求线段CE的长;(3)求D点的坐标.21.如图,两直线l1:y=−x+4、l2:y=2x+1相交于点P,与x轴分别相交于A、B 两点.(1)求P点的坐标;(2)求S∠PAB.22.一般地,二元一次方程的解可以转化为点的坐标,其中x的值对应为点的横坐标,y的值对应为点的纵坐标,如二元一次方程x ﹣2y=0的解 {x =0y =0 和 {x =2y =1 可以转化为点的坐标A (0,0)和B (2,1).以方程x ﹣2y=0的解为坐标的点的全体叫做方程x ﹣2y=0的图象.(1)写出二元一次方程x ﹣2y=0的任意一组解 ,并把它转化为点C 的坐标 ;(2)在平面直角坐标系中,任何一个二元一次方程的图象都是一条直线,如方程x ﹣2y=0的图象是由该方程所有的解转化成的点组成,在图中描出点A 、点B 和点C ,观察它们是否在同一直线上; (3)取满足二元一次方程x+y=3的两个解,并把它们转化成点的坐标,画出二元一次方程x+y=3的图象;(4)根据图象,写出二元一次方程x ﹣2y=0的图象和二元一次方程x+y=3的图象的交点坐标 ,由此可得二元一次方程组 {x −2y =0x +y =3 的解是 .23.如图,直线y 1=kx+b 与坐标轴交于A (0,2),B (m ,0)两点,与直线y 2=-4x+12交于点P (2,n ),直线y 2=-4x+12交x 轴于点C ,交y 轴于点D .(1)求m ,n 值;(2)直接写出方程组{y =kx +b y =−4x +12的解为 ;(3)求∠PBC的面积.24.为便民惠民,树人公园特推出下列优惠方案:①普通卡:每人每次20元;②贵宾卡:年费为200元,每人每次10元;③至尊卡:年费为500元,但进入不再收费.设某人参观x次时,所需总费用为y元.(1)直接写出选择普通卡和贵宾卡消费时的函数关系式;(2)在同一个坐标系中,若三种方案对应的函数图象如图所示,求出点A,B,C的坐标;(3)根据图象,直接写出选择哪种方案更合算.参考答案1.【答案】A2.【答案】D3.【答案】D4.【答案】D5.【答案】B6.【答案】B7.【答案】C8.【答案】B9.【答案】A10.【答案】A11.【答案】B12.【答案】A13.【答案】(1,0)14.【答案】15.【答案】-416.【答案】{x=1y=−117.【答案】{x=−1y=−1 18.【答案】119.【答案】(1)解:由{y=2x−1①y=34x+32②,解得{x=2y=3∴A(2,3);(2)解:过C点作CD∠x轴于D∵A(2,3)∴B (2,0)∵点C 的横坐标为﹣1,点C 在直线y =2x ﹣1上 ∴y =2×(﹣1)﹣1=﹣3 ∴C (﹣1,﹣3) ∴BD =3,CD =3∴∠CBD 的等腰直角三角形 ∴∠CBO =45°.20.【答案】(1)解:∵当x=0时, y =4 ,∴B (0,4)∵当y=0时, x =3 ,∴A (3,0) ∴OA =3,OB =4 ∴S ∠AOB =12×3×4=6 (2)解:∵E (0,3) ∴OE=3 ∴OE=OA∵∠ECO+∠CEO=90°,∠BED+∠DBE=90°,∠CEO=∠BED ∴∠ECO=∠DBE 又∵∠COE=∠BDE=90° ∴∠AOB∠∠EOC (AAS ); ∴OC=OB=4∴Rt∠COE 中,CE =√OC 2+OE 2=√42+32=5 (3)解:由(2)得OC =4,即C (﹣4,0) 设直线CE 的解析式为y=kx+b 把C (﹣4,0),E (0,3)代入得 {−4k +b =0b =3 解得{b =3k =34∴直线CE 解析式为: y =34x +3由题意得方程组 {y =−43x +4y =34x +3解得: {x =1225y =8425 ∴D (1225,8425) .21.【答案】(1)解:联立方程组得: {y =−x +4y =2x +1,解得 {x =1y =3 ,因此 P(1,3) (2)解:在 y =−x +4 中,当 y =0 时, −x +4=0 , x =4 ,在 y =2x +1 中,当 y =0时 2x +1=0 , x =−12 ,∴A (−12,0) ,B (4,0) ,∴AB= |x A −x B |=92∴S ∠PAB = 92⋅|y P |⋅12=92×3×12=27422.【答案】(1){x =−2y =−1;(﹣2,﹣1)(2)解:如图,点A 、点B 和点C 同一直线上(3)二元一次方程x+y=3的两个解为 {x =3y =0 或 {x =0y =3 ,把它们转化成点的坐标为(3,0),(0,3) 如图(4)(2,1);{x =2y =123.【答案】(1)解:把点P (2,n )代入y 2=−4x +12得:n =−8+12=4第 11 页 共 11 ∴P (2,4)把A (0,2),P (2,4)代入y 1=kx +b 得,{b =22k +b =4解得:{k =1b =2∴y 1=x +2把B (m ,0)代入y 1=x +2得:0=m +2解得:m =−2∴m =−2,n =4;(2){x =2y =4(3)解:当y 2=−4x +12=0时解得:x =3∴C (3,0)∵P (2,4),B (-2,0),C (3,0)∴BC=5∴S △PBC =12×5×4=10. 24.【答案】(1)解:由题意得,普通卡:y 1=20x ;贵宾卡:y 2=10x +200; (2)解:令y 1=500得:20x =500,解得:x =25∴点B 坐标为(25,500);令y 2=500得:10x +200=500,解得:x =30∴点C 的坐标为(30,500);联立y 1、y 2得: {y =20x y =10x +200解得: {x =20y =400 ∴点A 的坐标为(20,400);∴A (20,400),B (25,500),C (30,500);(3)解:由图像可知:①当0<x <20时,选择普通卡更合算; ②当x =20时,选择普通卡和贵宾卡的总费用相同,均比至尊卡合算; ③当20<x <30时,选择贵宾卡更合算;④当x =30时,选择贵宾卡和至尊卡的总费用相同,均比普通卡合算; ⑤当x >30时,选择至尊卡更合算.。
北师大版八年级数学上册第五章 5.7 二元一次方程组与一次函数练习题(有答案)
二元一次方程组与一次函数练习题
一.选择题
1.如图,一次函数y=kx+b与y=x+2的图象相交于点P(m,4),则关于x,y的二元一次方程组的解是()
A.B.C.D.
2.如图,函数y=ax+b和y=kx的图象交于点P,关于x,y的方程组的解是()
A.B.C.D.
3.如图,直线l1、l2的交点坐标可以看作方程组()的解.
A.B.C.D.
4.如图,在平面直角坐标系xOy中,如果一个点的坐标可以用来表示关于x、y的二元一次方程组的解,那么这个点是()
A.M B.N C.E D.F
5.若以二元一次方程x+2y﹣b=0的解为坐标的点(x,y)都在直线y=﹣x+b﹣1上,则常数b=()A.B.2C.﹣1D.1
二.填空题
6.在平面直角坐标系xOy中,一次函数y=kx和y=﹣x+3的图象如图所示,则二元一次方程组的解为.
7.若方程组的解是,则直线y=﹣2x+b与直线y=x﹣a的交点坐标是.
8.已知直线y=x﹣1与y=﹣x+5的交点坐标是(4,1),则方程组的解是.
9.已知y1=x+1,y2=﹣2x+4,对任意一个x,取y1,y2中的较大的值为m,则m的最小值是.10.已知二元一次方程组的解为,则在同一平面直角坐标系中,直线l1:y=x+5与直线l2:y=﹣x﹣1的交点坐标为.
三.解答题
11.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).
(1)求b的值;
(2)不解关于x、y的方程组,请你直接写出它的解;
(3)直线l3:y=nx+m是否也经过点P?请说明理由.。
一次函数与二元一次方程组练习题
一次函数与二元一次方程练习题1.如果直线y=3x+6与y=2x-4交点坐标为(a ,b ),则是方程组_______x a y b=⎧⎨=⎩的解( )A .B .C .D .3624y x y x -=⎧⎨+=-⎩3624y x y x -=⎧⎨-=⎩3634x y x y -=⎧⎨-=⎩3624X Y X Y -=-⎧⎨-=-⎩2.已知y 1=-x+1和y 2=-2x-1,当x>-2时y 1>y 2;当x<-2时y 1<y 2,则直线y 1=-x+1和直线y 2=-2x-1的交点是( )A .(-2,3)B .(-2,-5)C .(3,-2)D .(-5,-2)3.已知方程2x+1=-x+4的解是x=1,则直线y=2x+1与y=-x+4的交点是( )A .(1,0)B .(1,3)C .(-1,-1)D .(-1,5)4.直线AB∥x 轴,且A 点坐标为(1,-2),则直线AB 上任意一点的纵坐标都是- 2,此时我们称直线AB 为y=-2,那么直线y=3与直线x=2的交点是( )A .(3,2)B .(2,3)C .(-2,-3)D .(-3,-2)5、如图一次函数和b ax y +=1d cx y +=2则的解中( )⎩⎨⎧+=+=d cx y b ax y ⎩⎨⎧==n y m x A .m >0,n >0B .m >0,n <0C . m <0,n >0D .m <0,n <0 6.已知直线y=ax+b 经过点(1,2)和(2,3),则a=________,b=________.7.解方程组解为________,则直线y=-x+15和y=x-7的交点坐标是157x y x y +=⎧⎨-=⎩________.8.已知函数y=mx-(4m-3)的图象过原点,则m 应取值为__________.9.直线y=2x-1与y=x+4的交点是 则当x_______时,直线y=2x-1 上的点在直线y=x+4上相应点的上方;当x_______时,直线y=2x-1上的点在直线y=x+4上相应点的下方.13. (1)直线y 1=-x+1、y 2=2x-2与y 轴分别交于点A 、B ,请写出A 、B 两点的坐标.(2)求出直线y 1=-2x+1与y 2=2x-3的交点P 的坐标.(3)求△PAB 的面积.16、有甲、乙两家通迅公司,甲公司每月通话的收费标准如图所示;乙公司每月通话收费标准如表所示.(1)观察图,甲公司用户月通话时间不超过100分钟时应付话费金额是__________元;甲公司用户通话100分钟以后,每分钟的通话费为_________元;(2)当通话时间为多少时,两家公司的收费是相同的?月租费通话费25元0.15元/分钟甲公司乙公司(3)李女士买了一部手机,如果她的月通话时间不超过100分钟,她选择哪家通迅公司更合算?如果她的月通话时间超过100分钟,又将如何选择?。
一次函数与二元一次方程解答
答案:教材基础知识针对性训练1.B 解析:设L 1的关系式为y=kx-1,将x=2,y=3代入,得3=2k-1,解得k=2. ∴L 1的关系式为y=2x-1,即2x-y=1.设L 2的关系式为y=kx+1,将x=2,y=3代入,得3=2k+1,解得k=1. ∴L 2的关系式为y=x+1,即x-y=-1. 故应选B . 2.B 解析:∵x+1=4y+3x ,∴4y=x+1-3x ,4y=23x+1,y=16x+14.故应选B .3.C 解析:把x=1,y=-2代入y=2x +n 得-2=12+n ,n=-2-12,n=-52.把x=1,y=-2代入y=mx-1得-2=m-1,m=-2+1,m=-1,故应选C . 4.C 解析:解方程组16,22113131y x y x ⎧=-⎪⎪⎨⎪=--⎪⎩,得10,1,x y =⎧⎨=-⎩∴直线y=12x-6与直线y=-231x-1131的交点为(10,-1),•故应选C .5.B 解析:把1,2,x y =⎧⎨=⎩ 2,4,x y =⎧⎨=⎩分别代入y=kx+b ,得2,24,k b k b +=⎧⎨+=⎩ 解得2,0,k b =⎧⎨=⎩故应选B .6.B 解析:把y=0代入2x+5y=-4,得2x=-4,x=-2.所以交点坐标为(-2,0).把x=-2,y=0代入kx-3y=8,得-2k=8,k=-4,故应选B . 二、1.解析:当x=2时,y=2x-1=2×2-1=3,∴(2,3)在一次函数y=2x-1的图像上. 即x=2,y=3是方程2x-y=1的解. 答案:图像上 解2.解析:因为方程组3,1,2x y x y +=⎧⎪⎨-=⎪⎩中的两个方程变形后为3,1,2y x xy =-+⎧⎪⎨=+⎪⎩ 所以函数y=3-x 与y=2x +1的交点坐标就是二元一次方程组的解,即为(43,53)。
答案:(43,53) 提示:此题不用解方程组,根据一次函数与二元一次方程组的关系,•结合已知就可得到答案.3.解析:y=3x+7与y 轴的交点的坐标为(0,7). 把x=0,y=7代入-2x+by=18,得7b=18,b=187。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
点A (-2,0),且与y轴分别交于点B,C两点,那么△ABC的面积是( C)
练习
你能求出交点 坐标吗?
已知一次函数 y=2x+m-3与 y=3x-m-1 的图像相交于 x轴上一点,则m的值是( )
综合应用
例6.如图,已知直线AC:y=2x+3与直线BC:y=-2x-1 (1) 求两直线交点C的坐标 (2) 求△ABC的面积 (3)在直线BC上能否找到点P,使得S△APB=6? 若能,请求出点P的坐标。若不能请说明理由。
王奉中学
初二数学组
一次函数与二元一次方程的关系
结论:
以二元一次方程的解为坐标的点都在相应 一起回顾上节课的知识点吧! 的函数图象上.反过来,
一次函数图象上的点的坐标都是相应的二 元一次方程的解.
一次函数与二元一次方程组的关系
归纳总结:
从数的角度看:
求二元一次方程组的解
自变量为何值时,两个函数的 值相等,以及这个函数值是何值。
y y 4 2 y
y
4
2
4
2 2 4 x
4
2 2 4 x
-4 -2
O
-2 -4
2 4
x -4 -2
O
-2 -4
-4 -2
O
-2 -4
-4 -2
O
-2 -4
2 4
x
A
B
C
D
类型二:利用图像法解二元一次方程
例2. 利用图像法解方程组 x-2y+1=0
3x+2y+3=0
练习2.
1. 互动P101
第4题
2.
2x-y-3=0 y+5=0
类型三:两个一次函数图像的交点坐标
练习 两直线y=2x-1和y=x+1的交点坐标为( )
A.(-2,3) B. (2,-3) C. (-2,-3) D. (2,3)
例3. 已知点A.B.C.D 的坐标如图所示,求直线AB与 y 直线CD的交点坐标。
B(0,6)
C(0,1)
0
A(-3,0) D(2,0)
x
类型四:与一次函数的交点有关的题
例4.一次函数的图像与直线y=-x+6的交点A的横标是4,
与直线y=x-1的纵坐标是1,求这个一次函数的表达式。
解题策略:根据
题意先确定点A.B的 坐标,然后利用待定 系数法求函数的表达 式。
类型五:与一次函数的交点有关的题
3 1 例5. 已知一次函数y = x +a与 y =- x +的图像都经过 b 2 2
y
A C 0 B
x
作业 互动 101页 第5题
y 5 4 3 2 1 O 2 4 x -5 -4 -3 -2 -1 -1 1 3 5 -2 -3 -4 -5
y 5 4 3 2 1 O 2 4 x -5 -4 -3 -2 -1 -1 1 3 5 -2 -3 -4 -5
A
B
C
练习1.
1. 用图像法解方程组
x-2y=4 时,下列图像中正确的是( B) 2x+y=4
从形的角度看:
求二元一次方程组的解 是确定两条直线交点的坐标
类型一:根据二元一次方程(组)确定函数图像
y 5 4 3 2 1 O 2 4 x -5 -4 -3 -2 -1 -1 1 3 5 -2 -3 -4 -5
例1.如图所示的图像中,以方程-2x+y-2=0的解为坐标 的点组成的图像是( B)
典型例题