同济高等数学第六版上册课件
高等数学同济第六版上册课件10-2二重积分的计算
D
d
2( ) f (r cos , r sin )rdr.
1 ( )
( )
d f (r cos ,r sin )rdr.
0
2
( )
d f (r cos ,r sin )rdr.
0
0
(在积分中注意使用对称性)
1.
计算 I
D
sin y
y
d
,其中区域
D 为曲线 y
x 及直线
y=x 所围成。
x2 y2 2 y, x2 y2 4 y及直线 x 3y 0,
y 3x 0 所围成的平面闭区域.
解
y
3x
0
2
3
x2 y2 4 y r 4sin
x
3y
0
1
6
x2 y2 2 y r 2sin
( x2 y2 )dxdy
3 d
r 4sin 2 rdr 15(
第二节 二重积分的计算法
一、利用直角坐标系计算二重积分
如果积分区域为:a x b, 1( x) y 2( x).
[X-型]
y 2(x)
D
y 1( x)
a
b
y 2(x)
D
y 1( x)
a
b
其中函数1( x) 、2( x) 在区间 [a,b]上连续.
f ( x, y)d 的值等于以 D 为底,以曲面 z
x
dx
9 8
解法2. 将D看作Y–型区域,
则
D
:
y 1
x y
2 2
o
1 x 2x
I
2
dy
1
y2xyd x
2
1
同济第六版高数上册第六章课件
O
xdx x l x
3 2
棒对质点的引力的铅直分力为
F y 2 k m a
l 2
dx
y M dF a x
d Fa y
(a x ) l x 2 k m a 2 2 2 a a x
2
0
3 2 2
dF
l 2
2k m l 1 a 4a 2 l 2
解: 建立坐标系如图. 细棒上小段
y M dF a x
d Fy
[ x , x d x ]对质点的引力大小为 m d x dF k 2 a x2
故铅直分力元素为
l 2
dF
2 d Fy dF cos a m dx dx k 2 2 k m a 2 2 2 a x a x (a x 2 )
dW F ( x )dx
W dW F ( x )dx
a a
1
F(x)
O
b
b
a
x x+dx b
x
例1. 在一个带 +q 电荷所产生的电场作用下, 一个单
位正电荷沿直线从距离点电荷 a 处移动到 b 处 (a < b) , 求电场力所作的功 . 解: 当单位正电荷距离原点 r 时,由库仑定律电场力为
证明存在唯一一点 (a , b), 使S1 3 S 2
t
18
例64 求由r cos 及r 1 cos 所围图形的公共 思考 部分的面积 .
19
0
O
xdx x l x
2
利用对称性
故棒对质点的引力大小为 F 2k m l a
高等数学-同济大学第六版--高等数学课件第一章函数与极限
函数与极限
x
4
{x a x b} 称为半开区间, 记作 [a,b)
{x a x b} 称为半开区间, 记作 (a,b]
有限区间
[a,) {x a x} (,b) {x x b}
无限区间
oa
x
ob
x
区间长度的定义:
两端点间的距离(线段的长度)称为区间的长度.
2024/7/17
函数与极限
一、基本概念
1.集合: 具有某种特定性质的事物的总体.
组成这个集合的事物称为该集合的元素.
aM, aM, A {a1 , a2 ,, an }
有限集
M { x x所具有的特征} 无限集
若x A,则必x B,就说A是B的子集. 记作 A B.
2024/7/17
函数与极限
2
数集分类: N----自然数集 Z----整数集
2024/7/17
函数与极限
47
注意:1.不是任何两个函数都可以复合成一个复 合函数的;
例如 y arcsin u, u 2 x2; y arcsin(2 x2 )
(通常说周期函数的周期是指其最小正周期).
3l
l
2
2
l 2
3l 2
2024/7/17
函数与极限
25
四、反函数
y 反函数y ( x)
Q(b, a )
直接函数y f ( x)
o
P(a, b)
x
直接函数与反函数的图形关于直线 y x对称.
2024/7/17
函数与极限
26
五、小结
基本概念 集合, 区间, 邻域, 常量与变量, 绝对值. 函数的概念 函数的特性 有界性,单调性,奇偶性,周期性. 反函数
《高等数学》电子课件(同济第六版)01第一章第1节函数
复合函数在数学、物理、工程等领域有广 泛的应用。
反函数
反函数的定义
反函数是原函数关于y=x对称的函数。
反函数的性质
反函数具有原函数的性质,如连续性、可导性等。
反函数的求导法则
反函数的求导法则与原函数有关,可以通过交换x和y的导数来实现。
反函数的应用
反函数在数学、物理、工程等领域有广泛的应用,如解方程、优化问题等。
函数单调性的定义
如果对于函数的定义域内的任意两个数$x_1$和$x_2$,当$x_1 < x_2$时,都 有$f(x_1) leq f(x_2)$(或$f(x_1) geq f(x_2)$),则称函数在该区间内单调递 增(或单调递减)。
单调性的判定方法
通过比较函数在不同区间内的增减性,可以判断函数的单调性。此外,导数也 是判断函数单调性的重要工具,如果函数在某区间内的导数大于0,则函数在该 区间内单调递增;如果导数小于0,则函数单调递减。
04
函数的图像与性质
函数的图像
函数图像的概念
函数图像是表示函数值的点在平面上 的集合。通过函数图像,我们可以直 观地了解函数的形态和变化趋势。
函数图像的绘制方法
绘制函数图像通常需要确定函数的定 义域和值域,然后根据函数的解析式 ,在坐标系上标出对应的点,最后用 光滑的曲线将它们连接起来。
函数的单调性
答案与解析
$|x|$ 是偶函数。
$x^3$ 是奇函数。
判断下列函数是否为奇函 数或偶函数
01
03 02
答案与解析
$frac{1}{x}$ 是奇函数。
解析:奇函数的定义是对于定义域内的任意 $x$,都有 $f(-x) = -f(x)$;偶函数的定义是对 于定义域内的任意 $x$,都有 $f(-x) = f(x)$。 根据这些定义,可以判断出 $x^3$、$|x|$ 和 $frac{1}{x}$ 的奇偶性。
同济高等数学第六版上册第四章ppt
5. 求下列积分: dx ; (1) 2 2 x (1 x ) 提示:
dx ( 2) 2 . 2 sin x cos x
(1)
1 1 (1 x 2 ) x 2 1 2 2 2 2 2 2 x 1 x x (1 x ) x (1 x )
arcsin u C
(直接配元)
f [ ( x)] ( x)dx f ( ( x))d ( x)
2 12 C C 1
因此所求曲线为 y x 1
2
O
x
目录
上页
下页
返回
结束
从不定积分定义可知: d f ( x)d x f ( x) 或 d f ( x)dx f ( x) dx (1) dx
( 2)
F ( x) dx F ( x) C k dx
第四章 不定积分
微分法: F ( x) ( ? ) 积分法: ( ? ) f ( x) 互逆运算
第一节 不定积分的概念与性质
一、 原函数与不定积分的概念 二、 基本积分表 三、不定积分的性质
第四章
目录
上页
下页
返回
结束
问题: 1. 在什么条件下, 一个函数的原函数存在 ? 2. 若原函数存在, 它如何表示 ? 定理1. 若函数 f ( x ) 在区间 I 上连续 , 则 f ( x ) 在 I 上 (下章证明) 存在原函数 . 初等函数在定义区间上连续
x x e d x e C
(12)
x a C (13) a x dx ln a
目录
上页
下页
返回
结束
dx 例2. 求 3 . x x
高等数学(同济大学)第六版课件上第4章
例2. 质点在距地面 处以初速 垂直上抛 , 不计阻
力, 求它的运动规律.
解: 取质点运动轨迹为坐标轴, 原点在地面, 指向朝上 ,
质点抛出时刻为
此时质点位置为 初速为
设时刻 t 质点所在位置为
则
dx v(t)
(运动速度)
dt
再由此求 x(t)
d2 x d t2
dv dt
g
(加速度)
先由此求 v(t)
y
的所有积分曲线组成 的平行曲线族.
o
x0
x
机动 目录 上页 下页 返回 结束
例1. 设曲线通过点( 1 , 2 ) , 且其上任一点处的切线
斜率等于该点横坐标的两倍, 求此曲线的方程.
解:
y
所求曲线过点 ( 1 , 2 ) , 故有
(1, 2)
因此所求曲线为 y x2 1
o
x
机动 目录 上页 下页 返回 结束
C2
由x(0) x0 , 得C2 x0 , 于是所求运动规律为
x(t)
1 2
gt
2
v0t
x0
机动 目录 上页 下页 返回 结束
从不定积分定义可知:
(1)
d dx
f (x)d x
f (x)
或 d
f (x)dx
f (x)dx
(2) F(x) dx F(x) C 或 d F(x) F(x) C
x
x x(t)
x0 x(0) o
机动 目录 上页 下页 返回 结束
先求 由
知
v(t) ( g) d t gt C1
由v(0) v0 , 得C1 v0 , 故
v(t) gt v0
再求
《高等数学》电子课件(同济第六版)01第一章 第1节 函数
2.函数的单调性:
x1,x2I, 当 x1 x2时,
若 f(x1)f(x2),称f (x)为I上的单调增加函数; 若 f(x1)f(x2),称f (x)为I上的单调减少函数;
如 yx,yx3 单增
yx2?
精选课件ppt
21
3.函数的奇偶性:
设 D关于原, 对 点 于 对 xD 称 , 有
f(x)f(x)
o
x
精选课件ppt
27
(2)单值函数的反 一函 定数 是不 单值函数
如y : x2
反函数x: y. (3)若y f(x)单调增(减),
其反函数也单调增(减 )。
精选课件ppt
28
六、基本初等函数
1.幂函数
yx (是常)数
y
y x2
yx
1
y x (1,1)
o1
x
y 1 x
精选课件ppt
29
2.指数函数 yax (a0,a1) y e x
(1)子集; ( 2)集合相等; (3)空集;
精选课件ppt
2
( 4)集合运算: 如A B {xx A 且 x B }
AB{xxA 或x者 B }
3、常用数的集合:
N----自然数集
Z----整数集
Q----有理数集
数集间的关系:
R----实数集
N Z ,Z Q ,Q R .
精选课件ppt
第一节 映射与函数
一、集合
二、函数概念 三、映射 四、函数的特性 五、反函数
六、基本初等函数 七、复合函数 初等函数
精选课件ppt
1
第一节 映射与函数
一.集合:
1、集合
M {x x具有特定性}质
高等数学同济大学第六版1-01-函数课件
x cos y
y arccos x
反正弦函数 y arcsin x
证明 x 1,1 , arcsin x arccos x
y arcsin x
2
记 arcsin x [ , ], 2 2 arccos x [0, ],
x [1,1], y arcsin x [
0, x a H ( x) 1, x a
1
o a x
Heaviside 是一位英国的电子工程师,他 用 Heaviside 函数来描述事物由量变到质 变的一个过程与状态。
在自变量的不同变化范围中, 对应法则用不同的
式子来表示的函数,称为分段函数.
例如,
Байду номын сангаас
2 x 1, f ( x) 2 x 1,
, ] cos 2 2
1 sin 2 1 x 2 ,
sin 1 cos 2 1 x 2 , x 2 1 x 2 1,
反余弦函数 y arccos x
sin( ) sin cos cos sin
函 数
微积分研究的是客观世界的数量反映
——函数的性质、取值规律和函数值的 变化情况。
微积分研究的是客观世界的数量反映
——函数的性质、取值规律和函数值的 变化情况。 微积分的研究是以极限的思想为基 本思想,以极限的方法为基本方法—— 极限是基本工具。 但根本上,微积分这一学说的诞生 的基础是——笛卡儿的解析几何。
2 2
y x2 1
x0 x0
y 2x 1
函数的几何特性
1.函数的有界性:
同济高等数学第六版上册第一章ppt精编版
k
lim x 2 k 1 1;
lim x 2 k 1
目录
上页
下页
返回
结束
内容小结
1. 数列极限的 “ – N ” 定义及应用 2. 收敛数列的性质: 唯一性 ; 有界性 ; 保号性; 任一子数列收敛于同一极限
目录
上页
下页
返回
结束
第三节 函数的极限
对 y f ( x) , 自变量变化过程的六种形式: ( 4) x ( 1 ) x x0
定义
如果对于任意给定的正数 (不论它多么
小),总存在正数 N ,使得对于 n N 时的一切 x n , 不等式 x n a 都成立,那末就称常数 a 是数列
x n 的极限,或者称数列 x n 收敛于a ,记为
lim x n a , 或 x n a ( n ).
n
n (1) n 1 n
故
n (1) n lim xn lim 1 n n n
目录 上页 下页 返回 结束
例2. 设 q 1 , 证明等比数列 1 , q , q 2 , , q n 1 , 的极限为0 . 证:
n 1
n 1
n 1
xn 0 q
,;
n ( 1) { n
n 1
}
3 , 3 3 , , 3 3 3 ,
1.数列对应着数轴上一个点列.可看作一 注 意: 动点在数轴上依次取 x1 , x 2 , , x n , .
x3
x1
x2 x4
xn
2.数列是整标函数 x n f ( n).
目录 上页 下页 返回 结束
第一章
( 2) x x 0 (3) x x0 本节内容 :
高等数学(同济第六版)课件 第一章 3.函数的极限(一)
且a >b, (或a<b)
则正数X, 当x<-X时, 都有f(x) >b . (或f(x)<b) 当x>X时, 当|x|>X时,
(4) 充要条件:
lim lim lim f ( x ) A x f ( x ) A且 x f ( x ) A.
x
证: " " 0, X 1 0, 当x>X1 时,成立 f ( x ) A .
得 | x x0 |
x0
当 | x x0 | x0 时,才能使x>0, 取 min{ x0 , x0 } 当 0 x x0 时, 成立 | x x0 |
lim x
x x0
x0
" "定义
x x0
lim f ( x ) A
2 x2 x 1 3 lim x 1 x 1 2 x2 x 1 3 | 2 | x 1 | ( x 1) 0, | x 1 2 x2 x 1 3 | 当x与1多么接近时? | x 1 | x 1 | 2
2 x2 x 1 0, 当 0 | x 1 | 时, 成立 | 3 | 2 x 1
lim f ( x ) 0, 则 lim f ( x ) g( x ) 0
x x
1 x (7) 重要极限:lim (1 ) e x x
特点:(1)1 型 (2)底数减1等于指数的倒数 。
例2 求下列极限
2 x3 3 x2 5 (1) lim 3 2 x 7 x 4 x 1
二、 自变量趋向有限值时函数的极限 若当x无限接近于x0时,函数f(x)无限接近于常数A, 称常数A为当x趋于x0时,函数f(x)的极限。 记作 lim f ( x ) A
《高等数学》(同济六版)教学课件★第1章.函数与极限(2)
左右极限都存在
第二类间断点
无穷间断点
振荡间断点
左右极限至少有一个不存在
在点
间断的类型
在点
连续的等价形式
思考与练习
1. 讨论函数
x = 2 是第二类无穷间断点 .
间断点的类型.
2. 设
时
提示:
3. P65 题 3 , *8
为
连续函数.
答案: x = 1 是第一类可去间断点 ,
P65 题*8 提示:
显然
正根 .
二、 连续与间断
一、 函数
三、 极限
习题课
函数与极限
第一章
一、 函数
1. 概念
定义:
定义域
值域
图形:
( 一般为曲线 )
设
函数为特殊的映射:
其中
2. 特性
有界性 ,
单调性 ,
奇偶性 ,
周期性
3. 反函数
设函数
为单射,
反函数为其逆映射
4. 复合函数
给定函数链
则复合函数为
作业 P65 4 ; 5
备用题 确定函数
间断点的类型.
解: 间断点
为无穷间断点;
故
为跳跃间断点.
一、连续函数的运算法则
第九节
二、初等函数的连续性
连续函数的运算与
初等函数的连续性
第一章
定理2. 连续单调递增函数的反函数也连续单调递增.
在其定义域内连续
一、连续函数的运算法则
, 使
取
则
在
内连续,
存在, 则
必在
内有界.
上连续 , 且恒为正 ,
例5. 设
同济高等数学第六版上册第一章ppt.
第一章二、收敛数列的性质三、极限存在准则一、数列极限的定义第二节数列的极限∞第一章一、自变量趋于有限值时函数的极限第三节,)(x f y =对0)1(x x →+→0)2(x x -→0)3(x x ∞→x )4(+∞→x )5(-∞→x )6(自变量变化过程的六种形式:二、自变量趋于无穷大时函数的极限本节内容:函数的极限x 0定理2 .若在0x 的某去心邻域内0)(≥x f )0)((≤x f , 且,)(lim 0A x f x x =→则.0≥A )0(≤A 证:用反证法.则由定理1,0x 的某去心邻域,使在该邻域内,0)(<x f 与已知所以假设不真, .0≥A (同样可证0)(≤x f 的情形)思考:若定理2 中的条件改为,0)(>x f 是否必有?0>A 不能!lim 2=→x x 存在如假设A < 0, 条件矛盾,故时,当0)(≥x fyX-xX直线y= A为曲线的水平渐近线.第一章二、无穷大三、无穷小与无穷大的关系一、无穷小第四节无穷小与无穷大第一章二、极限的四则运算法则三、复合函数的极限运算法则一、无穷小运算法则第五节极限运算法则二、极限的四则运算法则,)(lim ,)(lim B x g A x f ==则有=±)]()(lim[x g x f )(lim )(lim x g x f ±证: 因,)(lim ,)(lim B x g A x f ==则有βα+=+=B x g A x f )(,)((其中βα,为无穷小)于是)()()()(βα+±+=±B A x g x f )()(βα±+±=B A 由定理1 可知βα±也是无穷小,再利用极限与无穷小BA ±=的关系定理, 知定理结论成立.定理3 .若推论:若,)(lim ,)(lim B x g A x f ==且),()(x g x f ≥则.B A ≥( P46 定理5 ))()()(x g x f x -=ϕ利用保号性定理证明.说明:定理3 可推广到有限个函数相加、减的情形.提示:令定理4. 若,)(lim ,)(lim B x g A x f ==则有=)]()(lim[x g x f )(lim )(lim x g x f 提示:利用极限与无穷小关系定理及本节定理2 证明.说明:定理4 可推广到有限个函数相乘的情形.推论1 .)(lim )](lim[x f C x f C =( C 为常数)推论2 .nnx f x f ])(lim [)](lim[=( n 为正整数)例2.设n 次多项式,)(10nn n x a x a a x P +++= 试证).()(lim 00x P x P n n x x =→证:=→)(lim 0x P n x x 0a x a x x 0lim 1→+++ nx x n xa 0lim →)(0x P n =BA =。
高等数学第六版上下册(同济大学出版社)课件
不定积分的几何意义
不定积分表示的是一种曲线族 ,每一条曲线都有一个与之对
应的方程。
积分的应用场景
01
物理应用
积分在物理中有广泛的应用,例 如计算物体的质量、重心、转动 惯量等。
工程应用
02
03
经济应用
积分在工程中有广泛的应用,例 如计算曲线的长度、面积、体积 等。
积分在经济中有广泛的应用,例 如计算总成本、总收益、总利润 等。
05
多重积分与向量分析
二重积分的概念与性质
二重积分的定义
二重积分是定积分在二维平面上的推广,表示一个二元函数在某个区域上的累积值。
二重积分的性质
二重积分具有可加性、可减性、可交换性等性质,这些性质使得二重积分在解决实际问题中具有广泛的应用。
三重积分的概念与性质
三重积分的定义
三重积分是定积分在三维空间上的推广 ,表示一个三元函数在某个区域上的累 积值。
03
导数与微分
导数的概念与性质
导数的定义
导数描述了函数在某一点附近的变化率,是函数局部 性质的一种体现。
导数的几何意义
导数在几何上表示函数图像在某一点的切线的斜率。
导数的性质
导数具有一些基本的性质,如线性性质、乘积法则、 商的导数法则等。
微分的概念与性质
微分的定义
01
微分是函数在某一点附近的小变化量,用于近似计算函数的值
求函数的最值
导数可以用于求函数在一定区间内的最大值和最小值,这在优化问题中具有广泛的应用。
04
积分
定积分的概念与性质
01
定积分的定义
定积分是积分的一种,是函数在区间上与区间的乘积在区间的两个端点
高等数学(同济第六版)课件第一章.绪论、第1节
莱 布 尼 茨
莱布尼茨是一个博才多学的学者,1684 年,他发表了现在世界上认为是最早的微 积分文献,这篇文章有一个很长而且很古 怪的名字《一种求极大极小和切线的新方 法,它也适用于分式和无理量,以及这种 新方法的奇妙类型的计算》。就是这样一 片说理也颇含糊的文章,却有划时代的意 义。他以含有现代的微分符号和基本微分 法则。1686年,莱布尼茨发表了第一篇积 分学的文献。他是历史上最伟大的符号学 者之一,他所创设的微积分符号,远远优 于牛顿的符号,这对微积分的发展有极大 的影响。现在我们使用的微积分通用符号 就是当时莱布尼茨精心选用的.
微分与积分是分析中的两种基本的极限过程。 这两种过程的一些特殊的情况,甚至在古代就已经
有人考虑过(在阿基米德工作中达到高峰),而在
十六世纪和十七世纪 ,更是越来越受到人们的重
视。然而,微积分的系统发展是在十七世纪才开始
的,通常认为是牛顿和莱布尼茨两位伟大的科学先 驱的创造。这一系统发展的关键在于认识到:过去 一直分别研究的微分和积分这两个过程,实际上是 彼此互逆的联系着。
第三类问题
求函数的最大最小值问题。 十七世纪初期,伽利略断定,在真空中以 45 角
发射炮弹时,射程最大。
研究行星运动也涉及最大最小值问题。
第三类问题
困难在于:原有的初等计算方法已不适于解决研 究中出现的问题。但新的方法尚无眉目。
第四类问题
求曲线的长度、曲线所围成的面积、曲面所围成 的体积、物体的重心。
高等数学 以微积分为主要内容的学科
微积分的发展历程
微积分的创立 ——变量的数学
初等数学时代(17世纪前) —— 常量的数学
• 算术
• 初等几何 • 初等代数
初等数学时代 —— 算术
同济六版高等数学第一章第四节课件
具有极限A的充分必要条件是f(x)Aa 其中a是无穷小
例如 因为 1 x3 1 1 而 lim 1 0
2x3 2 2x3
x 2x3
所以
lim 1 x3 x 2x3
1 2
定理1证明 首页
上页
返回
下页
结束
铃
❖无穷小的性质 •定理1 有限个无穷小的和也是无穷小
首页
上页
返回
下页
结束
铃
证明 仅就两个xx0时的无穷小情形证明
设a及是当xx0时的两个无穷小 则 0 10 当0|xx0|1 时 有|a| 20 当0|xx0|2 时 有|| 取 min{1 2} 则当0|xx0|时 有
|a||a|||2
这说明a 也是当xx0时的无穷小
举例: 当x0时 x与sin x都是无穷小 所以xsin x也是当 x0时的无穷小
的铅直渐近线
首页
上页
返回
下页
结束
铃
❖定理2(无穷大与无穷小之间的关系) 在自变量的同一变化过程中 如果f(x)为无穷大
则 1 为无穷小 反之 如果 f(x)为无穷小 且 f(x)0 f (x)
则 1 为无穷大 f (x)
定理2证明 首页
上页
返回
下页
结束
铃
堂上练习 1 . P42 第5题 2 . P42 第6题 3 . P42 第8题 作业 P42 第3,7题
说明 : y = 0 是
的渐近线 .
y sin x x
首页
上页
返回
下页
结束
铃
二、 无穷大
❖无穷大的定义
如果当xx0(或x)时 对应的函数值的绝对值|f(x)| 无限增大 那么称函数f(x)为xx0(或x)时的无穷大 记为
高等数学(同济第六版)课件 第一章 2.数列的极限
得: n g ( ) 取 N [ g ( )]
n 1 ( lim 用定义证明: 1) n 2 n 1 2 1 n (2) lim 2 sin 0 n n 3
lim xn a
n
0,
自然数N
lim 一般地:若数列{yn}有界, xn 0 n
小
结(二)
3.数列极限的性质: (1)唯一性 (2)有界性 (3)不等式性质 (4)有界数列与无穷小量的乘积还是无穷小量
4.常用的结论:
( lim C C 1)
n
(其中C为常数)
1 (2) lim p 0, (其中p为大于零的常数) n n
(3) q n 0, 其中 q 1. lim
重要极限Ⅱ
(e 2.71828)
例4 求下列极限
1 n (1) lim(1 ) n n 2 1 ( n 2 ) 2 lim(1 ) n n 2
1 n 2 (1 ) n 2 lim n 1 2 (1 ) n 2
1 n 2 lim(1 ) e n n 2 e 1 2 1 lim(1 ) n n 2
1 n ( 2) lim(1 ) n n n1 n n n 1 lim( ) lim( ) n n n 1 n n n lim ( ) n n 1 1 1 1 n 1 n 1 1 lim(1 ) lim(1 ) lim(1 ) n n n n1 n1 n1 1 e
n sin n! (4) lim 2 n n 1
n 1 3 n 4 ( 3) lim( ) n n
6n n (5) lim n ( n cos ) n 7 5 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
u
( n)
= sin( x + n ⋅ ) 2
π
v' = 2x , v'' = 2 , v(n) = 0(n ≥ 3)
由莱布尼兹公式
0 1 2 y(10) = C10u(10)v(0) + C10u(9)v' + C10u(8)v'' 10 ⋅ 9 π π π 2 sin( x + 8 ⋅ ) = x sin( x + 10 ⋅ ) + 10 ⋅ 2 x sin( x + 9 ⋅ ) + 2 ⋅ 2 2 2 2
(cos x )
(n)
π
2
), L
= cos( x + n ⋅ ) 2
π
抽象函数求高阶导数 例5
2 ƒ(x)具有任意阶导数 且 f '( x ) = [ f ( x )] , 则当 是 具有任意阶导数, 则当n 具有任意阶导数
大于2的正整数时 求ƒ(x)的n 阶导数 f 大于 的正整数时, 的 的正整数时
解
因为 y = ln x + 3 + ln x − 1
( 所以 y n ) = [ln x + 3 ]( n ) + [ln x − 1 ]( n )
= ( −1)( n−1)
( n − 1)! ( n − 1)! + ( −1)( n−1) ( x + 3)n ( x − 1)n
π (2) (sinkx) = k sin(kx + n⋅ ) 2 π ( n) n (3) (coskx) = k cos(kx + n⋅ ) 2
( n) n
(e x )( n) = e x
(4) ( xα )( n) = α (α -1)L(α - n +1) xα − n
(5) (ln x)
( n)
具有任意阶导数, 设ƒ(x)具有任意阶导数 且 f '( x ) = e − f ( x ) , f (0) = 1 , 则求 f ( n ) (0). 具有任意阶导数
解
f '( x ) = e − f ( x )
f "( x ) = −e − f ( x ) f '( x ) = −e −2 f ( x )
= − x2 sin x + 20cos x + 90sin x
解
设 u = e2x , v = x2, 则
, u(k) = 2k e2x ( k = 1, 2,L 20)
v′ = 2x ,
v′′ = 2,
, v(k) = 0 (k = 3,L 20)
代入莱布尼兹公式 , 得
y
(20)
20⋅19 18 2x 2 e ⋅2 = 2 e ⋅ x + 20⋅ 2 e ⋅ 2x + 2!
第三节 高阶导数
高阶导数的概念 高阶导数的求法举例
一、高阶导数的概念
函数 y =ƒ(x) 的导数 f '( x仍 x 是的函数. 若 f '( x ) 是的函数 在点 x ) 处仍可导, 处仍可导 则称 f '( x )在 x 处的导数为函数 y =ƒ(x) 在 x 处 的二阶导数 . 记为
y ′′ , f ′′( x ), d2y d dy ( ), = 2 dx dx dx d2 f . 2 dx
(4) (sin x )′ = cos x = sin( x +
π
2
)
(sin x ) ′′ = [sin ( x +
= cos( x +
π
2
)]′
π
2 )
π
2
) = sin( x + 2 ⋅
(sin x )′′′ = sin( x + 3 ⋅
π
(sin x )
同理可得
( n)
= sin( x + n ⋅ ) 2
故 f ( n ) ( x ) = n ![ f ( x )]n+1
已知 f ′′( x ) 存在,且 f ( x ) ≠ 0, y = ln[ f ( x )],
d2 y . 求 2 dx
解
dy f ′( x ) = dx f ( x)
d2y f ′′( x ) f ( x ) − [ f ′( x )]2 = 2 dx f 2( x)
20 2x 2 19 2x
3.间接法: .间接法: 利用已知的高阶导数公式, 通过四则运算, 利用已知的高阶导数公式, 通过四则运算, 变量代换等 方法, 求出n 阶导数. 常用高阶导数公式: 方法, 求出 阶导数. 常用高阶导数公式
(1) (a x )( n) = a x ⋅ lnna (a > 0)
(xα )( n) = α (α − 1)L(α − n + 1) xα −n
特别地
(xn )(n) = n! , (xn )(n+1) = 0
(2)
(a x )′ = a x ln a ,
(a x )′′ = a x ln 2 a ,L ,
(ax )(n) = ax lnn a
特别地
( e x )( n ) = e x
同理二阶导数的导数称为三阶导数. 同理二阶导数的导数称为三阶导数. 记为
y ′′′, f ′′′( x ), d3y , 3 dx d3 f dx 3
三阶导数的导数称为四阶导数. 三阶导数的导数称为四阶导数.记为
y(4),源自f(4)( x ),
d4y , 4 dx
d4 f dx 4
f ′( x + ∆ x ) − f ′( x ) 即 f ′′( x ) = lim ∆ x→0 ∆ x
n
= u, v
(0)
n( n − 1) ⋅ ⋅ ⋅ ( n − k + 1) . = v, C = k!
k n
莱布尼兹公式. 上述的乘积公式称为莱布尼兹公式 上述的乘积公式称为莱布尼兹公式
2 例6 设 y = x sin x , 求 y(10) .
解 令 u = sin x , v = x 2 , 则
二、高阶导数求法举例
1.直接法:由高阶导数的定义逐步求高阶导数 1.直接法:由高阶导数的定义逐步求高阶导数. 直接法 例1 求函数 y = 3 x 3 + 5 x 2 + 2 x + 6 的各阶导数: 的各阶导数:
解 y ' = 9 x 2 + 10 x + 2,
y " = 18 x + 10
(n) y "' = 18, y = 0 ( n ≥ 4)
例3 求下列函数的 n 阶导数: 阶导数: (1) y = x α (α ∈ R ) (2)y = a x (0 < a ≠ 1)
( 3 ) y = ln (1 + x )
解 (1) (xα )′ = α xα −1 ,
(4) y = sin x
(xα )′′ = α (α − 1) xα −2 ,L,
y '' = −
(4)
1 (3 ) y ' = , 1+ x
2! y ''' = , 3 (1 + x )
1 , 2 (1 + x)
y
3! ,L , =− 4 (1 + x )
( y)
( n)
= (−1)
n −1
(n − 1)! (1 + x )n
= ( −1)
n −1
特别地
(ln x )
(n)
( n − 1)! xn
1 例7 求 函 数 y = 的n 阶导数. 2 1− x 1 1 1 1 ) = ( + 解 因为 y = 2 2 1− x 1+ x 1− x
得 ( y)
( n)
n! 1 (−1)n ] (n = 0,1, 2,L) = [ + n +1 n +1 2 (1 − x ) (1 + x )
求函数y = ln x 2 + 2 x − 3 的n 阶导数.
f '"( x ) = 2e −2 f ( x ) f '( x ) = 2e −3 f ( x ) f (4) ( x ) = −3 ⋅ 2e −3 f ( x ) f '( x ) = −3 ⋅ 2e −4 f ( x ) ,...,
故
所以
f ( n ) ( x ) = ( −1)n−1 ( n − 1)! e − nf ( x ) f ( n ) (0) = ( −1)n−1 ( n − 1)! e − n
= 23 3! f 4 ( x )
猜想 : f
(n)
( x ) = 2 n! f
n
n+1
( x ).
n = 1时成立(条件);假设n成立, 对n + 1有 f ( n+1) ( x ) = [2n n! f n+1 ( x )]′ = 2n n!( n + 1) f n ( x ) f ′( x ) n +1 n+ 2 成立. = 2 ( n + 1)! f ( x ) 成立.
(n)
( x ).
【分析】注意对于抽象函数求高阶导数, 往采用递推法 分析】注意对于抽象函数求高阶导数 往采用递推法.
解
f '( x ) = [ f ( x )]2
f "( x ) = {[ f ( x )]2 }' = 2[ f ( x )] f '( x ) = 2[ f ( x )]3