化工原理_课程设计_精馏塔_(详细版) (1)
化工原理课程设计——精馏塔设计
南京工程学院课程设计说明书(论文)题目乙醇—水连续精馏塔的设计课程名称化工原理院(系、部、中心)康尼学院专业环境工程班级K环境091学生姓名朱盟翔学号240094410设计地点文理楼A404指导教师李乾军张东平设计起止时间:2011年12月5日至 2011 年12月16日符号说明英文字母A a——塔板开孔区面积,m2;A f——降液管截面积,m2;A0——筛孔面积;A T——塔截面积;c0——流量系数,无因此;C——计算u max时的负荷系数,m/s;C S——气相负荷因子,m/s;d0——筛孔直径,m;D——塔径,m;D L——液体扩散系数,m2/s;D V——气体扩散系数,m2/s;e V——液沫夹带线量,kg(液)/kg(气);E——液流收缩系数,无因次;E T——总板效率,无因次;F——气相动能因子,kg1/2/(s·m1/2);F0——筛孔气相动能因子,kg1/2/(s·m1/2);g——重力加速度,9.81m/s2;h1——进口堰与降液管间的距离,m;h C——与干板压降相当的液柱高度,m液柱;h d——与液体流过降液管相当的液柱高度,m;h f——塔板上鼓泡层液高度,m;h1——与板上液层阻力相当的高度,m液柱;h L——板上清夜层高度,m;h0——降液管底隙高度,m;h OW——堰上液层高度,m;h W——出口堰高度,m;h'W——进口堰高度,m;Hσ——与克服表面张力的压降相当的液柱高度,m液柱;H——板式塔高度,m;溶解系数,kmol/(m3·kPa);H B——塔底空间高度,m;H d——降液管内清夜层高度,m;H D——塔顶空间高度,m;H F——进料板处塔板间距,m;H P——人孔处塔板间距,m;H T——塔板间距,m;K——稳定系数,无因次;l W——堰长,m;L h——液体体积流量,m3/h;L S——液体体积流量,m3/h;n——筛孔数目;P——操作压力,Pa;△P——压力降,Pa;△P P——气体通过每层筛板的压降,Pa;r——鼓泡区半径,m,t——筛板的中心距,m;u——空塔气速,m/s;u0——气体通过筛孔的速度,m/s;u0,min——漏气点速度,m/s;u'0——液体通过降液管底隙的速度,m/s;V h——气体体积流量,m3/h;V s——气体体积流量,m3/h;W c——边缘无效区宽度,m;W d——弓形降液管宽度,m;W s——破沫区宽度,m;x——液相摩尔分数;X——液相摩尔比;y——气相摩尔分数;Y——气相摩尔比;Z——板式塔的有效高度,m。
化工原理课程设计任务书精馏塔
化工原理课程设计任务书精馏塔本篇文档主要介绍化工原理课程设计任务书中关于精馏塔的要求和内容。
一、设计任务设计一座丙酮-甲醇精馏塔,要求:1. 产品:A级丙酮、B级丙酮、水、甲醇2. 输入流量:1000kg/h,A级丙酮50%,B级丙酮50%3. 操作压力:常压4. 输出流量:1000kg/h,A级丙酮90%,B级丙酮10%5. 设计基准:精馏32个板层二、设计步骤1. 精馏塔的结构设计(1) 塔的类型:管式塔(2) 塔的高度:设定32个板层,按传质条件设计最小高度(3) 填料类型:采用网格填料(4) 塔的直径:根据输入流量、精馏塔高度和填料设计(5) 塔的材质:不锈钢(6) 填料厚度:1.5cm2. 精馏塔的操作参数及控制(1) 操作压力:常压(2) 丙酮的重心温度:58℃(3) 甲醇的重心温度:52℃(4) 塔顶压力:1atm(5) 塔底压力:1atm(6) 板间压力降:0.015atm(7) 蒸汽进口管直径:50mm(8) 汽液分离器直径:100mm(9) 泵的扬程:15m3. 精馏塔的热力学计算(1) 设定板层数:32(2) 输入流量:1000kg/h,A级丙酮50%,B级丙酮50%(3) 设定塔顶压力:1atm(4) 设定塔底压力:1atm(5) 设定塔板温度,参考数值文献或软件计算(6) 根据塔板温度确定物质的蒸汽压(7) 根据物质的蒸汽压计算物质的分馏、回流比等参数4. 精馏塔的动力学模拟(1) 建立模型:使用MATLAB或其他模拟软件建立动力学模型(2) 确定控制方案:根据设定的输出要求,确定控制方案(3) 模拟仿真:进行塔的动态仿真,查找可能的故障及出现的问题(4) 评价:对模拟结果进行评价,并应对出现的问题进行处理三、设计成果1. 绘制精馏塔的结构图:包含填料、板层、进口出口等2. 绘制精馏塔的液相、气相平衡图3. 计算精馏塔流程图:包括输入和输出物质流量、温度、压力等参数4. 编写精馏塔的操作说明:包括操作控制、参数设定、操作步骤等5. 输出精馏塔的动态模拟成果:包括MATLAB或其他模拟软件的代码和仿真结果以上是化工原理课程设计的精馏塔任务书的要求和内容,本文档中介绍了设计步骤和要求,设计成果等部分,可以为读者提供一定帮助,同时也展示了精馏塔设计工作的一般流程和方法。
化工原理课程设计(化工机械设计部分)精馏塔
化工机械设计部分设计条件:设计压力0.1Mpa ,工作温度130℃,设计温度150℃,介质名称为苯—氯苯,介质密度为973㎏/3m ,基本风压300N/㎡[1],地震烈度为8,场地类别Ⅱ,塔板数量22,塔高26m ,保温层材料厚度为100mm ,保温层密度为300㎏/3m一 塔体及封头厚度设计1壳体材料选取 该塔工作温度为130℃,设计压力为0.12Mpa ,塔体内径3400mm ,塔高21米。
介质苯-氯苯有轻微的腐蚀性,选用强度较好的16MnR ,16MnR 在设计温度下的许用应力[]t σ=170Mpa ,Rel=345Mpa ,腐蚀裕量2C =2mm ,采用双面对接焊缝,局部无损探伤,焊接系数为Φ=1.02塔体厚度计算计算压力:0.12c p MPa = 2C mm = []170tMPa σ= D=4600mm 1.0φ=圆筒的计算厚度:[]0.1246001.35217010.12c i tcp D mm p δσφ⨯===⨯⨯--设计厚度:2 1.352 3.35d C mm δδ=+=+=考虑到其受到风载荷、地震载荷、偏心载荷和介质压力作用,取名义厚度:8n mm δ= 有效厚度:.8 2.8 5.2e n C mm δδ=-=-=3封头厚度计算 (封头采用标准椭圆形封头,材料与筒体相同)计算压力:0.12c p MPa = 2C mm = []170tMPa σ= 4600i D mm = 1φ=封头厚度:[]0.146001.35217010.50.120.5c itcp D mm p δσφ⨯===⨯⨯-⨯-设计厚度:2 1.352 3.35d C mm δδ=+=+= 取名义厚度:8n mm δ=有效厚度:.8 2.8 5.2e n C mm δδ=-=-=二 塔设备质量载荷计算1 筒体、圆筒、封头、裙座的质量【8】 2附件的质量 3塔内构件的质量筛板塔塔盘单位质量265/N q kg m = 塔内构件的质量:22020.785 4.62265237534i m D Nq kg πN ==⨯⨯⨯=4 保温层的质量 5平台、扶梯的质量查得平台单位质量2150/P q kg m = 笼式扶梯单位质量40/F q kg m = 其中平台数3n =,笼式扶梯高度为26000mm 平台、扶梯的质量㎏()()222204002340210.785 4.6162 4.616150389754f p m q H D D q kg π⎡⎤⎡⎤=⨯++-⨯⨯=⨯+⨯+-⨯⨯=⎣⎦⎣⎦6操作时物料的质量 7水压试验质量 8 操作质量: 9 全塔最大质量m max =m 01+ m 02+ m 03+ m 04+ m a + m w =377326 10 全塔最小质量m min =m 01+0.2 m 02+ m 03+ m 04=43256kg计算前先对塔进行分段,以地面为0-0截面,裙座人孔为1-1截面,塔低封三塔的自振周期四 风载荷与风弯矩的计算【6】① 0-0截面风弯矩0031241213124123()()()2222w l l l lM P P l P l l P l l l -=+++++++++=91.00510(mm)N ⨯ ②1-1截面风弯矩2-2截面风弯矩五地震弯矩的计算第一振型脉动系数: 0.02 衰减指数:0.95 塔总高:26m 自振周期 T1=0.36场地特征周期:0.35g T =(表8-2) 地震影响系数最大值:max 0.24α=(表8-3) 地震影响系数:10.077α= H (0-0)=0mmH (1-1)=1000mm H (2-2)=7000mm底截面处地震弯矩:00810161.259.691035E M m gH N mm α-=⨯=⨯⋅ 1—1截面处地震弯矩:()113.5 2.5 3.58102.581.25101449.1710175E m g M H H h h N mm H α-=-⋅+=⨯⋅2—2截面处地震弯矩:1.1 偏心弯矩的计算不设置再沸器所以不考虑1.2 各种载荷引起的轴向应力1.2.1 计算压力引起的轴向应力 1.2.2 操作质量引起的轴向应力各截面操作质量: 0—0截面1—1截面 2—2截面 8634585437799891.2.3 最大弯矩引起的轴向应力最大弯矩:1.3 塔体和裙座危险截面强度与稳定性校核1.3.1 截面的最大组合轴向拉应力校核截面2-2,塔体的最大组合轴向拉应力发生在正常操作的2-2截面上,其中[]170tMpa σ=,[]t1.0, 1.2=1.21701=204pa K K M σΦ==Φ⨯⨯⎡⎤⎣⎦载荷组合系数,塔体的最大组合轴向啦应力发生在正常时的截面2-2上所以满足要求1.3.2 塔体与裙座稳定性校核塔体截面2-2上的最大组合轴向压应力 所以满足要求 其中0.0940.000212i eA R δ== 查图5-9得(16MnR ,200℃) E=1.86×510 []170tMpa σ=【6】 塔体1-1截面上的最大组合轴向压应力查图5-9得(Q235-B 150℃)E=2×510[]113tMpa σ= 塔体截面0-0上的最大组合轴向压应力1.4 塔体水压试验和吊装时的应力校核1.4.1 水压试验时各种载荷引起的应力液柱静压:1000260.26H g MPa γ=⨯=试验压力:[][]1.250.125T t p p MPa σσ==试验压力和液柱静压力引起的环向应力: 试验压力引起的轴向啦应力: 最大质量引起的轴向压应力 :弯矩引起的轴向应力1.4.2 水压试验时应力校核筒体环向应力校核0.9310.5s K MPa σ= 16MnR (345s MPa σ=)170.48310.5T MPa MPa σ=〈,满足要求 最大组合轴向拉应力校核22max 20.070.9310.5s MPa Mpa σσφ-=-〈=,满足要求最大组合轴向压应力校核1.5 基础环设计1.5.1 基础环尺寸裙座外径:4600164616os D mm =+= 基础环外径:046004005000b D mm =+=基础环内径:46004004200ib D mm =-=基础环伸出宽度:()()115000461619222ob os b D D mm =-=-=基础环面积:()22257776004obos b A D D mm π=-= 基础环截面系数:()448361.61032obos b obD D Z mm D π-==⨯1.5.2 基础环的动力校核所以取以上俩者较大的max 1.56MPa σ=。
化工原理课程设计精馏塔
化工原理课程设计精馏塔
在化工原理课程设计中,精馏塔是一个非常重要的主题。
精馏塔是化工生产中
用来进行精馏分离的装置,其原理和设计对于化工工程师来说至关重要。
本文将对精馏塔的原理、结构和设计进行详细介绍,希望能对化工原理课程设计有所帮助。
首先,我们来介绍一下精馏塔的原理。
精馏塔利用不同组分的沸点差异来进行
分离,通过在塔内加热并在塔顶冷凝,使得液体沸腾蒸发,然后在塔顶冷凝成液体,从而实现组分的分离。
在精馏塔内,通常会设置填料或塔板,增加塔内表面积,促进传质和传热,提高分离效率。
其次,我们将介绍精馏塔的结构。
精馏塔通常由塔底、塔体和塔顶三部分组成。
塔底主要用来加热液体,使其蒸发;塔体内设置填料或塔板,用来增加接触面积;塔顶则用来冷凝蒸发的液体,使其凝结成液体。
此外,精馏塔还包括进料口、顶部产品出口和底部残液出口等部件。
最后,我们将讨论精馏塔的设计。
精馏塔的设计需要考虑诸多因素,如进料组分、产品要求、操作压力和温度等。
在设计精馏塔时,需要进行热力学计算和传质计算,确定塔板或填料的高度和类型,保证塔内的传热和传质效果。
此外,还需要考虑塔底加热方式、塔顶冷凝方式以及塔内液体分布等问题,确保精馏塔能够稳定、高效地进行分离操作。
总之,精馏塔作为化工生产中常用的分离设备,其原理、结构和设计都是化工
工程师需要掌握的重要知识。
通过本文的介绍,相信读者对精馏塔有了更深入的了解,希望能够对化工原理课程设计有所帮助。
化工原理 课程设计 精馏塔
化工原理课程设计精馏塔
化工原理课程设计:精馏塔
一、设计题目
设计一个年产10万吨的乙醇-水溶液精馏塔。
该精馏塔将采用连续多级蒸馏的方式,将乙醇与水进行分离。
乙醇的浓度要求为95%(质量分数),水含量要求低于5%。
二、设计要求
1. 设计参数:
操作压力:常压
进料流量:10万吨/年
进料组成:乙醇40%,水60%(质量分数)
产品要求:乙醇95%,水5%
2. 设计内容:
完成精馏塔的整体设计,包括塔高、塔径、填料类型、进料位置、塔板数、回流比等参数的计算和选择。
同时,还需完成塔内件(如进料口、液体分布器、再沸器等)的设计。
3. 绘图要求:
需要绘制精馏塔的工艺流程图和结构示意图,并标注主要设备参数。
4. 报告要求:
完成设计报告,包括设计计算过程、结果分析、经济性分析等内容。
三、设计步骤
1. 确定设计方案:根据题目要求,选择合适的精馏塔类型(如筛板塔、浮阀塔等),并确定进料位置、塔板数和回流比等参数。
2. 计算塔高和塔径:根据精馏原理和物料性质,计算所需塔高和塔径,以满足分离要求。
3. 选择填料类型:根据物料的特性和分离要求,选择合适的填料类型,以提高传质效率。
4. 设计塔内件:根据塔板数和填料类型,设计合适的进料口、液体分布器、再沸器等塔内件。
5. 进行工艺计算:根据进料组成、产品要求和操作条件,计算每块塔板的温度和组成,以及回流比等参数。
6. 进行经济性分析:根据设计方案和工艺计算结果,分析项目的投资成本和运行成本,评估项目的经济可行性。
化工原理课程设计_乙醇-水连续浮阀精馏塔的设计 (1)
第一章:塔板的工艺设计一、精馏塔全塔物料衡算F:进料量(kmol/s ) F x :原料组成(摩尔分数,同下) D:塔顶产品流量(kmol/s ) D x :塔顶组成 W:塔底残液流量(kmol/s ) :W x 塔底组成原料乙醇组成:%91.8%10018/8046/2046/20x =⨯+=F塔顶组成:%98.85%10018/646/9446/94=⨯+=D x塔底组成:%12.0%10018/7.9946/3.046/3.0=⨯+=W x进料量:F=25万吨/年=4706.036002430010182.01462.0102543=⨯⨯⨯⎪⎭⎫ ⎝⎛-+⨯⨯(kmol/s ) 物料衡算式为:F=D+W Fx F =Dx D +W W x 联立带入求解:D=0.0482 kmol/s W=0.4424 kmol/s二、常压下乙醇-水气液平衡组成(摩尔)与温度关系1. 温度利用表中数据由差值法可求得t F 、t D 、t W①t F :21.791.80.89t 66.921.77.860.89F --=--, t F =87.41 ℃②t D :72.7498.8541.78t 72.7443.8941.7815.78--=--D , t D =78.21 ℃③t W :12.0100t 90.105.95100W --=--, t W =99.72 ℃ ④精馏段的平均温度:81.82221.7841.872t t t 1=+=+=F D ℃ ⑤提馏段的平均温度:57.93272.9941.872t t t 2=+=+=F W ℃ 2. 密度已知:混合液密度:B B A A Lραραρ+=1(α为质量分数,M 为平均相对分子质量) 混合气密度:004.22TP MP T V =ρ塔顶温度:t D =78.21 ℃ 气相组成43.8910015.7821.7843.8915.7815.7841.78y --=--D D y :, %88.86=D y进料温度:t F =87.41℃ 气相组成FF y 10091.3841.870.8975.4391.387.860.89y --=--:, %26.42y =F塔底温度:t W =99.72℃气相组成WW y 100072.991000.1705.95100y --=--:, W y =1.06%⑴ 精馏段液相组成1x :1x =2x x FD +, %445.47x 1= 气相组成2y y y y 11FD +=:, %545.64y 1= 所以 286.31)4745.01(184745.0461=-⨯+⨯=L M kg/mol 074.36)6455.01(186455.0462=-⨯+⨯=L M kg/mol三、理论塔板的计算理论板:指离开此板的气液两相平衡,而且上液相组成均匀。
化工原理课程设计精馏塔
化工原理课程设计任务书1.设计题目:分离乙醇—正丙醇二元物系旳浮阀式精馏塔2.原始数据及条件:进料:乙醇含量45%(质量分数,下同),其他为正丙醇分离规定:塔顶乙醇含量 93%;塔底乙醇含量 0.01%生产能力:年处理乙醇-正丙醇混合液 25000 吨,年动工 7200 小时操作条件:间接蒸汽加热;塔顶压强 1.03atm(绝压);泡点进料; R=53.设计任务:⑴完毕该精馏塔旳各工艺设计,包括设备设计及辅助设备选型。
⑵画出带控制点旳工艺流程图、塔板版面布置图、精馏塔设计条件图。
⑶写出该精馏塔旳设计阐明书,包括设计成果汇总和设计评价。
概述本次设计针对二元物系旳精馏问题进行分析、计算、核算、绘图,是较完整旳精馏设计过程。
精馏设计包括设计方案旳选用,重要设备旳工艺设计计算、辅助设备旳选型、工艺流程图旳制作、重要设备旳工艺条件图等内容。
通过对精馏塔旳核算,以保证精馏过程旳顺利进行并使效率尽量旳提高。
本次设计成果为:理论板数为 20 块,塔效率为 42.2%,精馏段实际板数为 40块,提馏段实际板数为 5 块,实际板数 45 块。
进料位置为第 17 块板,在板式塔重要工艺尺寸旳设计计算中得出塔径为 0.8 米,设置了四个人孔,塔高 22.19 米,通过浮阀板旳流体力学验算,证明各指标数据均符合原则。
关键词:二元精馏、浮阀精馏塔、物料衡算、流体力学验算。
目录第一章绪论 (5)第二章塔板旳工艺设计 (7)一、精馏塔全塔物料衡算 (7)二、乙醇和水旳物性参数计算 (7)1.温度 (7)2.密度 (8)三、理论塔板旳计算 (11)四、塔径旳初步计算 (12)五、溢流装置 (14)六、塔板分布、浮阀数目与排列 (15)第三章塔板旳流体力学计算 (16)一、气相通过浮阀塔板旳压降 (16)二、淹塔 (17)三、物沫夹带 (18)四、塔板负荷性能图 (19)1.物沫夹带线 (19)2.液泛线 (19)3.液相负荷上限 (20)4.漏液线 (20)5.液相负荷下限 (20)第四章塔附件旳设计 (21)一、接管 (21)二、筒体与封头 (23)三、除沫器 (23)四、裙座 (24)五、人孔 (24)第五章塔总体高度旳设计 (24)一、塔旳顶部空间高度 (24)二、塔总体高度 (24)第六章附属设备旳计算 (24)8.1热量衡算 (24)8.1.10℃旳塔顶气体上升旳焓Qv (24)258.1.2回流液旳焓QR..................................................................8.1.3塔顶馏出液旳焓Q D (25)8.1.4冷凝器消耗旳焓Q C (25)8.1.5进料口旳焓Q F (25)8.1.6塔釜残液旳焓Q W (26)8.1.7再沸器Q B (26)8.2冷凝器旳设计 (26)8.3冷凝器旳核算 (27)8.4泵旳选择 (27)浮阀塔工艺设计计算成果列表 (28)重要符号阐明 (29)参照文献 (31)第一章绪论精馏旳基本原理是根据各液体在混合液中旳挥发度不一样,采用多次部分汽化和多次部分冷凝旳原理来实现持续旳高纯度分离。
化工原理课程设计精馏塔详细版
广西大学化学化工学院化工原理课程设计任务书专业:班级:姓名:学号:设计时间:设计题目:乙醇——水筛板精馏塔工艺设计(取至南京某厂药用酒精生产现场)设计条件: 1. 常压操作,P=1 atm(绝压)。
2. 原料来至上游的粗馏塔,为95——96℃的饱和蒸汽。
因沿程热损失,进精馏塔时原料液温度降为90℃。
3. 塔顶产品为浓度92.41%(质量分率)的药用乙醇,产量为 40吨/日。
4.塔釜排出的残液中要求乙醇的浓度不大于0.03%(质量分率)。
5.塔釜采用饱和水蒸汽加热(加热方式自选);塔顶采用全凝器,泡点回流。
6.操作回流比R=(1.1——2.0)R。
min设计任务: 1. 完成该精馏塔工艺设计,包括辅助设备及进出口接管的计算和选型。
2.画出带控制点的工艺流程图,t-x-y相平衡图,塔板负荷性能图,筛孔布置图以及塔的工艺条件图。
3.写出该精流塔的设计说明书,包括设计结果汇总和对自己设计的评价。
指导教师:时间1设计任务1.1 任务1.1.1 设计题目乙醇—水筛板精馏塔工艺设计(取至南京某厂药用酒精生产现场)1.1.2 设计条件 1.常压操作,P=1 atm(绝压)。
2.原料来至上游的粗馏塔,为95-96℃的饱和蒸气。
因沿程热损失,进精馏塔时原料液温度降为90℃。
3.塔顶产品为浓度92.41%(质量分率)的药用乙醇,产量为40吨/日。
4.塔釜排出的残液中要求乙醇的浓度不大于0.03%(质量分率)。
5.塔釜采用饱和水蒸气加热(加热方式自选);塔顶采用全凝器,泡点回流。
6.操作回流比R=(1.1—2.0)R。
min1.1.3 设计任务1.完成该精馏塔工艺设计,包括辅助设备及进出口接管的计算和选型。
2.画出带控制点的工艺流程示意图,t-x-y相平衡图,塔板负荷性能图,筛孔布置图以及塔的工艺条件图。
3.写出该精馏塔的设计说明书,包括设计结果汇总和对自己设计的评价。
1.2 设计方案论证及确定1.2.1 生产时日设计要求塔日产40吨92.41%乙醇,工厂实行三班制,每班工作8小时,每天24小时连续正常工作。
化工原理课程设计乙醇水精馏塔设计doc
化工原理课程设计-乙醇-水精馏塔设计.doc化工原理课程设计:乙醇-水精馏塔设计一、设计任务本设计任务是设计一个乙醇-水精馏塔,用于分离乙醇和水混合物。
给定混合物中,乙醇的含量为30%,水含量为70%。
设计要求塔顶分离出95%以上的乙醇,塔底剩余物中水含量不超过5%。
二、设计方案1.确定理论塔板数根据给定的乙醇含量和设计要求,利用简捷计算法计算理论塔板数。
首先确定乙醇的回收率和塔顶产品的浓度,然后根据简捷计算公式计算理论塔板数。
2.塔的总体积和尺寸根据理论塔板数和每块理论板的液相体积流量,计算塔的总体积。
根据总体积和塔内件设计要求,确定塔的外形尺寸。
3.塔内件设计塔内件包括溢流管、进料口、冷凝器、再沸器和出口管等。
溢流管的尺寸和形状应根据塔径和物料性质进行设计。
进料口的位置和尺寸应根据进料流量和进料组成进行设计。
冷凝器和再沸器应根据物料的热力学性质和工艺要求进行设计。
出口管应根据塔径和出口流量进行设计。
4.塔板设计每块塔板的设计包括板上液相和气相的流动通道、堰和降液管等。
根据物料的物理性质和操作条件,确定液相和气相的流动通道尺寸和形状。
堰的高度和形状应根据液相流量和操作条件进行设计。
降液管的设计应保证液相流动顺畅且无滞留区。
5.塔的支撑结构和保温根据塔的外形尺寸和操作条件,设计支撑结构的形状和尺寸。
考虑保温层的设置,以减小热量损失。
三、设计计算1.确定理论塔板数根据简捷计算法,乙醇的回收率为95%,塔顶产品的乙醇浓度为95%。
通过简捷计算公式,得到理论塔板数为13块。
2.塔的总体积和尺寸每块理论板的液相体积流量为0.01m3/min,因此总体积为0.013m3/min。
考虑一定裕度,确定塔的外径为0.6m,高度为10m。
3.塔内件设计溢流管的尺寸为Φ10mm,形状为直管上升式。
进料口的位置位于第3块理论板处,尺寸为Φ20mm。
冷凝器采用列管式换热器,再沸器采用釜式再沸器。
出口管采用标准出口管,直径为Φ20mm。
化工原理课程设计精馏塔设计
学号:200620515070(前言工业生产过程中,两种物流之间热的交换通过换热器实现。
在石油、化工、食品加工、轻工、制药等行业的生产过程中,换热器是通用工艺设备,可用作加热器、冷却器、冷凝器、蒸发器和再沸器等,换热器类型,性能各异,但设计所依据的传热基本原理相同,不同之处是在结构设计上需要根据各自设备特点采用不同的计算方法。
为此,本次仅对设计成熟,应用广泛的列管式换热器的工艺设计作介绍。
列管式换热器的应用已有悠久的历史。
在很多工业部门中,列管式换热器仍处于主导地位,随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,因而对换热器的要求也日益加强,换热器的设计、制造、结构改进及传热机理的研究十分活跃,一些新型的高效换热器相继问世。
本次设计任务是年产3.4万吨酒精精馏系统换热器设计,其中包含了生产工艺流程中五个换热器:原料预热器,塔顶全凝器,塔底冷却器,塔顶冷却器和再沸器。
选取了三个换热器对其进行了精算,经反复选择与核算之后,选取了合适的换热器类型及其结构尺寸等其他工艺指标要求。
对其余两个换热器做了冷热流体的物料衡算,以及对换热器的初步选型。
此次设计参考了较多的文献资料,结合实际生产需求采用了科学严谨的计算方法和精确严密的计算步骤,设计出了较符合生产需求,经济实惠,安全可靠,操作简便,易于清洗、维修的列管式换热器。
编者2009-7-15第一章概述1.1设计设备在生产中的作用在工业生产中,要实现热量的交换,须采用一定的设备,此种交换热量的设备称为换热器。
换热器作为工艺过程必不可少的单元设备,广泛地应用于石油、化工、动力、轻工、机械、冶金、交通、制药等工程领域中,据统计,在现代石油化工企业中,换热器投资约占装置建设总投资的30%-40%;在合成氨厂中,换热器占全部设备总台数的40%,由此可见,换热器对整个企业的建设投资及经济效益有着重要的影响。
1.2设计工艺流程示意图图解:原料液通过原料液预热器预热后进入精馏塔,被成功加热后成为原料蒸汽进入塔顶冷凝器被冷却水冷却成为液体,再进入分配器,经过二次冷却成为产品进入贮罐。
化工原理课程设计乙醇水混合液精馏塔设计
化工原理课程设计乙醇水混合液精馏塔设计化工原理课程设计乙醇水混合液精馏塔设计一、引言精馏是石油化工、化学工业等领域中非常重要的分离和纯化方法之一。
在工业生产中,乙醇与水混合液的精馏分离技术应用非常广泛。
本文针对乙醇水混合液的精馏塔设计展开探讨。
二、乙醇水混合液的精馏分离原理通常将乙醇水混合液进行精馏时,可以利用其两种组分的沸点差异来实现分离。
在常压下,100克水的沸点为100℃,而100克乙醇的沸点为78.5℃,因此在一定的操作条件下,乙醇可以被分离出来。
三、精馏塔结构及工作原理精馏塔是一种具有特殊内部结构的容器,它可以用来将液体混合物分离成其组分。
精馏塔通常包括塔体、进料口、下塔液口和顶部气体口。
在塔体内部,有许多被称为塔板的“板子”,可以使物质沿着塔的高度进行反复蒸馏和冷凝,以达到分离组分的目的。
四、乙醇水混合液精馏塔设计对于乙醇水混合液的精馏塔设计,主要需要掌握以下几个参数。
4.1 精馏塔塔板数量精馏塔塔板数量对精馏分离效率有着决定性的影响。
一般来说,塔板的数量越多,分离效率越高。
在设计乙醇水混合液精馏塔时,需要根据不同的情况选择适当的塔板数量。
4.2 进料口位置和进料速度进料口位置和进料速度对于精馏分离的效果也有比较大的影响。
在设计乙醇水混合液精馏塔时,需要根据实际情况确定进料口位置和进料速度。
4.3 塔顶气体口和旋流板塔顶气体口和旋流板的设置也是精馏塔设计中必不可少的环节。
旋流板能够使得气体在塔体内形成旋涡,加速液体蒸发,从而提高精馏塔的分离效率。
五、结论乙醇水混合液的精馏塔设计是一项非常重要的工作,直接影响到分离效率和产品质量。
在进行精馏塔设计时,需要对塔板数量、进料口位置和进料速度、塔顶气体口和旋流板等参数进行合理的把握,以达到最佳的分离效果。
化工原理课程设计精馏塔
化工原理课程设计精馏塔
精馏塔是化工原理课程设计中的重要内容,它是一种用于分离液体混合物的设备,广泛应用于石油化工、化工制药等领域。
精馏塔的设计和操作对于提高产品纯度、降低能耗、优化生产工艺具有重要意义。
首先,精馏塔的结构通常包括进料口、塔板、塔顶、冷凝器和回流器等部分。
进料液体在塔顶进入塔板,经过塔板上的填料或者气液分布器,与上升的蒸汽进行接触和传质,从而实现组分的分离。
冷凝器用于将顶部的蒸汽冷凝成液体,回流器则用于控制塔内液体的回流比例,保证塔内的稳定操作。
其次,精馏塔的操作原理是利用不同组分在塔内的汽液平衡特性,通过多级塔
板的作用,将混合物中的各组分逐级分离。
在精馏过程中,液体在塔板上停留时间较长,与上升的蒸汽进行充分接触,从而实现组分的分离。
较轻的组分在顶部得到富集,而较重的组分则在底部得到富集,通过塔顶和塔底的出口分别收集这两部分液体,从而实现分离。
在进行精馏塔的设计时,需要考虑原料的性质、产品的要求、能耗的控制等因素。
通过合理地选择填料类型、确定塔板数目、优化冷凝器和回流器的设计,可以实现精馏塔的高效运行。
此外,还需考虑操作条件的控制,如进料流量、回流比例、塔顶温度等参数的调节,以保证塔内的稳定操作。
总的来说,精馏塔在化工原理课程设计中具有重要的地位,它不仅是理论知识
的应用,更是对学生综合运用化工原理、热力学、传质动力学等知识进行工程设计和操作的重要实践。
通过对精馏塔的学习和设计,不仅可以加深对化工原理的理解,更可以培养学生的工程实践能力和创新思维,为将来的工程实践打下坚实的基础。
化工原理课程设计——精馏塔
(二)
塔板的类型与选择
塔板是板式塔的主要构件,分为错流式塔板和逆流式塔板两类,工业应用以错 流式塔板为主,常用的错流式塔板主要有下列几种。
1. 泡罩塔板
泡罩塔板是工业上应用最早的塔板,其主要元件为升气管及泡罩。泡罩安装 在升气管的顶部,分圆形和条形两种,国内应用较多的是圆形泡罩。泡罩尺寸分 为ϕ80 mm、ϕ100 mm、ϕ150mm三种,可根据塔径的大小选择。通常塔径小于 1 OOO mm,选用ϕ80 mm的泡罩;塔径大于 2 000 mm,选用ϕ150 mm的泡罩。 泡罩塔板的主要优点是操作弹性较大,液气比范围大,不易堵塞,适于处理各 种物料,操作稳定可靠。其缺点是结构复杂,造价高; 板上液层厚, 塔板压降大, 生产能力及板效率较低。近年来,泡罩塔板已逐渐被筛板、浮阀塔板所取代。在 设计中除特殊需要(如分离粘度大、易结焦等物系)外一般不宜选用。
σ,m
N m
双组分混合液体的表面张力 σm 可按下式计算
m
式中
x x
A B A A B
B
m
-混合液体的平均表面张力 ,
A
B
-纯组分 A,B 的表面张力
xA,xB-A,B 组分的摩尔分率 4、氯苯的汽化潜热 常压沸点下的汽化潜热为 35.3×103kJ/kmol 纯组分的汽化潜热与温度的关系可用下式计算:
纯组分在任何温度下得密度可由下式计算: 苯 ρA=912-1.187t 氯苯 ρB=1127-1.111t 3、组分的表面张力 σ 温度,℃ 80 苯 氯苯 21.2 26.1 85 20.6 25.7 110 17.3 22.7 115 16.8 22.2 120 16.3 21.6 131 15.3 20.4 式中 t 为温度,℃
化工原理课程设计-精馏塔
化工原理课程设计任务书(一)设计题目在抗生素类药物生产过程中,需要用甲醇溶液洗涤晶体,洗涤过滤后产生废甲醇溶液,其组成为含甲醇46%、水54%(质量分数),另含有少量的药物固体微粒。
为使废甲醇溶液重复利用,拟建立一套填料精馏塔,以对废甲醇溶液进行精馏,得到含水量≤0.3%(质量分数)的甲醇溶液。
设计要求废甲醇溶液的处理量为 3.6万吨/年,塔底废水中甲醇含量≤0.5%(质量分数)。
(二)操作条件1)操作压力常压2)进料热状态自选3)回流比自选4)塔底加热蒸汽压力 0.3Mpa(表压)(三)填料类型因废甲醇溶液中含有少量的药物固体微粒,应选用金属散装填料,以便于定期拆卸和清洗。
填料类型和规格自选。
(四)工作日每年工作日为300天,每天24小时连续运行。
(五)设计内容1、设计说明书的内容1)精馏塔的物料衡算;2)塔板数的确定;3)精馏塔的工艺条件及有关物性数据的计算;4)精馏塔的塔体工艺尺寸计算;5)填料层压降的计算;6)液体分布器简要设计;7)精馏塔接管尺寸计算;8)对设计过程的评述和有关问题的讨论。
摘要甲醇最早由木材和木质素干馏制的,故俗称木醇,这是最简单的饱和脂肪组醇类的代表物。
无色、透明、高度挥发、易燃液体。
略有酒精气味。
近年来,世界甲醇的生产能力发展速度较快。
甲醇工业的迅速发展,是由于甲醇是多种有机产品的基本原料和重要的溶剂,广泛用于有机合成、染料、医药、涂料和国防等工业。
由甲醇转化为汽油方法的研究成果,从而开辟了由煤转换为汽车燃料的途径。
近年来碳化学工业的发展,甲醇制乙醇、乙烯、乙二醇、甲苯、二甲苯、醋酸乙烯、醋酐、甲酸甲酯和氧分解性能好的甲醇树脂等产品,正在研究开发和工业化中。
甲醇化工已成为化学工业中一个重要的领域。
目前,我国的甲醇市场随着国际市场的原油价格在变化,总体的趋势是走高。
随着原油价格的进一步提升,作为有机化工基础原料——甲醇的价格还会稳步提高。
国内又有一批甲醇项目在筹建。
这样,选择最好的工艺利设备,同时选用最合适的操作方法就成为投资者关注的重点。
化工原理课程设计之甲苯精馏塔设计
化工原理课程设计之甲苯精馏塔设计本文将探讨化工原理课程设计中的甲苯精馏塔设计。
甲苯是一种重要的有机化工原料,用于生产聚苯乙烯、药品、香料、染料等。
本文将从甲苯生产过程的简述开始,依次介绍设计的步骤和关键问题,最后总结设计结果。
一、甲苯生产过程简述甲苯的生产过程一般分为以下几步:1. 甲苯的原材料是甲烷和苯,首先通过甲基化反应将甲烷和苯反应生成甲苯和氢气。
2. 接着将甲苯和苯混合后进入加氢反应器,通过加氢反应生成甲苯和环己烷。
3. 将经过加氢反应的甲苯和苯混合物通过双塔精制分离得到纯的甲苯。
二、甲苯精馏塔设计步骤精馏塔是化工生产中常用的设备,用于分离混合物中的各种组分。
甲苯精馏塔设计步骤如下:1. 确定分离塔的流程图和操作条件,包括进料温度、压力、流量等。
2. 根据分离要求,确定鼓泡塔的高度和板数。
3. 确定每个板的塔板压降,确定气液相负荷,计算出操作塔的整体操作压降。
4. 确定填料类型和填充率,计算出填料高度和填料压降,结合板式的压降确定整个塔的功率需求。
5. 在考虑塔的结构和实际情况的基础上,进行材料选择和塔口设计。
三、甲苯精馏塔关键问题1. 填料选择。
填料的选择需要考虑到填料的表面积、孔隙率、高度等因素。
不同的填料会影响塔的效果和能耗。
2. 填料压降。
填料的压降会影响到塔的气体流量,也会影响到下面的板面液面高度。
3. 正确设计鼓泡塔高度和板数。
鼓泡塔的高度和板数需要根据分离要求和进料性质进行设计,太多或太少的板数都会导致塔的效率不佳。
4. 材料选择。
塔体中使用的材料需要考虑到操作条件和化学性质,确保塔的安全性和长期运行。
4. 操作条件。
操作条件包括温度、压力、流量等参数,需要确定合适的操作条件保证精馏的成功。
四、设计结果通过以上步骤和关键问题的考虑,我们得到了一套甲苯精馏塔的设计方案。
该塔的高度为15米,共设置30个塔板。
选择了金属填料和填料高度为8米,填料压降设计在2kPa左右。
塔体材料选择满足操作条件和长期使用的要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广西大学化学化工学院化工原理课程设计任务书专业:班级:姓名:学号:设计时间:设计题目:乙醇——水筛板精馏塔工艺设计(取至南京某厂药用酒精生产现场)设计条件: 1. 常压操作,P=1 atm(绝压)。
2. 原料来至上游的粗馏塔,为95——96℃的饱和蒸汽。
因沿程热损失,进精馏塔时原料液温度降为90℃。
3. 塔顶产品为浓度92.41%(质量分率)的药用乙醇,产量为 40吨/日。
4.塔釜排出的残液中要求乙醇的浓度不大于0.03%(质量分率)。
5.塔釜采用饱和水蒸汽加热(加热方式自选);塔顶采用全凝器,泡点回流。
6.操作回流比R=(1.1——2.0)R。
min设计任务: 1. 完成该精馏塔工艺设计,包括辅助设备及进出口接管的计算和选型。
2.画出带控制点的工艺流程图,t-x-y相平衡图,塔板负荷性能图,筛孔布置图以及塔的工艺条件图。
3.写出该精流塔的设计说明书,包括设计结果汇总和对自己设计的评价。
指导教师:时间1设计任务1.1 任务1.1.1 设计题目乙醇—水筛板精馏塔工艺设计(取至南京某厂药用酒精生产现场)1.1.2 设计条件 1.常压操作,P=1 atm(绝压)。
2.原料来至上游的粗馏塔,为95-96℃的饱和蒸气。
因沿程热损失,进精馏塔时原料液温度降为90℃。
3.塔顶产品为浓度92.41%(质量分率)的药用乙醇,产量为40吨/日。
4.塔釜排出的残液中要求乙醇的浓度不大于0.03%(质量分率)。
5.塔釜采用饱和水蒸气加热(加热方式自选);塔顶采用全凝器,泡点回流。
6.操作回流比R=(1.1—2.0)R。
min1.1.3 设计任务1.完成该精馏塔工艺设计,包括辅助设备及进出口接管的计算和选型。
2.画出带控制点的工艺流程示意图,t-x-y相平衡图,塔板负荷性能图,筛孔布置图以及塔的工艺条件图。
3.写出该精馏塔的设计说明书,包括设计结果汇总和对自己设计的评价。
1.2 设计方案论证及确定1.2.1 生产时日设计要求塔日产40吨92.41%乙醇,工厂实行三班制,每班工作8小时,每天24小时连续正常工作。
1.2.2 选择塔型精馏塔属气—液传质设备。
气—液传质设备主要分为板式塔和填料塔两大类。
该塔设计生产时日要求较大,由板式塔与填料塔比较[1]知:板式塔直径放大时,塔板效率较稳定,且持液量较大,液气比适应范围大,因此本次精馏塔设备选择板式塔。
筛板塔是降液管塔板中结构最简单的,它与泡罩塔相比较具有下列优点:生产能力大10-15%,板效率提高15%左右,而压降可降低30%左右,另外筛板塔结构简单,消耗金属少,塔板的造价可减少40%左右,安装容易,也便于清洗检修[2]。
因此,本设计采用筛板塔比较合适。
1.2.3精馏方式由设计要求知,本精馏塔为连续精馏方式。
1.2.4 操作压力常压操作可减少因加压或减压操作所增加的增、减压设备费用和操作费用,提高经济效益, 在条件允许下常采用常压操作,因此本精馏设计选择在常压下操作。
1.2.5加热方式在本物系中,水为难挥发液体,选用直接蒸汽加热,可节省再沸器。
1.2.6 工艺流程原料槽中的原料液先由离心泵送到预热器预热,再进精馏塔,精馏塔塔顶蒸汽经全凝器冷凝,泡点回流,塔顶产品输送进乙醇贮存罐,而再沸器则加热釜液,塔釜产品流入釜液贮存罐。
2 筛板式精馏塔的工艺设计2.1 精馏塔的工艺计算2.1.1乙醇和水的汽液平衡组成相对挥发度 的计算:塔顶产品浓度为92.4%,因此,可近似看成纯乙醇溶液;同理,塔底浓度为0.02%可近似看成纯水溶液。
所以,塔顶温度为乙醇沸点为78.3o C,塔底温度为水的沸点96.0o C表2-1查[2]书得:不同温度下乙醇和水的汽液平衡组成如下表所示:根据以上数据画出以下乙醇-水的t-x(y)相平衡图,以及乙醇-水的x-y图② 通过试差法求出塔顶、塔底、进料处、加料板的乙醇气相组成17.05.95903891.017.00.895.95--=--进料板Y0190.05.95900721.00190.00.895.95--=--进料板X解得 X 进料板=0.0639 Y 进料板=0.355③计算塔顶、塔底、进料处相对挥发度计算公式为:XaYa 1Xa 1Ya )()(α--=顶Y --=--8943.03.7815.788943.07815.015.7841.78Y顶=0.82928943.015.783.788943.07472.015.7841.78--=--顶XX 顶=0.809417.05.959617.005.95100--=--顶Y0190.05.9596019.005.95100--=--底X塔顶:α顶=1.123 塔底:α底=8.957 加料板:α加料板=8.063④计算乙醇-水的平均相对挥发度:乙醇-水的相对挥发度一般应用各温度下的挥发度的几何平均值或者算术平均值表示,本设计中使用各温度下的几何平均值来表示。
α底顶αα==2.322.1.2全塔物料衡算原料液中:设 A 组分-乙醇; B 组分-水查[6]书和[7]书得:乙醇的摩尔质量:M 乙=46.07 kg/kmol水的摩尔质量: M 水=18.02 kg/kmol826.002.18/0759.007.46/9241.007.46/9241.0=+=D x0000782.002.18/98.007.46/02.007.46/02.0=+=W x因为入口的原料液是上游为95——96℃的饱和蒸汽冷却至90o C 所得,因此,x F 的液相组成就是95.5 o C 的气相组成。
经查表得,95.5 o C 的饱和蒸汽进料液的摩尔组成为: x F = 0.17根据产量和所定工作时间,即日产40吨92.41%乙醇,每天24小时连续正常工作,则原料处理量:D =3401040.51(/)24(0.826546.070.1718.02)kmol h ⨯=⨯⨯+⨯206.000000782.0826.00000782.017.0=--=--=W D W F X X X X F D h kmol /196.650F =h kmol D F W /156.14040.51196.650=-=-=求q 值由表2-1乙醇-水的平衡数据用内差法求得原料进入塔时{90℃时}的气液相组成为:x A =0.0639 y A=0.3554由 F F x = L x A + V y A和 F = L + V 得 L = 125.26(kmol/h ),∴q = L /F = 0.6360则:q 线方程为 y =11F x qx q q ---= -1.747x+0.467 塔顶和塔釜温度的确定由t-x-y 图可知: 塔顶温度t D =78.30℃,塔底温度t w = 96.00℃,△t=1/2(t D +t w )=87.15℃回流比和理论塔板的确定用内差法求得进料板的气液相组成(90℃进料)进料板位于平衡线上,则:{355.00639.0====进料板进料板Y y X x q q618.10639.0355.0355.0826.0min =--=--=qq q D x y y x RR=1.5*R min =1.5*1.618=2.427操作方程的确定精馏段:h kmol D R L /318.9851.40427.2=⨯=⨯=h kmol D R V /828.13851.40)1427.2()1(=⨯+=+=提馏段:h kmol qF L L /387.223650.196*636.0318.98=+=+='h kmol F q V V /247.67650.196*)636.01(828.138)1(=--=--='、精镏段操作方程:b292.0708.0826.0*828.13851.40828.138318.981+=+=+=+n D n n x Xn x V D x V L y 提镏段操作线方程:000182.0322.30000782.0*247.67140.156247.67387.2231-=-='-''=+n w n n x Xn x V W x V L y 相平衡方程为:nnn n n n n y y y y Xn x x y 32.132.2)1()1(1-=--=⇒-+=αααα 板效率及实际塔板数的确定(1)求αμL平均温度 t ∆=87.15 (0C)下μA = 0.449mpas μB =0.3281 mpas 则μL =x F μA +(1-x F )μB=0.17×0.449+(1-0.17)×0.3281 =0.3487mpasαμL =2.35×0.3487=0.8194 (2)求板效率E T由αμL =0.8194,由《化工原理(下)》164页图10-20查得 E T =51%,偏低;实际工作E T 有所提高,因此取E T =70%. (3)求实际板数由 TT E N N 1-=得 精馏段实际板数: N 精 =21/0.70=30(块) 提馏段实际板数: N 提 =7/0.70=10(块) 全塔板数: N=40块2.2 精馏段物性衡算2.2.1物料衡算操作压强 P = 101.325温度 t m t D =78.300C t F =900C t w =96.000C∴t m =015.8429030.782=+=+F D t t C 定性组成(1)塔顶 y 1= X D = 0.826 查平衡曲线得到 x 1=0.810 (2)进料 y f =0.355 x f =0.0639 平均分子量 m M 查附表知: (1)塔顶:MVDm=0.826⨯46.07+(1-0.826)⨯18.02=41.189(mol g /) MLDm=0.810⨯46.07+(1-0.810)⨯18.02=40.730(mol g /) (2)进料: MVFm=0.355⨯46.07+(1-0.355)⨯18.02=27.978(mol g /)MLFm=0.0639⨯46.07+(1-0.0639)⨯18.02=19.810(mol g /)平均分子量MVm =2VFm VDm M M +=2978.27189.41+=34.584(mol g /)MLm =2LFM LDM M M +=2810.19730.40+=30.270(mol g /)平均密度m ρ 由[6]书和[7]书:1/LM ρ=a A /LA ρ+a B /LB ρ A 为乙醇 B 为水 塔顶:在78.30℃下:LA ρ=744.289(3/m kg ) LB ρ=972.870(3/m kg )LMDρ1=0.9241/744.289+(1-0.9241)/972.870 则LMD ρ=758.716(3/m kg )进料:在进料温度90℃下:LA ρ=729.9(3/m kg ) LB ρ=965.3(3/m kg )a A =149.002.18)0639.01(07.460639.007.460639.0=⨯-+⨯⨯LMFρ1=3.965)149.01(9.729149.0-+ 则LMF ρ=921.0(3/m kg ) 即精馏段的平均液相密度LM ρ=(758.716+921.0)/2=839.858(3/m kg ) 平均气相密度VM ρ=RT PM VM ==+⨯⨯)15.27315.84(314.86.34325.101 1.180(3/m kg ) 液体平均粘度LM μ液相平均粘度依下式计算:μμi i lm x lg lg ∑=(1)塔顶: 查[6]书和[7]书中图表求得在78.3℃下:A 是乙醇,B 是水DA μ=0.504s mpa ⋅; DB μ=0.367s mpa ⋅;lg LD μ=0.826⨯lg(0.504)+0.174⨯lg(0.367) 则LD μ=0.477 (s mpa ⋅)(2)进料: 在90℃下:FA μ=0.428 s mpa ⋅; FB μ=0.3165s mpa ⋅。