水体自净程度的指标.
防治水体污染的主要措施
1、防治水体污染的主要措施是什么?防治水体污染的主要措施有以下三条:(1)减少和消除污染源排放的废水量。
首先可采用改革工艺,减少甚至不排废水,或者降低有毒废水的毒性。
其次重复利用废水.尽量采用重复用水及循环用水系统,使废水排放减至最少或将生产废水经适当处理后循环利用。
如电镀废水闭路循环,高炉煤气洗涤废水经沉淀、冷却后可再用于洗涤。
第三控制废水中污染物浓度,回收有用产品。
尽量使流失在废水中的原料和产品与水分离,就地回收,这样既可减少生产成本,又可降低废水浓度。
第四处理好城市垃圾与工业废渣,避免因降水或径流的冲刷、溶解而污染水体。
(2)全面规划,合理布局,进行区域性综合治理。
第一在制定区域规划、城市建设规划、工业区规划时都要考虑水体污染问题,对可能出现的水体污染,要采取预防措施。
第二对水体污染源进行全面规划和综合治理。
第三杜绝工业废水和城市污水任意排放,规定排放标准。
第四同行业废水应集中处理,以减少污染源的数目,便于管理。
最后有计划治理已被污染的水体。
(3)加强监测管理,制定法律和控制标准。
第一设立国家级、地方级的环境保护管理机构,执行有关环保法律和控制标准,协调和监督各部门和工厂保护环境.保护水源。
第二颁布有关法规.制定保护水体,控制和管理水体污染源的具体条例。
2、水污染是怎样危害人体健康的水污染对人体健康的影响,主要有以下几个方面:(1)引起急性和慢性中毒。
水体受化学有毒物质污染后,通过饮水或食物链便可造成中毒,如甲基汞中毒(水误病)、镉中毒(骨痛病)、砷中毒、铬中毒、农药中毒、多氯联苯中毒等。
这是水污染对人体健康危害的主要方面。
(2)致癌作用。
某些有致癌作用的化学物质,如砷、铬、镍、铍、苯胺、苯并(a)氏和其他多环芳烃等污染水体后,可在水中悬浮物、底泥和水生生物内蓄积。
长期饮用这类水质或食用这类生物就可能诱发癌症。
(3)发生以水为媒介的传染病。
生活污水以及制革、屠宰、医院等废水污染水体,常可引起细菌性肠道传染病和某些寄生虫病,如伤寒、痢疾、肠炎、霍乱、传染性肝炎和血吸虫病等。
水污染常规分析指标
⽔污染常规分析指标⽔污染常规分析指标是什么?⽔污染常规分析指标主要有:(1)臭味,是判断⽔质优劣的感官指标之⼀,清洁⽔是⽆臭的,受到污染后才产⽣臭味。
(2)⽔温,是⽔体⼀项物理指标。
⽔体⽔温升⾼.表明受到新污染源的污染。
(3)浑浊度.地⾯⽔浑浊主要是泥⼟、有机物、微⽣物等物质造成的。
浑浊度升⾼表明⽔体受到胶体物质污染。
我国规定饮⽤⽔的浑浊度不得超过5度。
(4)pH值,是⽔中氢离⼦活度的负对数,pH值为7表⽰⽔为中性,⼤于7的⽔呈碱性,⼩于7的⽔呈酸性。
清洁天然⽔的pH值为6.5—8.5,PH值异常,表⽰⽔体受到酸碱性的污染。
(5)电导率,是测定⽔中盐类含量的⼀个相对指标。
溶解在⽔中的各种盐类都是以离⼦状态存在的,因此具有导电性,所以导电率的⼤⼩反映出⽔中可溶性盐类含量的多少。
(6)溶解性固体.主要是溶于⽔中的盐类,也包括溶于⽔中的有机物、能穿透过滤器的胶体和微⽣物,因此溶解性固体的⼤⼩反映上述物质溶于⽔中的多少。
(7)悬浮性固体,包括不溶于⽔的淤泥、粘⼟、有机物、微⽣物等细微物质。
悬浮物的直径⼀般在2mm以下。
它是造成⽔质浑浊的主要来源,是衡量⽔体污染程度的指标之⼀。
(8)总氮,是⽔中台有机氯、氨氮、亚硝酸盐氮和硝酸盐氯的总量,简称总氮,主要反映⽔体受污染的程度。
(9)总有机碳(TCO).是指溶解于⽔中的有机物总量,折合成碳计算。
总有机碳含量是反映废⽔中有机物总量,是⽔体污染程度的重要指标。
(10)溶解氧(DO),是评价⽔体⾃净能⼒的指标。
溶解氧含量较⾼,表⽰⽔体⾃净能⼒强;反之表⽰⽔体中污染物不易被氧化分解,此时厌氧性菌类就会⼤量繁殖,使⽔质变臭。
(11)⽣化需氧量或⽣化耗氧量(⼀般指五⽇⽣化学需氧量)BOD,⽔中有机物在微⽣物作⽤下,进⾏⽣物氧化,从⽽消耗了⽔中的氧。
因此⽣化需氧量的⼤⼩能反映⽔体中有机物质含量的多少、说明⽔体受有机物污染的程度。
(12)化学需氧量(COD),是指⽤化学氧化剂氧化⽔中需氧污染物质时所消耗的氧量,主要反映⽔体受有机物污染的程度。
浅析河流水体自净能力
浅析河流水体自净能力摘要:分析了河流自净过程,并综述了影响水体自净能力的因素,主要包括:污染物质种类与性质、水体性质、水生生物、水中的溶解氧、其他环境因素;同时还阐述了河水体自净能力定性分析,主要包括物理自净能力、化学自净能力和生物自净能力。
关键词:水体污染自净能力河流作为最终的陆源污染物排放途径,具有一定的自然净化功能。
它可以通过稀释、降解、转化和运移,使一部分污染物无害化或降低负荷,对保护陆地生态环境和减少人类治污压力有积极作用。
如何正确地评价河流的自净能力,合理地制定排污方案,对水资源和水环境保护有重要意义。
一、影响水体自净能力的因素水体自净是一个比较复杂的过程[1],影响自净能力的因素很多且相互联系,这些因素主要有以下几个方面:1.污染物质种类与性质有些污染物质易于分解,有的则难于分解。
有的易受微生物分解,有的不易微生物分解,有的在好氧条件下易分解,有的在厌氧条件下易分解。
例如合成洗涤剂、有机农药(DDT、六六六)、多氯联苯等合成有机化合物,化学稳定性极高,在自然界需要十年以上时间才能完成分解,可以成为环境中长期存在的污染物质,它们可以随着水的循环过程在地球上蔓延、积累。
2.水体性质水体水温、流量、流速、含沙量都对水体自净作用有很多影响。
流量大、流速高易于稀释扩散。
含沙浓度与污染物质有一定关系。
3.水生生物水生生物的种类和数量与自净有密切关系,能分解污染物的微生物多,则自净速度快。
4.水中的溶解氧水中溶解氧含量与自净作用关系密切,水体的自净过程也就是复氧过程[2]。
水体在未纳污以前,河内溶解氧是充足的,当受到污染后,由于有机物聚增,好氧分解剧烈,耗氧超过溶氧,河水中溶解氧降低。
如果水体复氧速度较快,水质将会较快由坏变好。
水中氧的补给受到水面和大气之间条件影响,如水面形态,水流方式、大气与水中的氧气分压,大气与水体的水温等。
5.其他环境因素太阳光照条件也是一个影响因素,紫外线能使水中污染物迅速分解,太阳光可以促使浮游植物与水生植物光合作用,改变溶解氧条件。
环境工程微生物学课后习题川大考试专用版
第一章非细胞结构的超微生物——病毒(高等教育出版社第3版)2病毒的分类依据是什么?分为哪几类病毒?答:依据是:病毒是根据病毒的宿主、所致疾病、核酸的类型、病毒粒子的大小、病毒的结构、有或无被膜等进行分类的。
根据转性宿主分类:有动物病毒、植物病毒、细菌病毒(噬菌体)、放线菌病毒(噬放线菌体)、藻类病毒(噬藻体)、真菌病毒(噬真菌体)。
按核酸分类:有DNA病毒和RNA病毒。
12紫外如何破坏病毒?答:日光中的紫外辐射和人工制造的紫外辐射均具有灭活病毒的作用。
其灭活部位是病毒的核酸,使核酸中的嘧啶环受到影响,形成胸腺嘧啶二聚体。
尿嘧啶残基的水合作用也会损伤病毒。
第二章原核微生物2细菌有哪些一般结构和特殊结构?它们各有哪些生理功能?答:细菌是单细胞生物。
所有细菌均有:细胞壁、细胞质膜、细胞质及其内含物、细胞核物质。
部分细菌有特殊结构:芽孢、鞭毛、荚膜、粘液层、菌胶团、衣鞘及光合作用片层等。
细胞壁是包围在细菌体表面最外层的、具有坚韧而带有弹性的薄膜。
可以起到:①保护原生质体免受渗透压引起破裂的作用。
②维持细菌的细胞形态。
③细胞壁是多孔结构的分子筛,阻挡某些分子进入和保留蛋白质在间质(格兰氏阴性菌细胞壁和细胞质之间的区域)④细胞壁为鞭毛提供指点,使鞭毛运动。
细胞质膜的生理功能有:①维持渗透压的梯度和溶液的转移。
②细胞质膜上有合成细胞壁和形成横膈膜组分的酶,故在膜的外表面合成细胞壁③膜内陷形成的中间体含有细胞色素,参与呼吸作用。
④细胞质膜上有琥珀酸脱氢酶、NADH脱氢酶、细胞色素氧化酶、电子传递系统、氧化磷酸化酶及腺苷三磷酸酶。
在细胞上进行物质代谢和能量代谢。
⑤细胞质膜上有鞭毛基粒,鞭毛由此长出,即为鞭毛提供附着点。
荚膜的主要功能有:①具有荚膜的S-型肺炎链球菌毒性强,有助于肺炎链球菌侵入人体。
②荚膜可保护致病菌免受宿主吞噬细胞的吞噬,保护细菌免受干燥的影响。
③当缺乏营养时,假膜可被用作碳源和能源,有的荚膜还能做氮源。
养殖水体8项重要检测指标
养殖水体8项重要检测指标物理指标水温水温是水产养殖中非常重要的一个物理指标,特别是对于温度有要求的亚热带及热带养殖品种,如南美白对虾,罗非鱼,笋壳鱼等品种,养殖的生产管理与温度息息相关。
因此,在整个养殖周期里面,可以每天监测,积累几年当地的水温变化数据,对自己以后的养殖非常管用。
测量方法可以使用常见的温度计测量。
在一些最新的智能物联网水质检测系统中也会带有水温监测记录的功能。
透明度在养殖水体中,池塘养殖水体的透明度主要是由水体中的悬浮物(包括浮游藻类,悬浮的泥沙颗粒,溶解的有机质,无机盐等)决定的。
其中,在大多数池塘中,浮游藻类的密度是影响水体透明度最大因素。
因此,池水透明度的大小,可以大致反映池水中饵料生物的多少,即池水的肥瘦,一般透明度30厘米左右为中等肥度的水,透明度小于20厘米的为肥水,大于40厘米的为瘦水。
在养殖过程中,测量透明度的方法可以采用萨氏盘。
化学指标主要是指水体中的溶氧,pH,氨氮,亚盐,硫化氢,总碱度,总硬度的测量。
pH值酸碱度(pH),是衡量水体酸碱度的一个值,亦称氢离子浓度指数,pH是反映藻类的组成和活性、水质因子稳定性和池底有机污染的重要依据,是水质的重要指标之一。
pH影响到水体的碳源和微量元素的活性、水生动物的生理机能以及微生态的生物组成结构,一直为养殖者所重视。
在pH值的测量过程中主要看以下两个方面:一是看水体的pH值是否正常在水产养殖中,多数淡水水生动物生存的适宜pH范围是6.5-9.0,最适宜的pH 值范围为7.5-8.5的弱碱性水体。
当水体的pH值为7以下即为酸性,5以下为强酸性。
PH值偏高机理及危害:藻类过度生长繁殖,大量消耗水中碳源(二氧化碳),致使水体PH值快速上升(光合细菌过度生长繁殖也会造成PH值上升)。
PH值偏高,水体中铵氮以氨分子氮形式存在,增加了氨氮的毒性;另外,高PH值水质对鳃部组织有腐蚀作用。
PH值偏低机理及危害:水体缺氧,水体有机质过多,在厌氧菌厌氧发酵的作用下,产生大量有机酸,致使水体PH值偏低。
水体自净的程度指标
水体自净程度的指标背景资料各种形态的氮相互转化和氮循环的平衡变化是环境化学和生态系统研究的重要内容之一。
水体中氮产物的主要来源是生活污水和某些工业废水及农业面源。
当水体受到含氮有机物污染时,其中的含氮化合物由于水中微生物和氧的作用,可以逐步分解氧化为无机的氨(NH3)或铵(NH4+)、亚硝酸盐(NO2-)、硝酸盐(NO3-)等简单的无机氮化物。
氨和铵中的氮称为氨氮;亚硝酸盐中的氮称为亚硝酸盐氮;硝酸盐中的氮称为硝酸盐氮。
通常把氨氮、亚硝酸盐氮和硝酸盐氮称为三氮。
这几种形态氮的含量都可以作为水质指标,分别代表有机氮转化为无机氮的各个不同阶段。
在有氧条件下,氮产物的生物氧化分解一般按氨或铵、亚硝酸盐、硝酸盐的顺序进行,硝酸盐是氧化分解的最终产物。
随着含氮化合物的逐步氧化分解,水体中的细菌和其它有机污染物也逐步分解破坏,因而达到水体的净化作用。
有机氮、氨氮、亚硝酸盐氮和硝酸盐氮的相对含量,在一定程度上可以反映含氮有机物污染的时间长短,对了解水体污染历史以及分解趋势和水体自净状况等有很高的参考价值,见表6-1。
目前应用较广的测定三氮方法是比色法,其中最常用的是:纳氏试剂比色法测定氨氮,盐酸萘乙二胺比色法测定亚硝酸盐氮,二磺酸酚比色法测定硝酸盐氮。
表6-1 水体中三氮检出的环境化学意义NH3—N NO2—N NO3—N 三氮检出的环境化学意义- - - 清洁水+ - - 表示水体受到新近污染+ + - 水体受到污染不久,且正在分解中- + - 污染物已正在分解,但未完全自净- + + 污染物已基本分解完全,但未自净- - + 污染物已无机化,水体已基本自净+ - + 有新的污染,在此前的污染物已基本自净+ + + 以前受到污染,正在自净过程,且又有新的污染物一、实验目的1. 掌握测定三氮的基本原理和方法。
2. 了解测定三氮对环境化学研究的作用和意义。
二、仪器(1) 玻璃蒸馏装置。
(2) 分光光度计。
(3) 电炉:220V/1KW。
水的自净能力
水的自净能力一、简介:污染物投入水体后,使水环境受到污染。
污水排入水体后,一方面对水体产生污染,另一方面水体本身有一定的净化污水的能力,即经过水体的物理、化学与生物的作用,使污水中污染物的浓度得以降低,经过一段时间后,水体往往能恢复到受污染前的状态,并在微生物的作用下进行分解,从而使水体由不洁恢复为清洁,这一过程称为水体的自净过程(self-Purification of water body) 。
污染物投入水体后,使水环境受到污染。
污水排入水体后,一方面对水体产生污染,另一方面水体本身有一定的净化污水的能力,即经过水体的物理、化学与生物的作用,使污水中污染物的浓度得以降低,经过一段时间后,水体往往能恢复到受污染前的状态,并在微生物的作用下进行分解,从而使水体由不洁恢复为清洁,这一过程称为水体的自净过程(self-Purification of water body) 。
有机的自净过程,一般分为三个阶段。
第一阶段是易被氧化的有机物所进行的化学氧化分解。
该阶段在污染物进入水体以后数小时之内即可完成。
第二阶段是有机物在水中微生物作用下的生物化学氧化分解。
该阶段持续时间的长短随水温、有机物浓度、微生物种类与数量等而不同。
一般要延续数天,但被生物化学氧化的物质一般在5天内可全部完成。
第三阶段是含氮有机物的硝化过程。
这个过程最慢,一般要持续一个月左右。
二、特征:废水或污染物一旦进入水体后,就开始了自净过程。
该过程由弱到强,直到趋于恒定,使水质逐渐恢复到正常水平。
全过程的特征是:1)进入水体中的污染物,在连续的自净过程中,总的趋势是浓度逐渐下降。
2)大多数有毒污染物经各种物理、化学和生物作用,转变为低毒或无毒化合物。
3)重金属一类污染物,从溶解状态被吸附或转变为不溶性化合物,沉淀后进入底泥。
4)复杂的有机物,如碳水化合物,脂肪和蛋白质等,不论在溶解氧富裕或缺氧条件下,都能被微生物利用和分解。
先降解为较简单的有机物,再进一步分解为二氧化碳和水。
3水环境容量及水体自净化
研究和正确运用水体自净的规律,采取人工曝气或 引水冲污稀释等辅助措施,强化自净能力,是减 少或消除水体污染的途径之一。同时,在确定允 许排入水体的污染物量时,水体的自净能力也是 一个重要的决策因素。 水体自净大致分为三类,即物理净化、化学净化和 生物净化。它们同时发生,相互影响,共同作用。 (1)物理净化。物理净化是指污染物质由于 稀释、扩散、混合和沉淀等过程而降低浓度。污 水进入水体后,可沉性固体在水流较弱的地方逐 渐沉入水底,形成污泥。悬浮体、胶体和溶解性 污染物因混合、稀释,浓度逐渐降低。污水稀释 的程度通常用稀释比表示。
二、水体自净化
广义的水体自净是指在物理、化学和生物作用下,受 污染的水体逐渐自然净化,水质复原的过程。狭义的水体 自净是指水体中微生物氧化分解有机污染物而使水体净化 的作用。水体自净可以发生在水中,如污染物在水中的稀 释、扩散和水中生物化学分解等;可以发生在水与大气界 面,如酚的挥发;也可以发生在水与水底间的界面,如水 中污染物的沉淀、底泥吸附和底质中污染物的分解等。 自然界各种水体都具有一定的自净能力,这是由水自 身的理化特征所决定,同时也是自然界赋予我们人类的宝 贵财富。如果我们能够科学有效地利用水的自净功能,就 可以降低水体的污染程度,使有限的水资源发挥最大的效 益,包括经济效益、社会效益、环境效益等。特定地区、 一定时间内水体的自净能力是有限的。
(2)化学净化。 化学净化是指污染质由于氧化还原、 酸碱反应、分解化合和吸附凝聚等化学或 物理化学作用而降低浓度。流动的水体从 水面上大气中溶入氧气,使污染物中铁、 锰等重金属离子氧化,生成难溶物质析出 沉降。某些元素在一定酸性环境中,形成 易溶性化合物,随水漂移而稀释;在中性 或碱性条件下,某些元素形成难溶化合物 而沉降。天然水中的胶体和悬浮物质微粒, 吸附和凝聚水中污物,随水流移动或逐渐 沉降。
水体自净
多污带(polysaprobic zone)
• 靠近排污点下游,河水深暗、浑浊,含大量有机 物,BOD高,呈缺氧或厌氧状态,污染严重。有 机物分解产生H2S、NH3,使河水有异味。 • 水生生物种类极少,以厌氧和兼性厌氧微生物为 主,无鱼类、显花植物等。 • 代表性的指示生物是细菌,且种类多、数量大, 每ml水中可达几亿个,例如硫酸盐还原菌与产甲 烷菌等,此外还有颤蚯蚓、蚊蝇幼虫。
中污带(-mesosaprobic zone)
• 在多污带下游,有机物量略减少,BOD下 降,河水依然灰暗,溶解氧低,水面上可 有浮沫和浮泥。生物种类增加,细菌数减 少,但每毫升仍有几千万个。
• 代表性的指示生物举例如下:天蓝喇叭虫、 椎尾水轮虫、栉虾、独缩虫、颤藻、小球 藻等。
-中污带(-mesosaprobic zone) • 光合微生物和绿色浮游生物大量出现, 水中溶解氧升高,有机质含量少, BOD 很低,悬浮物进污 水
自
净
污化系统及其指示生物 污化系统 (也称有机污染系统)是根据水体有机物污染 程度的不同,对水体的一种分类法。当有机污染物排 入河流,在其下游河段的自净过程中,形成一系列污 化带。 因各种水生生物需要不同的生存条件,故在各个带中 可找到不同的代表性指示生物,这些指示生物包括细 菌、真菌、藻类、原生动物等微生物,以及轮虫、浮 游甲壳动物、鱼类及底栖动物等。 根据指示生物的不同,污化系统中的污化带分为多污 带、-中污带、-中污带和寡污带。
• 河流自净作用完成,有机物完全分解为无机物, BOD极低,溶解氧恢复正常,基本不含H2S,CO2 含量较低,氮元素全部氧化为NO3-。 玫瑰旋轮虫及其它藻类,钟虫、旋轮虫、水生
• 指示生物:鱼腥蓝细菌 、隔板硅藻 、黄群藻 、 植物与鱼类等。
湖大环境工程微生物考研真题论述题整理(2002-2014)
1、什么叫细菌的生长曲线?细菌的生长曲线可分为几个阶段?在用常规活性污泥法处理废水时,一般应选择哪个阶段最为合适?为什么?(9 分)答:是将少量的纯种单细胞微生物接种到一定容积的液体培养基后,在适宜的条件下培养,定时取样测定细胞数量。
以细胞增长数目的对数做纵坐标,以培养时间做横坐标,绘制一条如图所示的曲线,即为细菌的生长曲线。
细菌的生长曲线可分为停滞期(适应期或迟滞期)、加速期、对数期、减速期、静止期、衰亡期。
其中由于加速期和减速期历时很短,所以把加速期并入停滞期,把减速期并入衰亡期。
在用常规活性污泥法处理废水时,一般应选择生长速率下降阶段的微生物,即减速期、静止期的微生物。
因为处于对数期的微生物生长繁殖快,代谢活力强,对有机物去除能力很高,因而对进水有机物浓度要求要高,导致出水中有机物浓度高,不易达到排放标准,而且处于对数期的微生物不易自行凝聚成菌胶团,沉降性能差,致使出水水质差。
而处于静止期的微生物任然具有较强的代谢能力,去除有机物的效果好,而且处于静止期的微生物积累大量贮存物,强化了微生物的生物吸附能力,其自我絮凝、聚合能力强,在二沉池中泥水分离效果好,出水水质好。
2、细菌的呼吸作用的本质是什么?它可分为几种类型?各类型有何特点?答:细菌呼吸作用的本质是氧化和还原的统一过程。
细菌的呼吸作用可分为发酵、好氧呼吸和厌氧呼吸三类。
发酵的特点:有机物仅发生部分氧化,以它的中间代谢产物(即分子内的低分子有机物)为最终电子受体,释放少量能量,其余能量保留在最终产物中。
好氧呼吸的特点:底物按常规方式脱氢,经完整的呼吸链(电子传递体系)传递氢,同时底物氧化释放出的电子也经过呼吸链传递给O2、O2 得到电子被还原,与脱下的H 结合成H2O,并释放能量(ATP)。
无氧呼吸的特点:底物按常规脱氢后,经部分电子传递体系递氢,最终由氧化态的无机物(个别为有机物)受氢。
3、检验饮用水时,为什么一般不直接测定致病菌,而检测指示菌?用发酵法监测饮用水中的大肠杆菌群数时,常分几步进行检测?每步的原理是什么?1.答:由于致病菌数量少,检测不方便,故选用和它相近的非致病菌作间接指示。
水环境化学部分-本科-答案2008
昆明理工大学环境工程专业2008级环境化学习题(水环境化学部分)一、选择题1、海水中Hg2+主要以_______的形式存在。
a) Hg(OH)2 , HgCl2 b) HgCl2 , HgCl3-c) HgCl42- d) HgCl3- , HgCl42-2、若水体的pE值高,有利于下列_______ 组在水体中迁移。
a) Fe、Mn b) Cr、Fe c) Cr、Mn d) Cr、V3、当前最简单,也较流行的是将金属划分为溶解态和颗粒态,溶解态是能通过______μm孔径滤膜的部分。
a) 0.54 b) 0.22 c) 0.45 d) 0.504、河水中阴、阳离子的含量顺序为______。
a) Na+ > Mg2+ > Ca2+,HCO3- > SO42- > Cl-b) Ca2+ > Na+ > Mg2+,HCO3- > SO42- > Cl-c) Na+ > Ca2+ > Mg2+,Cl- > HCO3- > SO42-d) Na+ > Mg2+ > Ca2+,Cl- > SO42-> HCO3-5、某一水体的BOD20为100 mg/L,其BOD5约为__________。
a)40 b) 50 c) 35 d) 706、下列各种形态的汞化物,毒性最大的是______。
a) Hg(CH3)2 b) HgO c) Hg d) Hg2Cl27、有机物的辛醇-水分配系数常用________表示。
a)K oc b) K ow c) K om d) K d8、一般情况下,当水体DO______时,鱼类会死亡。
a) >8.0mg/L b) <4.0 mg/L c) >0 d) >4.0 mg/L9、表面活性剂含有很强的,容易使不溶于水的物质分散于水体,而长期随水流迁移。
A 疏水基团B亲水基团 C 吸附作用 D渗透作用二、填空题1、环境中某一重金属的毒性与其状态、浓度和价态有关。
第三章 水环境化学习题解答
第三章水环境化学一、填空题1、天然水体中常见的八大离子包括:K+、Na+、Ca2+、Mg2+、HCO3-、NO3-、Cl-、SO42-。
2、天然水体中的碳酸平衡体系a0、a1、a2分别表示[H2CO3*]、[HCO3-]、[CO32-]的分配系数,其表达式分别为:(用pH\K1\K2表达):a 0=[H2CO3*]/{[ H2CO3*]+[ HCO3-]+[ CO32-]}=[H+]2/{[H+]2+K1[H+]+K1K2}a 1=[ HCO3-] /{[ H2CO3*]+[ HCO3-]+[ CO32-]}= K1[H+]/{[H+]2+K1[H+]+K1K2}a 2=[ CO32-] /{[ H2CO3*]+[ HCO3-]+[ CO32-]}= K1K2/{[H+]2+K1[H+]+K1K2}。
(注:此三个公式前半段教材119-120页有错误!)a 0+a1+a2=13、根据溶液质子平衡条件得到酸度低表达式:总酸度=[H+]+2[ H2CO3*]+[HCO3-]-[OH-];CO2酸度= [H+]+[H2CO3*]-[CO32-]-[OH-](注:教材121此公式错误),无机酸度= [H+]-[HCO3-]-2[CO32-] -[OH-] 。
4、根据溶液质子平衡条件得到酸度低表达式:总碱度= [OH-] +2[CO32-]+[HCO3-]-[H+];酚酞碱度= [OH-] +[CO32-]-[H+]-[ H2CO3*];苛性碱度= [OH-] -2[ H2CO3*]-[HCO3-]-[H+]。
5、“骨痛病事件”的污染物是镉;水俣病的污染物是汞(或甲基汞)。
6、水体的富营养化程度一般可用总磷(TP)、总氮(TN)、叶绿素a、透明度等指标来衡量。
7、水环境中氧气充足的条件下有机物发生的生物降解称为有氧(或好氧)降解,最终产物主要为二氧化碳和水,有机氮转化为硝酸根,有机硫转化为硫酸根。
水中的有机物在无氧条件经微生物分解,称为厌氧降解,降解产物除二氧化碳和水外,还有小分子的醇、酮、醛、酸等,无机态氮主要以氨氮存在、硫主要以硫化物存在,水体发臭发黑。
(5)--水污染控制工程试卷05
水污染控制工程试卷051、选择题(每题2分,共30分)1. 溶解氧在水体自净过程中是个重要参数,它可反映水体中(C)。
A耗氧指标 B溶氧指标 C耗氧与溶氧的平衡关系 D有机物含量2. 辐流式沉淀池的排泥方式一般采用( D )。
A 静水压力B 自然排泥C 泵抽取D 机械排泥3. 生物化学需氧量表示污水及水体被( D )污染的程度。
A 悬浮物 B挥发性固体 C无机物 D有机物4. 厌氧活性污泥处理污水时产生的气体主要有( B)等。
A CH4、H2B CO2、CH4C CO2、H2SD CH4、H2S。
5. 通过三级处理,BOD5要求降到( D )以下,并能去除大部分N和P。
A 20rng/LB 10mg/LC 8mg/LD 5mg/L6. 对污水中可沉悬浮物质,常采用( B )来去除。
A格栅 B沉砂池 C调节池 D沉淀池7. 污废水的厌氧生物处理并不适用于( B )。
A 城市污水处理厂的污泥;B 城市供水;C 高浓度有机废水;D 城市生活污水8.( A )是活性污泥在组成和净化功能上的中心,是微生物中最主要的成分。
A细菌 B真菌 C原生动物 D后生动物9. 氧化沟是与( C )相近的简易生物处理法。
A推流式法 B完全混合式法 C 活性污泥法 D生物膜法10. 污泥回流的目的主要是保持曝气池中( B )。
A DOB MLSS C微生物 D污泥量11.工业废水一般分为3类,即:按工业废水中所含污染物质的主要成份分类;按行业的产品加工对象分类;( )。
A 按工业废水处理的难易程度分类B 按工业废水中废水可否由生物降解分类C 按工业废水处理的难易程度和废水的危害性分类 D按工业废水中所含主要污染物的性质分类12 .药剂氧化还原法一般处理废水中的(C )A 含金属离子的物质B 难生物降解物质C 有毒有害物质D 酸碱废水13 .酸碱中和方法包括(A )。
A 酸碱废水相互中和法、药剂中和法B 药剂中和法、过滤中和法C 酸碱中和法、药剂中和法和化学中和法D 酸碱废水相互中和法、药剂中和法和过滤中和法 14.向有色废水中投加活性炭,然后过滤去除色度的方法是(B )。
第十三章 水体自净(self-purification)讲解
第一阶段 化学氧化分解,历时数小时。
有机物的
自净过程 第二阶段 生物化学氧化分解一般要延续数日。
分三阶段
第三阶段 含氮有机物的硝化过程,延续一月左右。
①浓度逐渐降低;
水
②毒性降低;
体
自 ③重金属可沉淀至底泥或进入食物链;
净
过 ④复杂有机物分解为二氧化碳和水;
程
⑤不稳定的转变为稳定的化合物;
的
特 ⑥初期,水中溶解氧含量急剧降低,到达最低点后又缓慢上升,并逐渐恢复正常;
(1)竖向混合阶段 污染物排入河流后因分子扩散、湍流扩散和弥散
作用逐步向河水中分散,从排放口到深度上达到浓 度分布均匀。
(2)横向混合阶段 当深度上达到浓度分布均匀后,在横向上还存在
混合过程。经过一定距离后污染物在整个横断面达 到浓度分布均匀。
(3)断面充分混合后阶段 在横向混合阶段后,污染物浓度在横断面上处处
代谢的极限速度
3.自净的过程
水体自净过程大致如下
a.污水排入河流的混合过程 b.持久污染物的稀释扩散 物理作用 有机污染物排入水体后被水稀释,有机和无机固体沉降到河底; c.非持久污染物的稀释扩散 d.水体的氧平衡
生物作用 好氧菌↑
溶氧↓
溶解氧↑
好氧菌↓
有机物降解
厌氧菌↑ 自然溶氧、藻类产氧
• 污水排入河流的混合过程
因各种水生生物需要不同的生存条件,故在各个带中 可找到不同的代表性指示生物,这些指示生物包括细 菌、真菌、藻类、原生动物等微生物,以及轮虫、浮 游甲壳动物、鱼类及底栖动物等。
根据指示生物的不同,污化系统中的污化带分为多污 带、-中污带、-中污带和寡污带。
多污带(polysaprobic zone)
水质分析中的常用指标
水质分析中的常用指标1、有机化学指标溶解氧(Dissolved oxygen简称DO)指溶解在水中的分子态氧(O2),简称DO)。
水中溶解氧的含量与大气压、水温及含盐量等因素有关.大气压力下降、水温升高、含盐量增加,都会导致溶解氧含量减低。
一般清洁的河流,DO可接近其温度的饱和值,当有大量藻类繁殖时,溶解氧可能过饱和;当水体受到有机物质、无机还原物质污染时,会使溶解氧含量降低,甚至趋于零,此时厌氧细菌繁殖活跃,水质恶化。
水中溶解氧低于3~4mg/L时,许多鱼类呼吸困难,窒息死亡.溶解氧是表示水污染状态的重要指标之一。
化学需氧量(Chemical oxygen demand 简称COD)化学需氧量是指以重铬酸钾(K2Cr2O7)或高锰酸钾(KMnO4)为氧化剂,氧化水中的还原性物质所消耗氧化剂的量,结果折算成氧的量(以mg/L计)。
水中还原性物质包括有机物和亚xiao 酸盐、硫化物、亚铁盐等无机物。
化学需氧量反应了水中受还原性物质污染的程度.基于水体被有机物污染是很普遍的现象,该指标也作为有机物相对含量的综合指标之一,在与水质有关的各种法令中均采用它作为控制项目。
注:我国颁布的环境地面水质标准(1988年)中,规定了以酸性重铬酸钾法测得的COD值称为化学需氧量,(简称CODCr),而将高锰酸钾法测得的COD值称为高锰酸盐指数,(简称CODMn)。
高锰酸盐指数,耗氧量(CODMn)高锰酸盐指数,又称为耗氧量,是反映水体中有机及无机可氧化物质污染的常用指标。
定义为:在一定条件下,用高锰酸钾氧化水样中的某些有机物及无机还原性物质,由消耗的高锰酸钾量计算相当的氧量。
它反映了水中悬浮和溶解的可被高锰酸钾氧化的那一部分无机物和有机物的量。
高锰酸盐指数在以往的水质监测分析中,亦有被称为化学需氧量的高锰酸钾法。
但是,由于这种方法在规定条件下,水中有机物只能部分被氧化,并不是理论上的需氧量,也不是反映水体中总有机物含量的尺度,因此,用高锰酸盐指数这一术语作为水质的一项指标,以有别于重铬酸钾法的化学需氧量,更符合于客观实际。
水域环境监测试题和答案
水域环境监测试题和答案一、单选题(每题 3 分,共 30 分)1、以下哪种指标常用于衡量水域中的有机物污染程度?()A 溶解氧B 化学需氧量(COD)C 总磷D 重金属含量答案:B解析:化学需氧量(COD)反映了水中受还原性物质污染的程度,这些还原性物质主要是有机物。
溶解氧能反映水体的自净能力;总磷是衡量水体富营养化的指标之一;重金属含量主要用于评估重金属污染。
2、进行水域环境监测时,采集水样的容器通常使用()A 塑料瓶B 玻璃瓶C 金属瓶D 陶瓷瓶答案:B解析:玻璃瓶性质稳定,不容易与水样中的成分发生反应,能较好地保持水样的原始性质。
塑料瓶可能会溶出一些有机物质;金属瓶可能会引入金属离子干扰监测;陶瓷瓶表面孔隙较多,容易吸附水样中的成分。
3、以下哪种方法常用于测定水中的溶解氧含量?()A 碘量法B 重量法C 分光光度法D 电极法解析:碘量法是测定溶解氧的经典方法,通过化学反应定量测定水中溶解氧的含量。
重量法一般用于测定固体物质的质量;分光光度法常用于测定某些特定物质的浓度;电极法也可用于测定溶解氧,但碘量法更为常用和准确。
4、水体富营养化的主要原因是()A 氮、磷含量过高B 重金属污染C 石油污染D 农药污染答案:A解析:氮、磷是植物生长的重要营养元素,当水体中氮、磷含量过高时,会导致藻类等水生植物大量繁殖,引起水体富营养化。
重金属污染、石油污染、农药污染会对水体造成其他类型的危害,但不是导致富营养化的主要原因。
5、以下哪种生物可以作为水域环境监测的指示生物?()A 鲫鱼B 水蚤C 鲤鱼D 草鱼答案:B解析:水蚤对水质变化较为敏感,其生存状况和数量变化可以反映水体的污染程度。
鲫鱼、鲤鱼、草鱼等鱼类虽然也能在一定程度上反映水质,但不如水蚤敏感和具有代表性。
6、以下哪种仪器常用于测定水样的 pH 值?()A 电导仪B pH 计C 分光光度计D 原子吸收光谱仪解析:pH 计是专门用于测量溶液 pH 值的仪器。
水体自净概念
水体自净概念水体自净概念水体自净是指水体通过自然的物理、化学和生物过程,使污染物质逐渐降解、转化和消失,达到恢复水体生态环境的目的。
水体自净是一种重要的生态修复手段,也是保护水资源和维护生态平衡的重要途径。
一、水体自净的原理(1)物理过程:水体中的污染物质会随着水流运动而分散和稀释,并在沉积、过滤等过程中被去除。
(2)化学过程:水中污染物质会与氧气、微生物等发生化学反应,降解成无害物质。
(3)生物过程:微生物在水中起着关键作用,它们能够分解有机污染物质,并将其转化为无机盐类和二氧化碳等无害成分。
二、影响水体自净能力的因素(1)温度:温度越高,微生物活动越旺盛,降解速度也会加快。
(2)溶解氧:溶解氧充足时,微生物能够更好地进行代谢活动,从而促进水体自净。
(3)光照:光照可以促进水中植物的生长,增加水中氧气含量,从而提高水体自净能力。
(4)污染物质种类和浓度:不同种类的污染物质对水体的影响不同,浓度越高,水体自净能力越弱。
三、水体自净的适用范围(1)适用于轻度污染的水体:轻度污染的水体通常具有一定的自净能力,通过加强生态环境管理和保护,可达到恢复水体生态平衡的目的。
(2)适用于小面积污染:小面积污染通常可以通过人工干预和生态修复措施来解决。
(3)适用于非常规污染物质:对于一些难以处理的非常规污染物质,如重金属、放射性物质等,需要采取其他治理手段。
四、水体自净与人工治理相结合虽然水体具有一定的自净能力,但在现代工业化社会中,人类活动所产生的大量废弃物和排放物已经超出了自然界承受的范围,导致水体污染日益严重。
因此,水体自净只能是治理水体污染的一个方面,还需要采取人工治理手段来加强治理效果。
五、水体自净的意义(1)保护生态环境:水体自净是生态修复的重要手段,可以恢复水体生态平衡,保护生态环境。
(2)维护水资源:水是人类赖以生存的重要资源,通过加强水体自净和治理,可以保护和维护水资源。
(3)促进可持续发展:实现可持续发展需要建立良好的生态环境和健康的自然资源,通过水体自净和治理可以促进可持续发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验七水体自净程度的指标各种形态氮的相互转化和氮循环的平衡变化是环境化学和生态系统研究的重要内容之一。
水体中含氮类化合物的主要来源是生活污水和某些工业废水及农业面源。
当水体受到含氮有机物污染时,其中的含氮化合物由于水中微生物和氧的作用,可逐步分解氧化为无机的氨(NH3)或铵(NH4+)、亚硝酸盐(NO2-)、硝酸盐(NO3-)等简单的无机氮化物。
氨和铵中的氮称为氨氮(NH4+-N);亚硝酸盐中的氮称为亚硝酸盐氮(NO2--N);硝酸盐中的氮称为硝酸盐氮(NO3--N)。
通常把氨氮、亚硝酸盐氮和硝酸盐氮称为三氮。
这几种形态氮的含量都可作为水质指标,分别代表有机氮转化为无机氮的各个不同阶段。
在有氧条件下,氮产物的生物氧化分解一般按氨或铵、亚硝酸盐、硝酸盐的顺序进行,硝酸盐是氧化分解的最终产物。
随着含氮化合物的逐步氧化分解,水体中的细菌和其它有机污染物也逐步分解破坏,因而达到水体的净化作用。
有机氮、氨氮、亚硝酸盐氮和硝酸盐氮的相对含量,在一定程度上可以反映含氮有机物污染的时间长短,对了解水体污染历史以及分解趋势和水体自净状况等有很高的参考价值,见表7-1。
目前应用较广的测定三氮方法是比色法,其中最常用的是:纳氏试剂比色法测定氨氮,盐酸萘乙二胺比色法测定亚硝酸盐氮,二磺酸酚比色法测定硝酸盐氮。
表7-1 水体中三氮检出的环境化学意义NH3-N NO2--N NO3--N 三氮检出的环境化学意义清洁水+ - - 表示水体受到新近污染+ + - 水体受到污染不久,且正在分解中- + - 污染物已分解,但未完全自净- + + 污染物已基本分解完全,但未自净- - + 污染物已无机化,水体已基本自净+ - + 有新的污染,在此前的污染已基本自净+ + + 以前受到污染,正在自净过程,且又有新的污染一、实验目的1.掌握测定三氮的基本原理和方法。
2.了解测定三氮对环境化学研究的作用和意义。
二、仪器(1)玻璃蒸馏装置。
(2)pH 计。
(3)恒温水浴。
(4)分光光度计。
(5)电炉:220V/1KW。
(6)比色管:50 mL。
(7)陶瓷蒸发皿:100或200 mL。
(8)移液管:1 mL、2 mL、5 mL。
(9)容量瓶:250 mL。
三、实验过程1. 氨氮的测定——纳氏试剂比色法(1) 原理氨与纳氏试剂反应可生成黄色的络合物,其色度与氨的含量成正比,可在425 nm波长下比色测定,检出限为0.02 µg/mL。
如水样污染严重,需在pH为7.4的磷酸盐缓冲溶液中预蒸馏分离。
(2) 试剂①不含氨的蒸馏水:水样稀释及试剂配制均用无氨蒸馏水。
配制方法包括蒸馏法(每升蒸馏水中加入0.1 mL浓硫酸,进行重蒸馏,流出物接受于玻璃容器中)和离子交换法(让蒸馏水通过强酸型阳离子交换树脂来制备较大量无氨的水)。
②磷酸盐缓冲溶液(pH为7.4):称14.3 g 磷酸二氢钾和68.8 g 磷酸氢二钾,溶于水中并稀释至1 L。
配制后用pH计测定其pH值,并用磷酸二氢钾或磷酸氢二钾调至pH为7.4。
③吸收液:2%硼酸或0.01 mol/L 硫酸。
2%硼酸溶液:溶解20 g 硼酸于水中,稀释至1 L。
0.01 mol/L硫酸:量取20 mL 0.5 mol/L 的硫酸,用水稀释至1 L。
④纳氏试剂:称取5 g碘化钾,溶于5 mL水中,分别加入少量氯化汞(HgCl2)溶液(2.5 g HgCl2溶于40 mL水中,必要时可微热溶解),不断搅拌至微有朱红色沉淀为止。
冷却后加入氢氧化钾溶液(15 g 氢氧化钾溶于30 mL 水中),充分冷却,加水稀释至100 mL。
静置一天,取上层清液贮于塑料瓶中,盖紧瓶盖,可保存数月。
⑤酒石酸钾钠溶液:称取50 g 酒石酸钾钠(KNaC4H4O6·4H2O)溶于水中,加热煮沸以驱除氨,冷却后稀释至100 mL。
⑥氨标准溶液:称取3.819 g无水氯化铵(NH4Cl)(预先在100℃干燥至恒重),溶于水中,转入1000 mL容量瓶中,稀释至刻度,即配得 1.00 mg NH4+-N/mL 的标准储备液。
取此溶液10.00 mL稀释至1000 mL,即为10 µg NH4+-N/mL的标准溶液。
(3) 步骤较清洁水样可直接测定,对受污染水样一般按下列步骤进行。
①水样蒸馏:为保证蒸馏装置不含氨,须先在蒸馏瓶中加200 mL无氨水,加10 mL磷酸盐缓冲溶液、几粒玻璃珠,加热蒸馏至流出液中不含氨为止(用纳氏试剂检验),冷却。
然后将此蒸馏瓶中的蒸馏液倾出(但仍留下玻璃珠),量取水样200 mL,放入此蒸馏瓶中(如预先试验水样含氨量较大,则取适量的水样,用无氨水稀释至200 mL,然后加入10 mL磷酸盐缓冲液)。
另准备一只250 mL的容量瓶,移入50 mL吸收液(吸收液为0.01 mol/L硫酸或2%硼酸溶液),然后将导管末端浸入吸收液中,加热蒸馏,蒸馏速度为每分钟6~8 mL,至少收集150 mL馏出液,蒸馏至最后1~2 min时,把容量瓶放低,使吸收液的液面脱离冷凝管出口,再蒸馏几分钟以洗净冷凝管和导管,用无氨水稀释至250 mL,混匀,以备比色测定。
②测定:如为较清洁的水样,直接取50 mL澄清水样置于50 mL比色管中。
一般水样则取用上述方法蒸馏出的水样50 mL,置于50 mL比色管中。
若氨氮含量太高可酌情取适量水样用无氨水稀释至50 mL。
另取8支50 mL比色管,分别加入铵标准溶液(含氨氮10 µg/mL)0.00、0.50、1.00、2.00、3.00、5.00、7.00、10.00 mL,加无氨水稀释至刻度。
在上述各比色管中,分别加入1.0 mL酒石酸钾钠,摇;再加1.5 mL纳氏试剂,摇匀放置10 min;用1 cm比色管,在波长425 nm处,以试剂空白为参比测定吸光度,绘制标准曲线,并从标准曲线上查得水样中氨氮的含量(µg/mL)。
2. 亚硝酸盐氮的测定——盐酸萘乙二胺比色法(1) 原理在pH 2.0~2.5时,水中亚硝酸盐与对氨基苯磺酸生成重氮盐,再与盐酸萘乙二胺偶联生成红色染料,最大吸收波长为543 nm,其色度深浅与亚硝酸盐含量成正比,可用比色法测定,检出限为0.005 µg/mL,测定上限为0.1 µg/mL。
(2) 试剂①不含亚硝酸盐的蒸馏水:蒸馏水中加入少量高锰酸钾晶体,使呈红色,再加氢氧化钡(或氢氧化钙),使呈碱性,重蒸馏。
弃去50 mL初馏液,收集中间70%部分。
也可于每升蒸馏水中加入 1 mL浓硫酸和0.2 mL硫酸锰溶液(每100 mL蒸馏水中含有36.4 g MnSO4·H2O),及1~3 mL 0.04%高锰酸钾溶液使呈红色,然后重蒸馏。
②亚硝酸盐标准储备液:称取1.232 g 亚硝酸钠溶于水中,加入1 mL氯仿,稀释至1000 mL 。
此溶液每毫升含亚硝酸盐氮约为0.25 mg。
由于亚硝酸盐氮在湿空气中易被氧化,所以储备液需标定。
标定方法:吸取50.00 mL 0.050 mol/L高锰酸钾溶液,加5 mL浓硫酸及50.00 mL亚硝酸钠储备液于300 mL具塞锥形瓶中(加亚硝酸钠贮备液时需将吸管插入高锰酸钾溶液液面以下)混合均匀,置于水浴中加热至70~80℃,按每次10.00 mL的量加入足够的0.050 mol/L草酸钠标准溶液,使高锰酸钾溶液褪色并过量,记录草酸钠标准溶液用量(V2);再高锰酸钾溶液滴定过量的草酸钠直至溶液呈微红色,记录高锰酸钾溶液用量(V1)。
用50 mL不含亚硝酸盐的水代替亚硝酸钠贮备液,如上操作,用草酸钠标准溶液标定高锰酸钾溶的浓度(c1),按下式计算高锰酸钾溶液浓度(mol/L):按下式计算亚硝酸盐氮的标准储备液的浓度:式中,c 1是经标定的高锰酸钾标准溶液的浓度,mol/L ;V 1是滴定亚硝酸盐氮的标准储备液时,加入高锰酸钾标准溶液总量,mL ;V 2是滴定亚硝酸盐氮的标准储备液时,加入草酸钠标准溶液总量,mL ;V 3是滴定水时,加入高锰酸钾标准溶液总量,mL ;V 4是滴定水时,加入草酸钠标准溶液总量,mL ;7.00是亚硝酸盐氮(1/2 N )的摩尔质量,g/mol ;50.00是亚硝酸盐的标准储备液取用量,mL ;0.0500是草酸钠标准溶液浓度(1/2 Na 2C 2O 4,0.0500 mol/L )。
③ 亚硝酸盐使用液:临用时将标准贮备液配制成每毫升含1.0 µg 的亚硝酸盐氮的标准使用液。
④ 草酸钠标准溶液(1/2 Na 2C 2O 4,0.0500 mol/L ):称取3.350 g 经105℃干燥 2 h 的优级纯无水草酸钠溶于水中,转入1000 mL 容量瓶中加水稀释至刻度。
⑤ 高锰酸钾溶液(1/5 KMnO 4,0.050 mol/L ):溶解 1.6 g 高锰酸钾于约1.2 L 水中,煮沸0.5 h 至1 h ,使体积减小至1000 mL 左右,放置过夜,用G3号熔结玻璃漏斗过滤后,滤液贮于棕色试剂瓶中,用上述草酸钠标准溶液标定其准确浓度。
⑥ 氢氧化铝悬浮液:溶解125 g 硫酸铝钾[KAl (SO 4)2·12H 2O]或硫酸铝铵[NH 4Al (SO 4)2·12H 2O]于1 L 水中,加热到60℃,在不断搅拌下慢慢加入55 mL 浓氨水,放置约1 h ,转入试剂瓶内,用水反复洗涤沉淀,至洗液中不含氨、氯化物、硝酸盐和亚硝酸盐为止。
澄清后,把上层清液尽量全部倾出,留下浓的悬浮物,最后加100 mL 水。
使用前应振荡均匀。
⑦ 盐酸萘乙二胺显色剂:50 mL 冰醋酸与900 mL 水混合,加入5.0 g 对氨基苯磺酸,加热使其全部溶解,再加入0.05 g 盐酸萘乙二胺,搅拌溶解后用水34410500.0)5/1(V V KMnO c ⨯=00.50100000.70500.0/211⨯⨯⨯-=)(),亚硝酸盐氮(V c V L mg N稀释至1 L。
溶液无色,贮存于棕色瓶中,在冰箱中保存可稳定一个月(当有颜色时应重新配制)。
(3) 步骤①水样如有颜色和悬浮物,可在每100 mL水样中加入2 mL 氢氧化铝悬浮液,搅拌后,静置过滤,弃去25 mL初滤液。
②取50.00 mL澄清水样于50 mL比色管中(如亚硝酸盐氮含量高,可酌情少取水样,用无亚硝酸盐蒸馏水稀释至刻度)。
③取7支50 mL比色管,分别加入含亚硝酸盐氮1 µg / mL的标准溶液0.00、0.50、1.00、2.00、3.00、4.00、5.00 mL,用水稀释至刻度。
④在上述各比色管中分别加入2 mL显色剂,20 min后在540 nm处,用2 cm比色皿,以试剂空白作参比,测定其吸光度,绘制标准曲线。