(完整版)勾股定理综合习题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理复习

4.如图,A 市气象站测得台风中心在A 市正东方向300千米的B 处,以107 千米/时的速度向北偏西60°的BF 方向移动,距台风中心200•千米范围内是受台风影响的区域. (1)A 市是否会受到台风的影响?写出你的结论并给予说明; (2)如果A 市受这次台风影响,那么受台风影响的时间有多长?

1、直角三角形的面积为S ,斜边上的中线长为d ,则这个三角形周长为( )

(A )22d S d ++ (B )2d S d -- (C )222d S d ++ (D )2

2d S d ++

2.如图,A 、B 两个村子在河CD 的同侧,A 、B 两村到河的距离分别为AC=1km ,BD=3km ,CD=3km ,现在河边CD 上建一水厂向A 、B 两村输送自来水,铺设水管的费用为20000元/千米,请你在CD 选择水厂位置O ,使铺设水管的费用最省,并求出铺设水管的总费用F 。

3.△ABC 中,BC a =,AC b =,AB c =,若∠C=90°,如图(1),根据勾股定理,则222c b a =+,若△ABC 不是直角三角形,如图(2)和图(3),请你类比勾股定理,试猜想22b a +与2c 的关系,

并证明你的结论.

课堂练习:

1、将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是().

A.h≤17cm B.h≥8cm C.15cm≤h≤16cm D.7cm≤h≤16cm

2 如图,已知:,,于P. 求证:.

3 已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。

在RtΔABP中,∵∠ABP=90°,∠APB=30°,AP=160,

∴AB=AP=80。(在直角三角形中,30°所对的直角边等于斜边的一半)

∵点A到直线MN的距离小于100m,

∴这所中学会受到噪声的影响。

如图,假设拖拉机在公路MN上沿PN方向行驶到点C处学校开始受到影响,那么AC=100(m),

由勾股定理得:BC2=1002-802=3600,∴BC=60。

同理,拖拉机行驶到点D处学校开始脱离影响,那么,AD=100(m),BD=60(m),

∴CD=120(m)。

拖拉机行驶的速度为: 18km/h=5m/s

t=120m÷5m/s=24s。

答:拖拉机在公路MN上沿PN方向行驶时,学校会受到噪声影响,学校受影响的时间为24秒。

6、如图所示,△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E、F分别是AB、AC边

上的点,且DE⊥DF,若BE=12,CF=5.求线段EF的长。

思路点拨:现已知BE、CF,要求EF,但这三条线段不在同一三角形中,所以关键是线段的转化,根据直角三角形的特征,三角形的中线有特殊的性质,不妨先连接AD.

解:连接AD.

因为∠BAC=90°,AB=AC.又因为AD为△ABC的中线,

所以AD=DC=DB.AD⊥BC.

且∠BAD=∠C=45°.

因为∠EDA+∠ADF=90°.又因为∠CDF+∠ADF=90°.

所以∠EDA=∠CDF.所以△AED≌△CFD(ASA).

所以AE=FC=5.

同理:AF=BE=12.

在Rt△AEF中,根据勾股定理得:

,所以EF=13。

总结升华:此题考查了等腰直角三角形的性质及勾股定理等知识。通过此题,我们可以了解:当已知的线段和所求的线段不在同一三角形中时,应通过适当的转化把它们放在同一直角三角形中求解。

7 如图,在等腰△ABC中,∠ACB=90°,D、E为斜边AB上的点,且∠DCE=45°。

求证:DE2=AD2+BE2。

E

C A

B

D

F

E

C

A

B

D

分析:利用全等三角形的旋转变换,进行边角的全等变换,将边转移到一个三角形中,并构造直角三角形。

8 如图,长方形ABCD 中,AB=8,BC=4,将长方形沿AC 折叠,点D 落在点E 处,则重叠部分△AFC 的面积是 。

E

F

D

B

C

A

设EF=x ,那么AF=CF=8-x ,AE^2+EF^2=AF^2,所以4^2+x^2=(8-x)^2,解得x=3,

S=4*8/2-3*4/2=10 答案:10

4. 一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?

【答案】由于厂门宽度是否足够卡车通过,只要看当卡车位于厂门正中间时其高度是否小于CH .如

D

C B D

D

D

图所示,点D在离厂门中线0.8米处,且CD⊥AB,与地面交于H.

解:OC=1米(大门宽度一半),

OD=0.8米(卡车宽度一半)

在Rt△OCD中,由勾股定理得:

CD===0.6米,

CH=0.6+2.3=2.9(米)>2.5(米).

因此高度上有0.4米的余量,所以卡车能通过厂门.

5、如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m。假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到噪声影响?请说明理由,如果受影响,已知拖拉机的速度为18km/h,那么学校受影响的时间为多少秒?

思路点拨:(1)要判断拖拉机的噪音是否影响学校A,实质上是看A到公路的距离是否小于100m, 小于100m则受影响,大于100m则不受影响,故作垂线段AB并计算其长度。(2)要求出学校受影响的时间,实质是要求拖拉机对学校A的影响所行驶的路程。因此必须找到拖拉机行至哪一点开始影响学校,行至哪一点后结束影响学校。

解析:作AB⊥MN,垂足为B。

9. 一只蚂蚁在一块长方形的一个顶点A处,一只苍蝇在这个长方形上和蜘蛛相对的顶点

C1处,如图,已知长方形长6cm,宽5 cm,高3 cm。蜘蛛因急于捉到苍蝇,沿着长方形

相关文档
最新文档