2021年华师大版八年级数学上册《多项式与多项式相乘》优质课课件.ppt
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
。2021年1月9日星期六2021/1/92021/1/92021/1/9
15、会当凌绝顶,一览众山小。2021年1月2021/1/92021/1/92021/1/91/9/2021
16、如果一个人不知道他要驶向哪头,那么任何风都不是顺风。2021/1/92021/1/9January 9, 2021
12.2.3 多项式与多项式相乘
[归纳总结] (1)为了防止漏乘项,应注意将一个多项式的 每一项“遍乘”另一个多项式的每一项;(2)要正确确定积中 每一项的符号;(3)如有同类项,则应合并同类项,得出最简 结果;(4)通常情况下,最后结果应按某一字母的降幂排列.
12.2.3 多项式与多项式相乘
[备选例题] 先化简,再求值:(a+2)(a-2)+a(1-a),其 中 a=5.
活动2 教材导学 理解、掌握多项式与多项式相乘的法则 梦梦家在梦幻新区买了一套新房,其平面图如图 12- 2-7 所示(其长度已在图中标出,单位:米).根据这个平 面图完成下列填空,然后思考问题中所得到的等式的左边 是什么运算?
图 12-2-7
12.2.3 多项式与多项式相乘
梦梦家新房的平面图是一个长为_(_a+_b)_米,宽为_(m_+__n) 米的长方形,其面积可用算式表示为(_a_+b)(m+_n_) 平方米; 从平面图上可以知道,
12.2.3 多项式和多项式相乘
12.2.3 多项式与多项式相乘
探究新知
活动1 知识准备
1.多项式 3a-b+1 的项分别为_3_a__,_-__b_,__1__.
2.计算:(来自百度文库)-2x2
1xy-y2 2
;-x3y+2x2y2
(2)(x2-2x-1)(-2xy).-2x3y+4x2y+2xy
12.2.3 多项式与多项式相乘
12.2.3 多项式与多项式相乘
重难互动探究
探究问题一 多项式与多项式相乘 例 1 [课本例 3 变式题] 计算: (1)(3x+2y)(3x-2y);(2)(2ab-1)2; (3)(2a3-3a+5)(3-a2). [解析] 多项式与多项式相乘时,先用一个多项式的每 一项“遍乘”另一个多项式的每一项,再把所得的积相加.
解:依题意,得实际打印面积为 (a-5)(b-5.6)=ab-5.6a-5b+5×5.6 =(ab-5.6a-5b+28)(cm2). 答:一张这样的打印纸的实际打印面积是(ab-5.6a -5b+28) cm2.
9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2021/1/92021/1/9Saturday, January 09, 2021
THE END 17、一个人如果不到最高峰,他就没有片刻的安宁,他也就不会感到生命的恬静和光荣。2021/1/92021/1/92021/1/92021/1/9
谢谢观看
用代数式表示图形的长、宽,再利用面积(或体积)公式求 面积(或体积)是解决此类问题的关键.
12.2.3 多项式与多项式相乘
[备选例题] 有一种打印纸的长为 a cm、宽为 b cm,在 打印某文档设置页边距时,上、下均设置为 2.5 cm,左、右 均设置为 2.8 cm,那么一张这样的打印纸的实际打印面积是 多大?
客厅的面积是_a_m__平方米,餐厅的面积为__a_n_平方米, 房间一的面积是_b_m_平方米,房间二的面积是_b_n__平方米, 这四部分的总面积是(_a_m_+an+bm+b_n平) 方米.由此可以得 到一个等式,这个式是 (a+b)(m+n)=am+an+bm+bn.
你能运用单项式乘以多项式的法则推导这个等式吗? ◆知识链接——[新知梳理]知识点
图 12-2-9
12.2.3 多项式与多项式相乘
[解析] 要拼一个长为(a+2b)、宽为(a+b)的大长方形, 就是看需 A ,B,C 类卡片各多少张,把(a+2b)与(a+b)相乘, 得 a2+3ab+2b2,所以需要 C 类卡片 3 张.
[归纳总结] 有关卡片的拼图问题,看似好难,但只要我 们发挥数形结合的作用,辅之整式乘法的知识即可求解.
12.2.3 多项式与多项式相乘
解:(1)(3x+2y)(3x-2y) =3x·3x+3x·(-2y)+2y·3x+2y·(-2y) =9x2-6xy+6xy-4y2 =9x2-4y2. (2)(2ab-1)2=(2ab-1)(2ab-1) =4a2b2-2ab-2ab+1 =4a2b2-4ab+1. (3)(2a3-3a+5)(3-a2) =6a3-2a5-9a+3a3+15-5a2 =-2a5+9a3-5a2-9a+15.
12.2.3 多项式与多项式相乘
新知梳理
► 知识点 多项式与多项式相乘的法则 法则:多项式与多项式相乘,先用一个多项式的_每__一_项 分别乘以另一个多项式的_每_ 一项__,再把所得的_积_ 相加__. 字母表达式:(m+n )(a+b)=__ma+mb+na+nb__. 几何背景图:
图 12-2-8 大长方形的面积=四个小长方形的面积之和. 即(m +n )(a+b)=m a+m b+na+n b.
10、人的志向通常和他们的能力成正比例。2021/1/92021/1/92021/1/91/9/2021 6:17:31 PM 11、夫学须志也,才须学也,非学无以广才,非志无以成学。2021/1/92021/1/92021/1/9Jan-219-Jan-21 12、越是无能的人,越喜欢挑剔别人的错儿。2021/1/92021/1/92021/1/9Saturday, January 09, 2021 13、志不立,天下无可成之事。2021/1/92021/1/92021/1/92021/1/91/9/2021
解: 原式=a2-2a+2a-4+a-a2=a-4. 当 a=5 时,原式=5-4=1.
12.2.3 多项式与多项式相乘
探究问题二 多项式与多项式相乘的应用 例 2 如图 12-2-9,正方形卡片 A 类,B 类和长方形 卡片 C 类各若干张,如果要拼一个长为(a+2b)、宽为(a+b) 的大长方形,则需要 C 类卡片____3____张.
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.