北京课改版六年级数学上册第七单元《数学百花园》知识点汇总

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七数学百花园

一、黄金螺旋线

1.了解黄金螺旋线。

自然界中存在着许多美丽的图案,鹦鹉螺外壳上的优美曲线被称为黄金螺旋线。黄金螺旋线可以用大小不同的扇形的弧线画出来。

2.明确黄金螺旋线的画法。

(1)画一个边长为1厘米的正方形,以正方形的右下顶点为圆心,以这个正方形的边长为半径画一个90°的扇形。

(2)在正方形的右边画一个同样大小的正方形,以正方形的左下顶点为圆心,以这个正方形的边长为半径画一个90°的扇形。

(3)以组成的长方形的长为边长画—个正方形,以正方形的左上顶点为圆心,以这个正方形的边长为半径画一个90°的扇形。

(4)再以组成的长方形的长为边长画一个正方形,以正方形的右上顶点为圆心,以这个正方形的边长为半径画一个90°的扇形。

(5)再以组成的长方形的长为边长画一个正方形,以正方形的右下顶点为圆心,以这个正方形的边长为半径画一个90°的扇形。

(6)再以组成的长方形的长为边长画一个正方形,以正方形的左下顶点为圆心,以这个正方形的边长为半径画一个90°的扇形。

3.观察扇形的半径,发现其中的规律,如下表所示。

黄金螺旋线在生活中应用广泛。在摄影方面,可利用黄金螺旋线进行拍照;在设计方面,有不少设计师从黄金螺旋线中获得了灵感,创造出了许多优秀的作品。

斐波那契数列,从第8项开始,每相邻两项的比值都接近0.618,≈0.618,≈0.618,≈0.618,≈0.618,≈

0.618……0.618为黄金分割数。

二、铁链的长度

1.明确解题思路。

一个铁环,内直径是8厘米,外直径是10厘米。把10个这样的铁环连成一条铁链,求拉直后有多长,就是用10个铁环的长度减去铁环连接处重复计算部分的长度。

2.计算铁环连接处的长度。

铁环的内直径为8厘米,外直径为10厘米,因此每个铁环的壁厚=(外直径-内直径)÷2=(10-8)÷2=1(厘米),所以两个铁环连接处的长度是2厘米,也就是重合部分的长度为2厘米。

3.探究铁链长度的求法。

(1)用第一个铁环的长度依次加上增加的长度。

①发现:第一个铁环的长度是10厘米,增加一个铁环后,因为有2厘米的连接处是重合部分,需要减去2厘米,所以增加的长度是8厘米。增加几个铁环,长度就增加几个8厘米,由此可以推出,n个铁环连在一起拉直后的长度的计算公式为10+(n-1)×8。

②当n=10时,10+(10-1)×8=82(厘米),所以10个铁环连在一起拉直后的长度为82厘米。

(2)用铁环的总长度减去连接处的长度。

①发现:第一个铁环的长度是10厘米,每增加一个铁环,就增加一个2厘米的连接处,增加几个铁环,就增加几个2厘米的连接处,用铁环的总长度减去连接处的长度,就是几个铁环连在一起拉直后的长度,所以,n个铁环连在一起拉直后的长度的计算公式为10n-(n-1)×2。

通过用不同的方法探索铁链拉直后的长度,认识解决问题的多样性。

相关文档
最新文档