三角形内角和三种证明
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形内角和三种证明
三角形内角和是指三角形内部所有角的度数之和。
为了方便计算和分析,人们一般都将三角形内角和定义为180度。
三角形内角和有三种不同的证明方法。
第一种证明方法是基于平行线相交定理。
这个定理告诉我们,如果一条直线与两条平行线相交,那么相交两侧的对应角相等。
我们可以将三角形的一条边延长,再在延长线上画一条平行线,使其与另一边相交。
这样,我们就得到了两个相等的内角,它们的和是180度。
我们再用同样的方法证明另外两个内角的和也是180度,这样就得到了整个三角形内角和为180度的结论。
第二种证明方法是基于三角形的外角和定理。
这个定理告诉我们,三角形的一个外角等于其对应内角的补角。
也就是说,三角形的三个外角的和等于360度。
然后我们就可以用180度减去一个内角的补角,得到了这个内角的度数。
我们对三个内角分别做这样的计算,再把它们相加,就得到了三角形内角和为180度的结论。
第三种证明方法是基于等腰三角形的性质。
如果一个三角形两边相等,那么它的两个内角也相等。
我们可以把一个三角形分成两个等腰三角形,然后分别计算它们的内角和。
由于它们的内角相等,所以它们的和也相等。
最后把这两个和相加,就得到了整个三角形内角和为180度的结论。
- 1 -。