高考物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)及解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)及解

一、带电粒子在磁场中的运动专项训练
1.如图,光滑水平桌面上有一个矩形区域abcd ,bc 长度为2L ,cd 长度为1.5L ,e 、f 分别为ad 、bc 的中点.efcd 区域存在竖直向下的匀强磁场,磁感应强度为B ;质量为m 、电荷量为+q 的绝缘小球A 静止在磁场中f 点.abfe 区域存在沿bf 方向的匀强电场,电场强度为
26qB L
m
;质量为km 的不带电绝缘小球P ,以大小为qBL m 的初速度沿bf 方向运动.P 与A
发生弹性正碰,A 的电量保持不变,P 、A 均可视为质点.
(1)求碰撞后A 球的速度大小;
(2)若A 从ed 边离开磁场,求k 的最大值;
(3)若A 从ed 边中点离开磁场,求k 的可能值和A 在磁场中运动的最长时间. 【答案】(1)A 21k qBL v k m =⋅+(2)1(3)57k =或1
3
k =;32m t qB π=
【解析】 【分析】 【详解】
(1)设P 、A 碰后的速度分别为v P 和v A ,P 碰前的速度为qBL v m
= 由动量守恒定律:P A kmv kmv mv =+ 由机械能守恒定律:222P A 111222
kmv kmv mv =+ 解得:A 21k qBL v k m
=
⋅+
(2)设A 在磁场中运动轨迹半径为R , 由牛顿第二定律得: 2
A A mv qv
B R
= 解得:21
k
R L k =
+ 由公式可得R 越大,k 值越大
如图1,当A 的轨迹与cd 相切时,R 为最大值,R L = 求得k 的最大值为1k =
(3)令z 点为ed 边的中点,分类讨论如下:
(I )A 球在磁场中偏转一次从z 点就离开磁场,如图2有
222()(1.5)2
L
R L R =+-
解得:56
L R = 由21k R L k =
+可得:5
7
k =
(II )由图可知A 球能从z 点离开磁场要满足2
L
R ≥
,则A 球在磁场中还可能经历一次半
圆运动后回到电场,再被电场加速后又进入磁场,最终从z 点离开. 如图3和如图4,由几何关系有:2
2
23()(3)2
2
L R R L =+- 解得:58L R =或2
L R = 由21k R L k =
+可得:511k =或13
k = 球A 在电场中克服电场力做功的最大值为222
6m q B L W m
=
当511k =时,A 58qBL v m =,由于2222222
A 12521286q
B L q B L mv m m
⋅=>
当13k =时,A 2qBL v m =,由于2222222
A 1286q
B L q B L mv m m
⋅=<
综合(I )、(II )可得A 球能从z 点离开的k 的可能值为:57k =或1
3
k = A 球在磁场中运动周期为2m
T qB
π= 当13k =时,如图4,A 球在磁场中运动的最长时间34
t T = 即32m
t qB
π=
2.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O ,外圆弧面AB 的电势为
2
L
()o ϕ>,内圆弧面CD 的电势为φ,足够长的收集板MN 平行边界ACDB ,ACDB 与MN 板的距离为L .假设太空中漂浮着质量为m ,电量为q 的带正电粒子,它们能均匀地吸附到AB 圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB 的粒子再次返回.
(1)求粒子到达O 点时速度的大小;
(2)如图2所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB 圆弧面的粒子经O 点进入磁场后最多有23
能打到MN 板上,求所加磁感应强度的大小;
(3)如图3所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个垂直MN 的匀强电场,电场强度的方向如图所示,大小4E L
φ
=
,若从AB 圆弧面收集到的某粒子经
O 点进入电场后到达收集板MN 离O 点最远,求该粒子到达O 点的速度的方向和它在PQ 与MN 间运动的时间. 【答案】(1)2q v m
ϕ
=;(2)12m B L q ϕ=;(3)060α∴= ;22m L q ϕ
【解析】 【分析】 【详解】
试题分析:解:(1)带电粒子在电场中加速时,电场力做功,得:2
102
qU mv =-
2U ϕϕϕ=-=2q v m
ϕ
=
(2)从AB 圆弧面收集到的粒子有
2
3
能打到MN 板上,则上端刚好能打到MN 上的粒子与MN 相切,则入射的方向与OA 之间的夹角是60︒,在磁场中运动的轨迹如图甲,轨迹圆心角060θ=.
根据几何关系,粒子圆周运动的半径:2R L =
由洛伦兹力提供向心力得:2
v qBv m R
=
联合解得:12m B L q
ϕ
=
(3)如图粒子在电场中运动的轨迹与MN 相切时,切点到O 点的距离最远,
这是一个类平抛运动的逆过程. 建立如图坐标.
2
12qE L t m
= 222mL m
t L qE q ϕ
== 22x Eq qEL q v t m m m ϕ
=
==
若速度与x 轴方向的夹角为α角 cos x v v α=
1
cos 2
α=060α∴=
3.电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场的极板由相距为d 的两块水平平行放置的导体板组成,如图甲所示.大量电子由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间OO ’射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t 0;:当在两板间加最大值为U 0、周期为2t 0的电压(如图乙所示)时,所有电子均能从两板间通过,然后进入竖直宽度足够大的匀强酸场中,最后打在竖直放置的荧光屏上.已知磁场的水平宽度为L ,电子的质量为m 、电荷量为e ,其重力不计.
(1)求电子离开偏转电场时的位置到OO ’的最远位置和最近位置之间的距离 (2)要使所有电子都能垂直打在荧光屏上,
①求匀强磁场的磁感应强度B
②求垂直打在荧光屏上的电子束的宽度△y 【答案】(1)2010U e y t dm ∆= (2)①00U t B dL =②2
010U e y y t dm
∆=∆= 【解析】 【详解】
(1)由题意可知,从0、2t 0、4t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最大,在这种情况下,电子的最大距离为:
2222
000max 00000311222y U e U e U e y at v t t t t dm dm dm
=
+=+= 从t 0、3t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最小,在这种情况下,电子的最小距离为:
220min 001122U e y at t dm
=
= 最远位置和最近位置之间的距离:1max min y y y ∆=-,
2
010U e y t dm
∆=
(2)①设电子从偏转电场中射出时的偏向角为θ,由于电子要垂直打在荧光屏上,所以电子在磁场中运动半径应为:
sin L R θ
=
设电子离开偏转电场时的速度为v 1,垂直偏转极板的速度为v y ,则电子离开偏转电场时的偏向角为θ,1
sin y v v θ=,
式中00y U e
v t dm
= 又:1
mv R Be =
解得:00U t
B dL
=
②由于各个时刻从偏转电场中射出的电子的速度大小相等,方向相同,因此电子进入磁场后做圆周运动的半径也相同,都能垂直打在荧光屏上.
由第(1)问知电子离开偏转电场时的位置到OO ′的最大距离和最小距离的差值为△y 1, 所以垂直打在荧光屏上的电子束的宽度为:2
010U e y y t dm
∆=∆=
4.长为L 的平行板电容器沿水平方向放置,其极板间的距离为d ,电势差为U ,有方向垂直纸面向里的磁感应强度大小为B 的匀强磁场.荧光屏MN 与电场方向平行,且到匀强电、磁场右侧边界的距离为x ,电容器左侧中间有发射质量为m 带+q 的粒子源,如图甲
所示.假设a、b、c三个粒子以大小不等的初速度垂直于电、磁场水平射入场中,其中a 粒子沿直线运动到荧光屏上的O点;b粒子在电、磁场中向上偏转;c粒子在电、磁场中向下偏转.现将磁场向右平移与电场恰好分开,如图乙所示.此时,a、b、c粒子在原来位置上以各自的原速度水平射入电场,结果a粒子仍恰好打在荧光屏上的O点;b、c中有一个粒子也能打到荧光屏,且距O点下方最远;还有一个粒子在场中运动时间最长,且打到电容器极板的中点.求:
(1)a粒子在电、磁场分开后,再次打到荧光屏O点时的动能;
(2)b,c粒子中打到荧光屏上的点与O点间的距离(用x、L、d表示);
(3)b,c中打到电容器极板中点的那个粒子先、后在电场中,电场力做功之比.
【答案】(1)
242222
22
2
a
k
L B d q m U
E
mB d
= (2)
1
()
2
x
y d
L
=+ (3)
1
1
2
2
4
==
5
Uq
y
W d
Uq
W y
d
【解析】
【详解】
据题意分析可作出abc三个粒子运动的示意图,如图所示.
(1) 从图中可见电、磁场分开后,a 粒子经三个阶段:第一,在电场中做类平抛运动;第二,在磁场中做匀速圆周运动;第三,出磁场后做匀速直线运动到达O 点,运动轨迹如图中Ⅰ所示.
U
q Bqv d
=, Bd
U v =
, L LBd t v U
=
=, 222122a Uq L B qd
y t dm mU ==
, 21()2a a k U U qy E m d Bd
=- 242222
22
2a k L B d q m U E mB d
= (2) 从图中可见c 粒子经两个阶段打到荧光屏上.第一,在电场中做类平抛运动;第二,离开电场后做匀速直线运动打到荧光屏上,运动轨迹如图中Ⅱ所示.
设c 粒子打到荧光屏上的点到O 点的距离为y ,根据平抛运动规律和特点及几何关系可得
12=122
d
y L L x +, 1
()2
x y d L =+
(3) 依题意可知粒子先后在电场中运动的时间比为t 1=2t 2
如图中Ⅲ的粒子轨迹,设粒子先、后在电场中发生的侧移为y 1,y 2
2111·2Uq y t md =,11y Uq v t md =
122
221·2y Uq t m y t d
v +=,
2
2158qU y t md
=
, 124=5
y y , 1
1224==5
Uq
y W d Uq W y d
5.如图所示,在不考虑万有引力的空间里,有两条相互垂直的分界线MN 、PQ ,其交点为O .MN 一侧有电场强度为E 的匀强电场(垂直于MN ),另一侧有匀强磁场(垂直纸面向里).宇航员(视为质点)固定在PQ 线上距O 点为h 的A 点处,身边有多个质量均为m 、电量不等的带负电小球.他先后以相同速度v0、沿平行于MN 方向抛出各小球.其中第1个小球恰能通过MN 上的C 点第一次进入磁场,通过O 点第一次离开磁场,OC=2h .求:
(1)第1个小球的带电量大小; (2)磁场的磁感强度的大小B ;
(3)磁场的磁感强度是否有某值,使后面抛出的每个小球从不同位置进入磁场后都能回到宇航员的手中?如有,则磁感强度应调为多大.
【答案】(1) 20
12mv q Eh
=;(2) 02E B v =;(3)存在,0E B v '=
【解析】 【详解】
(1)设第1球的电量为1q ,研究A 到C 的运动:
2
112q E h t m
=
02h v t =
解得:20
12mv q Eh
=;
(2)研究第1球从A 到C 的运动:
12
y q E
v h m
= 解得:0y v v =
tan 1y v v θ=
=,45o θ=,02v v =;
研究第1球从C 作圆周运动到达O 的运动,设磁感应强度为B
由21v q vB m R =得
1
mv
R q B = 由几何关系得:22sin R h θ= 解得:0
2E B v =
; (3)后面抛出的小球电量为q ,磁感应强度B '
①小球作平抛运动过程
02hm
x v t
v qE
== 2
y qE v h m
= ②小球穿过磁场一次能够自行回到A ,满足要求:sin R x θ=,变形得:sin mv
x qB θ'
= 解得:0
E B v '=

6.如图所示,在xOy 平面的第一象限有一匀强磁场,方向垂直于纸面向外;在第四象限有一匀强电场,方向平行于y 轴向下.一电子以速度v 0从y 轴上的P 点垂直于y 轴向右飞入电场,经过x 轴上M 点进入磁场区域,又恰能从y 轴上的Q 点垂直于y 轴向左飞出磁场已知P 点坐标为(0,-L),M 点的坐标为(23
3
L ,0).求 (1)电子飞出磁场时的速度大小v (2)电子在磁场中运动的时间t
【答案】(1)02v v =;(2)20
49L
t v π= 【解析】 【详解】
(1)轨迹如图所示,设电子从电场进入磁场时速度方向与x 轴夹角为θ,
(1)在电场中x 轴方向:0123L
v t =,y
轴方向12y v L t =:,
0tan 3y v v θ== 得60θ=,0
02cos v v v θ
=
= (2)在磁场中,234
3
L r L =
= 磁场中的偏转角度为2
3
απ=
20
2439r
L t v v ππ==
7.如图为一装放射源氡的盒子,静止的氡核经过一次α衰变成钋Po ,新核Po 的速率约为2×105m/s .衰变后的α粒子从小孔P 进入正交的电磁场区域Ⅰ,且恰好可沿中心线匀速通过,磁感应强度B =0.1T .之后经过A 孔进入电场加速区域Ⅱ,加速电压U =3×106V .从区域Ⅱ射出的α粒子随后又进入半径为r =
3
m 的圆形匀强磁场区域Ⅲ,该区域磁感应强度B 0=0.4T 、方向垂直纸面向里.圆形磁场右边有一竖直荧光屏与之相切,荧光屏的中心点M 和圆形磁场的圆心O 、电磁场区域Ⅰ的中线在同一条直线上,α粒子的比荷为
q
m
=5×107C/kg .
(1)请写出衰变方程,并求出α粒子的速率(保留一位有效数字); (2)求电磁场区域Ⅰ的电场强度大小; (3)粒子在圆形磁场区域Ⅲ的运动时间多长? (4)求出粒子打在荧光屏上的位置. 【答案】(1)
2222184
86
842Rn Po He →
+ 1×107 m/s
(2)1×106V/m (3)
6
π
×10-7s (4)打在荧光屏上的M 点上方1 m 处 【解析】
【分析】
(1)根据质量数守恒和电荷数守恒写出方程,根据动量守恒求解速度; (2)根据速度选择器的原理求解电场强度的大小;
(3)粒子在磁场中匀速圆周运动,并结合几何知识进行求解即可; 【详解】
(1)根据质量数守恒和电荷数守恒,则衰变方程为:
2222184
86
842Rn Po He →
+ ①
设α粒子的速度为0v ,则衰变过程动量守恒:100Po He m v m v =- ②
联立①②可得:7
0110/v m s =⨯ ③
(2)α粒子匀速通过电磁场区域Ⅰ:0qE qv B =④ 联立③④可得:6110/E V m =⨯ ⑤ (3)α粒子在区域Ⅱ被电场加速:2201122
qU mv mv =- 所以得到:7210/v m s =⨯⑥
α粒子在区域Ⅲ中做匀速圆周运动: 2v qvB m R
= 所以轨道半径为:1R m =⑦ 而且:2R
T v
π=
⑧ 由图根据几何关系可知:α粒子在磁场中偏转角60θ=︒,所以α粒子在磁场中的运动时
间1
6
t T =
⑨ 联立⑧⑨可得:7106
t s π
=
⨯-;
(4)α粒子的入射速度过圆心,由几何关系可知,出射速度方向也必然过圆心O ,几何关系如图: 60x
tan r
︒=
,所以1x m =,α粒子打在荧光屏上的M 点上方1m 处.
【点睛】
本题实质是考查带电粒子在电场和磁场中的运动,解决类似习题方法是洛伦兹力提供向心力,同时结合几何知识进行求解,同时画出图形是解题的关键.
8.如图所示,y,N为水平放置的平行金属板,板长和板间距均为2d.在金属板左侧板间中点处有电子源S,能水平发射初速为V0的电子,电子的质量为m,电荷量为e.金属板右侧有两个磁感应强度大小始终相等,方向分别垂直于纸面向外和向里的匀强磁场区域,两磁场的宽度均为d.磁场边界与水平金属板垂直,左边界紧靠金属板右侧,距磁场右边界d处有一个荧光屏.过电子源S作荧光屏的垂线,垂足为O.以O为原点,竖直向下为正方向,建立y轴.现在y,N两板间加上图示电压,使电子沿SO方向射入板间后,恰好能够从金属板右侧边缘射出.进入磁场.(不考虑电子重力和阻力)
(1)电子进人磁场时的速度v;
(2)改变磁感应强度B的大小,使电子能打到荧光屏上,求
①磁场的磁感应强度口大小的范围;
②电子打到荧光屏上位置坐标的范围.
【答案】(1)
2v ,方向与水平方向成45°
(2)①
()0
12mv
B
ed
+
<,②4224
d d d
-→
【解析】
试题分析:(1)电子在MN间只受电场力作用,从金属板的右侧下边沿射出,有(1分)
(1分)
(1分)
(1分)
解得(1分)
速度偏向角(1分)
(1分)
(2)电子恰能(或恰不能)打在荧光屏上,有磁感应强度的临界值
B,此时电子在磁场中作圆周运动的半径为R
(2分)
又有2
0mv qvB R
=(2分)
由⑦⑧解得:00(12)m
B v +=
(1分) 磁感应强度越大,电子越不能穿出磁场,所以取磁感应强度0(12)m
B v ed
+<时电子能打
在荧光屏上(得0(12)m
B v ed
+≤
不扣分). (1分) 如图所示,电子在磁感应强度为0B 时,打在荧光屏的最高处,由对称性可知,电子在磁场右侧的出射时速度方向与进入磁场的方向相同,
即. (1分)
出射点位置到SO 连线的垂直距离
12sin 45y d R =-︒(1分)
电子移开磁场后做匀速直线运动,则电子打在荧光屏的位置坐标
021tan 45y y d =+(1分)
解得2422y d d =-(1分)
当磁场的磁感应强度为零时,电子离开电场后做直线运动,打在荧光屏的最低点,其坐标
为0
33tan 454y d d d =+=(1分)
电子穿出磁场后打在荧光民屏上的位置坐标范围为:
422d d -到4d (2分)
考点:带电粒子在磁场中受力运动.
9.如图所示,在x 轴上方有垂直xOy 平面向里的匀强磁场,磁感应强度为B 1=B 0,在x 轴下方有交替分布的匀强电场和匀强磁场,匀强电场平行于y 轴,匀强磁场B 2=2B 0垂直于xOy 平面,图象如图所示.一质量为m ,电量为-q 的粒子在02
3
t t =
时刻沿着与y 轴正方向成60°角方向从A 点射入磁场,20t t =时第一次到达x 轴,并且速度垂直于x 轴经过C 点,C 与原点O 的距离为3L .第二次到达x 轴时经过x 轴上的D 点,D 与原点O 的距离为4L .(不计粒子重力,电场和磁场互不影响,结果用B 0、m 、q 、L 表示)
(1)求此粒子从A 点射出时的速度υ0; (2)求电场强度E 0的大小和方向;
(3)粒子在09t t =时到达M 点,求M 点坐标.
【答案】(1)002qB L v m = (2)202πqB L
E m
= (3)(9L ,3π2-L ) 【解析】
试题分析:(1)设粒子在磁场中做圆周运动的半径为R 1,由牛顿第二定律得

根据题意由几何关系可得

联立①②得

(2)粒子在第一象限磁场中运动的周期设为T 1,可得

粒子在第四象限磁场中运动的周期设为T 2,可得

根据题意由几何关系可得⑥ 由④⑤⑥可得


综上可以判断3t 0—4 t 0粒子在第四象限的磁场中刚好运动半个周期,半径为

由牛顿第二定律得

2 t 0—
3 t 0,粒子做匀减速直线运动,
qE=ma 11
12
综上解得
13
(3)由题意知,粒子在8 t 0时刚在第四象限做完半个圆周运动, x=9L 14
粒子在电场中减速运动的时间为t 0,由运动学公式可得
15
联立③ ⑨⑩1112可解得
16
联立可得M 点的坐标为 (9L ,
) 17
考点:带电粒子在电场及在磁场中的运动.
10.如图(甲)所示,两带等量异号电荷的平行金属板平行于x 轴放置,板长为L ,两板间距离为2y0,金属板的右侧宽为L 的区域内存在如图(乙)所示周期性变化的磁场,磁场的左右边界与x 轴垂直.现有一质量为m ,带电荷量为+q 的带电粒子,从y 轴上的A 点以速度v 0沿x 轴正方向射入两板之间,飞出电场后从点(L ,0)进入磁场区域,进入时速度方向与x 轴夹角为30°,把粒子进入磁场的时刻做为零时刻,以垂直于纸面向里作为磁场正方向,粒子最后从x 轴上(2L ,0)点与x 轴正方向成30°夹角飞出磁场,不计粒子重力.试求:
(1)求粒子在两板间运动时电场力对它所做的功; (2)计算两板间的电势差并确定A 点的位置;
(3)写出磁场区域磁感应强度B 0的大小、磁场变化周期T 应满足的表达式.
【答案】(1)2
016W mv =(2)20023y mv U = ,3y L = (3) 00
23nmv B =
1234T n =
=⋯⋯,,,) 【解析】
试题分析:(1)设粒子刚进入磁场时的速度为v
,则:00cos30v v =
=︒ 电场力对粒子所做的功为:222
00111226
W mv mv mv =
-= (2)设粒子刚进入磁场时的竖直分速度为v′,则:
v′=v 0tan30°
0 水平方向:L=v 0t
竖直方向:y =12
v′t
解得:6
y L =
电场力对粒子所做的功:W=qEy 两板间的电压U=2Ey 0
解得:U =
(3)由对称性可知,粒子从x=2L 点飞出磁场的速度大小不变,方向与x 轴夹角为α=±30°;
在磁场变化的半个周期内,粒子的偏转角为2α=60°;
故磁场变化的半个周期内,粒子在x 轴上的位移为:x=2Rsin30°=R 粒子到达x=2L 处且速度满足上述要求是: nR=L L
R n
=
(n=1,2,3,…) 由牛顿第二定律,有:2
0v qvB m R
=
解得:0
03B qL
=
(n=1,2,3,…) 粒子在变化磁场的半个周期内恰好转过
1
6
周期,同时在磁场中运动的时间是变化磁场半个周期的整数倍,可使粒子到达x=2L 处且满足速度题设要求;
0162T kT k =;02R T v
π=
解得:0
33L
T
v π=
(n=1,2,3,…) 当
026T T >,0
33L T v >π 考点:带电粒子在磁场中的运动.
11.(20分)如图所示,平面直角坐标系xOy 的第二象限内存在场强大小为E ,方向与x 轴平行且沿x 轴负方向的匀强电场,在第一、三、四象限内存在方向垂直纸面向里的匀强磁场。

现将一挡板放在第二象限内,其与x,y 轴的交点M 、N 到坐标原点的距离均为2L 。

一质量为m ,电荷量绝对值为q 的带负电粒子在第二象限内从距x 轴为L 、距y 轴为2L 的A 点由静止释放,当粒子第一次到达y 轴上C 点时电场突然消失。

若粒子重力不计,粒子与挡板相碰后电荷量及速度大小不变,碰撞前后,粒子的速度与挡板的夹角相等(类似于光反射时反射角与入射角的关系)。

求:
(1)C 点的纵坐标。

(2)若要使粒子再次打到档板上,磁感应强度的最大值为多少?
(3)磁感应强度为多大时,粒子从A 点出发与档板总共相碰两次后到达C 点?这种情况下粒子从A 点出发到第二次到达C 点的时间多长?
【答案】(1)3L ;(2)qL mE B 221=;(3)qL Em B 2322=;9(2)24mL t qE
π+=总
【解析】
试题分析:(1)设粒子到达挡板之前的速度为v 0
有动能定理 202
1
mv qEL = (
1分) 粒子与挡板碰撞之后做类平抛运动
在x 轴方向 2
2t m
qE L =
(1分) 在y 轴方向 t v y 0= (1分) 联立解得 L y 2=
C 点的纵坐标为L L y 3=+ (1分) (2)粒子到达C 点时的沿x 轴方向的速度为m
qEL
at v x 2=
= (1分) 沿y 轴方向的速度为m
qEL
v v y 20== (1分)
此时粒子在C 点的速度为m
qEL
v 2= (1分) 粒子的速度方向与x 轴的夹角 x
y v v =
θtan
45=θ (1分)
磁感应强度最大时,粒子运动的轨道半径为 L r 2
2
1=
(2分)
根据牛顿第二定律 1
2
1r v m qvB = (1分)
要是粒子再次打到挡板上,磁感应强度的最大值为 qL
mE
B 221= (1分)
(3)当磁感应强度为B 2时,粒子做半径为r 2的圆周运动到达y 轴上的O 点,之后做直线
运动打到板上,L r 2
2
32=
(2分) 此时的磁感应强度为qL
Em
B 2322=
(1分)
此后粒子返回到O 点,进入磁场后做匀速圆周运动,由对称性可知粒子将到达D 点,接着做直线运动到达C 点 从A 到板,有2121t m Eq L =
qE
mL
t 21=
(1分) 在磁场中做圆周运动的时间 qE
mL
T t 24
9232π
==
(1分) 从O 到板再返回O 点作直线运动的时间qE
mL
t 23= (1分)
从x 轴上D 点做匀速直线运动到C 点的时间为qE
mL
t 2234= (1分)
总时间为qE
mL
t t t t t t 24)2(94321π+=
++++=总 (1分)
考点:带电粒子在磁场中的运动,牛顿第二定律,平抛运动。

12.如图所示的平面直角坐标系xOy ,在第Ⅰ象限内有平行于y 轴的匀强电场,方向沿y 正方向;在第Ⅳ象限的正三角形abc 区域内有匀强电场,方向垂直于xOy 平面向里,正三角形边长为L ,且ab 边与y 轴平行。

一质量为m 、电荷量为q 的粒子,从y 轴上的P (0,h )点,以大小为v 0的速度沿x 轴正方向射入电场,通过电场后从x 轴上的a (2h ,0)点进入第Ⅳ象限,又经过磁场从y 轴上的某点进入第Ⅲ象限,且速度与y 轴负方向成45°角,不计粒子所受的重力。

求:
(1)电场强度E 的大小;
(2)粒子到达a 点时速度的大小和方向; (3)abc 区域内磁场的磁感应强度B 的最小值。

【答案】(1)2
2mv E qh
=;(2)02v v =,方向与x 轴的夹角为45°;(3)02mv B qL =
【解析】 【详解】
(1)设粒子在电场中运动的时间为t , 则有x=v 0t=2h ,
2
12
y h at ==
qE=ma ,
联立以上各式可得20
2mv E qh
= ;
(2)粒子达到a 点时沿负y 方向的分速度为v y =at=v 0,
所以22
002y v v v v =+=

方向指向第IV 象限与x 轴正方和成45o
角;
(3)粒子在磁场中运动时,有2mv qvB r
= ,
当粒子从b 点射出时,磁场的磁感应强度为最小值,此时有2
r L = , 所以磁感应强度B 的最小值0
2mv B qL
=
13.如图,一半径为R 的圆表示一柱形区域的横截面(纸面).在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m 、电荷量为q 的粒子沿图中直线在圆上的a 点射入柱形区域,在圆上的b 点离开该区域,离开时速度方向与直线垂直.圆心O 到直线的距离为
.现将磁场换为平等于纸面且垂直于直线的匀强电场,同一粒子以同样速度沿直线在a 点射入柱形区域,也在b 点离开该区域.若磁感应强度大小为B ,不计重力,求电场强度的大小.
【答案】2
145qRB E m
=
【解析】 【分析】 【详解】
解答本题注意带电粒子先在匀强磁场运动,后在匀强电场运动.带电粒子在磁场中做圆周运动.粒子在磁场中做圆周运动.设圆周的半径为r ,由牛顿第二定律和洛仑兹力公式得
2
v qvB m r
=①
式中v 为粒子在a 点的速度.
过b 点和O 点作直线的垂线,分别与直线交于c 和d 点.由几何关系知,线段ac bc 、和过a 、b 两点的轨迹圆弧的两条半径(未画出)围成一正方形.
因此ac bc r ==② 设,cd x =有几何关系得4
5
ac R x =
+③ 223
5
bc R R x =
+- 联立②③④式得75
r R =
再考虑粒子在电场中的运动.设电场强度的大小为E ,粒子在电场中做类平抛运动.设其加速度大小为a ,由牛顿第二定律和带电粒子在电场中的受力公式得qE="ma" ⑥ 粒子在电场方向和直线方向所走的距离均为r ,有运动学公式得
2
12r at =
⑦ r=vt ⑧ 式中t 是粒子在电场中运动的时间.联立①⑤⑥⑦⑧式得2
145qRB E m
=
⑨ 【点睛】
带电粒子在磁场中运动的题目解题步骤为:定圆心、画轨迹、求半径,同时还利用圆弧的几何关系来帮助解题.值得注意是圆形磁场的半径与运动轨道的圆弧半径要区别开来.
14.如图,ABCD 是边长为a 的正方形.质量为m 、电荷量为e 的电子以大小为0v 的初速度沿纸面垂直于BC 边射入正方形区域.在正方形内适当区域中有匀强磁场.电子从BC 边上的任意点入射,都只能从A 点射出磁场.不计重力,求:
(1)此匀强磁场区域中磁感应强度的方向和大小; (2)此匀强磁场区域的最小面积. 【答案】见解析 【解析】
(1)设匀强磁场的磁感应强度的大小为B .令圆弧AEC 是自C 点垂直于BC 入射的电子在磁场中的运行轨道.电子所受到的磁场的作用力
0f ev B =
应指向圆弧的圆心,因而磁场的方向应垂直于纸面向外.圆弧AEC 的圆心在CB 边或其延长线上.依题意,圆心在A 、C 连线的中垂线上,故B 点即为圆心,圆半径为a 按照牛顿定律有
20
2
v f m =
联立①②式得
mv B ea
=
(2)由(1)中决定的磁感应强度的方向和大小,可知自C 点垂直于BC 入射电子在A 点沿DA 方向射出,且自BC 边上其它点垂直于入射的电子的运动轨道只能在BAEC 区域中.因而,圆弧AEC 是所求的最小磁场区域的一个边界.
为了决定该磁场区域的另一边界,我们来考察射中A 点的电子的速度方向与BA 的延长线交角为θ(不妨设02
π
θ≤<
)的情形.该电子的运动轨迹qpA 如右图所示.
图中,圆AP 的圆心为O ,pq 垂直于BC 边,由③式知,圆弧AP 的半径仍为a ,在D 为原点、DC 为x 轴,AD 为y 轴的坐标系中,P 点的坐标(,)x y 为
sin [(cos )]cos x a y a z a a θθθ==---=-④

这意味着,在范围02
π
θ≤≤
内,p 点形成以D 为圆心、a 为半径的四分之一圆周AFC ,
它是电子做直线运动和圆周运动的分界线,构成所求磁场区域的另一边界.
因此,所求的最小匀强磁场区域时分别以B 和D 为圆心、a 为半径的两个四分之一圆周
AEC 和AFC 所围成的,其面积为2
221122()4
22
S a a a ππ-=-
=
15.现代科学仪器常利用电场磁场控制带电粒子的运动,如图所示,真空中存在着多层紧密
相邻的匀强电场和匀强磁场,宽度均为d 电场强度为E ,方向水平向左;垂直纸面向里磁场的磁感应强度为B 1,垂直纸面向外磁场的磁感应强度为B 2,电场磁场的边界互相平行且与电场方向垂直.一个质量为
、电荷量为的带正电粒子在第层电场左侧边界某处由静止
释放,粒子始终在电场、磁场中运动,不计粒子重力及运动时的电磁辐射.
(1)求粒子在第2层磁场中运动时速度2v 的大小与轨迹半径2r ;
(2)粒子从第n 层磁场右侧边界穿出时,速度的方向与水平方向的夹角为n θ,试求sin n θ; (3)若粒子恰好不能从第n 层磁场右侧边界穿出,试问在其他条件不变的情况下,也进入第n 层磁场,但比荷较该粒子大的粒子能否穿出该层磁场右侧边界,请简要推理说明之 【答案】(1); (2)
; (3)见解析;
【解析】
(1)粒子在进入第2层磁场时,经两次电场加速,中间穿过磁场时洛伦兹力不做功,由动能定理,有:
解得:
粒子在第2层磁场中受到的洛伦兹力充当向心力,有:
联立解得:。

相关文档
最新文档