【精品】小学数学 行程问题之相遇与追及 完整版题型讲解与训练 带详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本的相遇与追及问题(一)
例题讲解:
【例题1】一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。

3.5小时两车相遇。

甲、乙两个城市的路程是多少千米?
【巩固1】两地间的路程有255千米,两辆汽车同时从两地相对开出,甲车每小时行45千米,乙车每小时行40千米。

甲、乙两车相遇时,各行了多少千米?
【例题2】大头儿子的家距离学校3000米,小头爸爸从家去学校接大头儿子放学,大头儿子从学校回家,他们同时出发,小头爸爸每分钟比大头儿子多走24米,50分钟后两人相遇,那么大头儿子的速度是每分钟走多少米?
【巩固2】聪聪和明明同时从各自的家相对出发,明明每分钟走20米,聪聪骑着脚踏车每分钟比明明快42米,经过20分钟后两人相遇,你知道聪聪家和明明家的距离吗?
【例题3】A、B两地相距90米,包子从A地到B地需要30秒,菠萝从B地到A地需要15秒,现在包子和菠萝从A、B两地同时相对而行,相遇时包子与B地的距离是多少米?
【巩固3】甲、乙两车分别从相距360千米的A、B两城同时出发,相对而行,已知甲车到达B城需4小时,乙车到达A城需12小时,问:两车出发后多长时间相遇?
【例题4】甲、乙两辆汽车分别从A、B两地出发相对而行,甲车先行1小时,甲车每小时行48千米,乙车每小时行50千米,5小时相遇,求A、B两地间的距离.
【巩固4】甲、乙两列火车从相距770千米的两地相向而行,甲车每小时行45千米,乙车每小时行41千米,乙车先出发2小时后,甲车才出发.甲车行几小时后与乙车相遇?
【例题5】甲、乙两列火车从相距144千米的两地相向而行,甲车每小时行28千米,乙车每小时行22千米,乙车先出发2小时后,甲车才出发.甲车行几小时后与乙车相遇?
【巩固5】妈妈从家出发到学校去接小红,妈妈每分钟走75米.妈妈走了3分钟后,小红从学校出发,小红每分钟走60米.再经过20分钟妈妈和小红相遇.从小红家到学校有多少米?
【例题6】甲乙两座城市相距530千米,货车和客车从两城同时出发,相向而行.货车每小时行50千米,客车每小时行70千米.客车在行驶中因故耽误1小时,然后继续向前行驶与货车相遇.问相遇时客车、货车各行驶多少千米?
【巩固6】甲、乙两列火车从相距366千米的两个城市对面开来,甲列火车每小时行37千米,乙列火车每小时行36千米,甲列火车先开出2小时后,乙列火车才开出,问乙列火车行几小时后与甲列火车相遇?
【例题7】甲、乙两辆汽车分别从A、B两地出发相向而行,甲车先行3小时后乙车从B地出发,乙车出发5小时后两车还相距15千米.甲车每小时行48千米,乙车每小时行50千米.求A、B两地间相距多少千米?
【巩固7】(全国希望杯数学邀请赛)甲、乙两辆汽车从A、B两地同时相向开出,出发后2小时,两车相距141千米;出发后5小时,两车相遇.A、B两地相距多少千米?
【例题8】两列城铁从两城同时相对开出,一列城铁每小时走40千米,另一列城铁每小时走45千米,在途中每列车先后各停车4次,每次停车15分钟,经过7小时两车相遇,求两城的距离?
【巩固8】两列城铁从两城同时相对开出,一列城铁每小时走40千米,另一列城铁每小时走45千米,在途中每列车先后各停车5次,每次停车12分钟,经过7小时两车相遇,求两城的距离?
【例题9】甲、乙两架飞机同时从一个机场起飞,向同一方向飞行,甲机每小时行300千米,乙机每小时行340千米,飞行4小时后它们相隔多少千米?这时候甲机提高速度用2小时追上乙机,甲机每小时要飞行多少千米?
【巩固9】南辕与北辙两位先生对于自己的目的地s城的方向各执一词,于是两人都按照自己的想法驾车同时分别往南和往北驶去,二人的速度分别为50千米/时,60千米/时,那么北辙先生出发5小时他们相距多少千米?.
【例题10】南辕与北辙两位先生对于自己的目的地S城的方向各执一词,于是两人都按照自己的想法驾车同时分别往南和往北驶去,二人的速度分别为50千米/时,60千米/时,那么北辙先生出发3小时他们相距多少千米?
千米,5小时后,甲、乙两车相距多少千米?
【例题11】两地相距900米,甲、乙二人同时、同地向同一方向行走,甲每分钟走80米,乙每分钟走100米,当乙到达目标后,立即返回,与甲相遇,从出发到相遇共经过多少分钟?
【巩固11】八戒和悟空两家相距255千米,两人同时骑车,从家出发相对而行,悟空每小时行45千米,八戒每小时行40千米.两人相遇时,悟空和八戒各行了多少千米?
【例题12】两地相距3300米,甲、乙二人同时从两地相对而行,甲每分钟行82米,乙每分钟行83米,已经行了15分钟,还要行多少分钟两人可以相遇?
【巩固12】两地相距400千米,两辆汽车同时从两地相对开出,甲车每小时行40千米,乙车每小时比甲车多行5千米,4小时后两车相遇了吗?为什么?
【例题13】孙悟空在花果山,猪八戒在高老庄,花果山和高老庄中间有条流沙河,一天,他们约好在流沙河见面,孙悟空的速度是200千米/小时.猪八戒的速度是150千米/小时,他们同时出发2小时后还相距500千米,则花果山和高老庄之间的距离是多少千米?
千米,同时行驶4小时后,还相差多少千米没有相遇?
【例题14】(2008年第六届希望杯一试)甲乙两人分别以每小时6千米,每小时4千米的速度从相距30千米的两地向对方的出发地前进.当两人之间的距离是l 0千米时,他们走了___________小时.
【巩固14】一辆公共汽车和一辆小轿车同时从相距450千米的两地相向而行,公共汽车每小时行40千米,小轿车每小时行50千米,问几小时后两车相距90千米?
【例题15】两列火车从相距480千米的两城相向而行,甲列车每小时行40千米,乙列车每小时行42千米,5小时后,甲、乙两车还相距多少千米?
【巩固15】两列火车从相距40千米的两城背向而行,甲列车每小时行35千米,乙列车每小时行40千米,5小时后,甲、乙两车相距多少千米?
相遇与追及问题题型训练(二)
【例题1】甲、乙二人分别从东、西两镇同时出发相向而行.出发2小时后,两人相距54千米;出发5小时后,两人还相距27千米.问出发多少小时后两人相遇?
【巩固1】下午放学时,弟弟以每分钟40米的速度步行回家.5分钟后,哥哥以每分钟60米的速度也从学校步行回家,哥哥出发后,经过几分钟可以追上弟弟?(假定从学校到家有足够远,即哥哥追上弟弟时,仍没有回到家).
【例题2】甲、乙两地相距240 千米,一列慢车从甲地出发,每小时行60千米.同时一列快车从乙地出发,每小时行90千米.两车同向行驶,快车在慢车后面,经过多少小时快车可以追上慢车?(火车长度忽略不计)
【巩固2】甲、乙二人都要从北京去天津,甲行驶10千米后乙才开始出发,甲每小时行驶15千米,乙每小时行驶10千米,问:乙经过多长时间能追上甲?
【例题3】解放军某部先遣队,从营地出发,以每小时6千米的速度向某地前进,12小时后,部队有急事,派通讯员骑摩托车以每小时78千米的速度前去联络,问多少时间后,通讯员能赶上先遣队?
【巩固3】甲地和乙地相距40千米,平平和兵兵由甲地骑车去乙地,平平每小时行14千米,兵兵每小时行17千米,当平平走了6千米后,兵兵才出发,当兵兵追上平平时,距乙地还有多少千米?
【例题4】小明步行上学,每分钟行70米.离家12分钟后,爸爸发现小明的明具盒忘在家中,爸爸带着明具盒,立即骑自行车以每分钟280米的速度去追小明.问爸爸出发几分钟后追上小明?当爸爸追上小明时他们离家多远?
【巩固4】哥哥和弟弟在同一所学校读书.哥哥每分钟走65米,弟弟每分钟走40米,有一天弟弟先走5分钟后,哥哥才从家出发,当弟弟到达学校时哥哥正好追上弟弟也到达学校,问他们家离学校有多远?
【例题5】小明以每分钟50米的速度从学校步行回家,12分钟后小强从学校出发骑自行车去追小明,结果在距学校1000米处追上小明,求小强骑自行车的速度.
【巩固5】小聪和小明从学校到相距2400米的电影院去看电影.小聪每分钟行60米,他出发后10分钟小明才出发,结果俩人同时到达影院,小明每分钟行多少米?
【例题6】一辆慢车从甲地开往乙地,每小时行40千米,开出5小时后,一辆快车以每小时90千米的速度也从甲地开往乙地.在甲乙两地的中点处快车追上慢车,甲乙两地相距多少千米?
【例题7】小强每分钟走70米,小季每分钟走60米,两人同时从同一地点背向走了3分钟,小强掉头去追小季,追上小季时小强共走了多少米?
【巩固7】六年级同学从学校出发到公园春游,每分钟走72米,15分钟以后,学校有急事要通知学生,派李老师骑自行车从学校出发9分钟追上同学们,李老师每分钟要行多少米才可以准时追上同学们?
【例题8】王芳和李华放学后,一起步行去体校参加排球训练,王芳每分钟走110米,李华每分钟走70米,出发5分钟后,王芳返回学校取运动服,在学校又耽误了2分钟,然后追赶李华.求多少分钟后追上李华?
【巩固8】小王、小李共同整理报纸,小王每分钟整理72份,小李每分钟整理60份,小王迟到了1分钟,当小王、小李整理同样多份的报纸时,正好完成了这批任务.一共有多少份报纸?
【例题9】甲、乙两车同时从A地向B地开出,甲每小时行38千米,乙每小时行34千米,开出1小时后,甲车因有紧急任务返回A地;到达A地后又立即向B地开出追乙车,当甲车追上乙车时,两车正好都到达B地,求A、B两地的路程.
【巩固9】小李骑自行车每小时行13千米,小王骑自行车每小时行15千米.小李出发后2小时,小王在小李的出发地点前面6千米处出发,小李几小时可以追上小王?
【例题10】甲、乙两辆汽车同时从A地出发去B地,甲车每小时行50千米,乙车每小时行40千米.途中甲车出故障停车修理了3小时,结果甲车比乙车迟到1小时到达B地.A、B两地间的路程是多少?
【巩固10】甲车每小时行40千米,乙车每小时行60千米。

两车分别从A,B两地同时出发,相向而行,相遇后3时,甲车到达B地。

求A,B两地的距离。

【例题11】甲、乙两车分别从A、B两地出发,同向而行,乙车在前,甲车在后.已知甲车比乙车提前出发1小时,甲车的速度是96千米/小时,乙车每小时行80千米.甲车出发5小时后追上乙车,求A、B两地间的距离.
【巩固11】一辆汽车和一辆摩托车同时从甲、乙两地出发,向同一个方向前进,摩托车在前,每小时行28千米,汽车在后,每小时行65千米,经过4小时汽车追上摩托车,甲乙两地相距多少千米?
【例题12】小明的家住学校的南边,小芳的家在学校的北边,两家之间的路程是1410米,每天上学时,如果小明比小芳提前3分钟出发,两人可以同时到校.已知小明的速度是70米/分钟,小芳的速度是80米/分钟,求小明家距离学校有多远?
【巩固12】学校和部队驻地相距16千米,小宇和小宙由学校骑车去部队驻地,小宇每小时行12千米,小宙每小时行15千米.当小宇走了3千米后,小宙才出发.当小宙追上小宇时,距部队驻地还有多少千米?
【例题13】甲、乙两列火车同时从A地开往B地,甲车8小时可以到达,乙车每小时比甲车多行20千米,比甲车提前2小时到达.求A、B两地间的距离.
【巩固13】龟、兔进行1000米的赛跑.小兔斜眼瞅瞅乌龟,心想:“我小兔每分钟能跑100米,而你乌龟每分钟只能跑10米,哪是我的对手.”比赛开始后,当小兔跑到全程的一半时,发现把乌龟甩得老远,便毫不介意地躺在旁边睡着了.当乌龟跑到距终点还有40米时,小兔醒了,拔腿就跑.请同学们解答两个问题:它们谁胜利了?为什么?
【例题14】军事演习中,“我”海军英雄舰追及“敌”军舰,追到A岛时,“敌”舰已在10分钟前逃离,“敌”舰每分钟行驶1000米,“我”海军英雄舰每分钟行驶1470米,在距离“敌”舰600米处可开炮射击,问“我”海军英雄舰从A岛出发经过多少分钟可射击敌舰?
【巩固14】上一次龟兔赛跑兔子输得很不服气,于是向乌龟再次下战书,比赛之前,为了表示它的大度,它让乌龟先跑10分钟,但是兔子不知道乌龟经过锻炼,速度已经提高到5倍,那么这一次谁将获得胜利呢?
【例题15】在一条笔直的高速公路上,前面一辆汽车以90千米/小时的速度行驶,后面一辆汽车以108千米/小时的速度行驶.后面的汽车刹车突然失控,向前冲去(车速不变).在它鸣笛示警后5秒钟撞上了前面的汽车.在这辆车鸣笛时两车相距多少米?
【巩固15】甲、乙二人同时从A地去B地,甲每分钟行60米,乙每分钟行90米,乙到达B地后立即返回,并与甲相遇,相遇时,甲还需行3分钟才能到达B地,A、B两地相距多少米?
相遇与追及问题题型训练(三)
【例题1】甲乙两车分别从A、B两地同时相向开出,4小时后两车相遇,然后各自继续行驶3小时,此时甲车距B地10千米,乙车距A地80千米.问:甲车到达B地时,乙车还要经过多少时间才能到达A 地?
【巩固1】甲、乙二人同时从A地去B地,甲每分钟行60米,乙每分钟行90米,乙到达B地后立即返回,并与甲相遇,相遇时,甲还需行3分钟才能到达B地,A、B两地相距多少米?
【例题2】小红和小强同时从家里出发相向而行。

小红每分钟走52米,小强每分钟走70米,二人在途中的A处相遇。

若小红提前4分钟出发,但速度不变,小强每分钟走90米,则两人仍在A处相遇。

小红和小强的家相距多远?
【巩固2】小明每天早晨按时从家出发上学,李大爷每天早晨也定时出门散步,两人相向而行,小明每分钟行60米,李大爷每分钟行40米,他们每天都在同一时刻相遇.有一天小明提前出门,因此比平时早9分钟与李大爷相遇,这天小明比平时提前多少分钟出门?
【例题3】小红和小蓝练习跑步,若小红让小蓝先跑20米,则小红跑5秒钟就可追上小蓝;若小红让小蓝先跑4秒钟,则小红跑6秒钟就能追上小蓝.小红、小蓝二人的速度各是多少?
【巩固3】甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒钟可追上乙;若甲让乙先跑2秒钟,则甲跑4秒钟就能追上乙.问:甲、乙二人的速度各是多少?
【例题4】刘老师骑电动车从学校到韩丁家家访,以10千米/时的速度行进,下午1点到;以15千米/时的速度行进,上午11点到.如果希望中午12点到,那么应以怎样的速度行进?
【巩固4】王新从教室去图书馆还书,如果每分钟走70米,能在图书馆闭馆前2分钟到达,如果每分钟走50米,就要超过闭馆时间2分钟,求教室到图书馆的路程有多远?
【例题5】甲、乙二人分别从山顶和山脚同时出发,沿同一山道行进。

两人的上山速度都是20米/分,下山的速度都是30米/分。

甲到达山脚立即返回,乙到达山顶休息30分钟后返回,两人在距山顶480米处再次相遇。

山道长米。

【巩固5】小张和小王早晨8点整同时从甲地出发去乙地,小张开车,速度是每小时60千米.小王步行,速度为每小时4千米.如果小张到达乙地后停留1小时立即沿原路返回,恰好在10点整遇到正在前往乙地的小王.那么甲、乙两地之间的距离是多少千米?
【例题6】早晨,小张骑车从甲地出发去乙地.下午1点,小王开车也从甲地出发,前往乙地.下午2点时两人之间的距离是15千米.下午3点时,两人之间的距离还是15千米.下午4点时小王到达乙地,晚上7点小张到达乙地.小张是早晨几点出发?
【巩固6】甲、乙二人分别从A、B两地同时出发,如果两人同向而行,甲26分钟赶上乙;如果两人相向而行,6分钟可相遇,又已知乙每分钟行50米,求A、B两地的距离.
【参考答案】
(一)
例题1:
【解析】本题是简单的相遇问题,根据相遇路程等于速度和乘以相遇时间得到甲乙两地路程为:(46+48)×3.5=94×3.5=329(千米).
巩固1
【解析】根据相遇公式知道相遇时间是:255÷(45+40)=255÷85=3(小时),所以甲走的路程为:45×3=135(千米),乙走的路程为:40×3=120(千米).
例题2:
【解析】大头儿子和小头爸爸的速度和:3000÷50=60(米/分钟),
小头爸爸的速度:(60+24)÷2=42(米/分钟),
大头儿子的速度:60-42=18(米/分钟).
巩固2:
【解析】由题意知聪聪的速度是:20+42=60(米/分),
两家的距离=明明走过的路程+聪聪走过的路程
=20×20+62×20=400+1240=1640(米),

20分钟后相遇明明
聪聪
例题3:
【解析】包子的速度:90÷30=3(米/秒),
菠萝的速度:90÷15=6(米/秒),
相遇的时间:90÷(3+6)=10(秒),
包子距B地的距离:90-3×10=60(米).
巩固3:
【解析】要求两车的相遇时间,则必须知道它们各自的速度,
甲车的速度是360÷4=90(千米/时),
乙车的速度是360÷12=30(千米/时),
则相遇时间是360÷(90+30)=3(小时).
例题4:
【解析】这题不同的是两车不“同时”.
求A、B两地间的路程就是求甲、乙两车所行的路程和.这样可以充分别求出甲车、乙车所行的路程,再把两部分合起来.
48×(1+5)=288(千米),50×5=250(千米),288+250=538(千米).
【解析】甲、乙两车出发时间有先有后,乙车先出发2小时,这段时间甲车没有行驶,那么乙车这2小时所行的路程不是甲、乙两车同时相对而行的路程,所以要先求出甲、乙两车同时相对而行的路程,再除以速度和,才是甲、乙两车同时相对而行的时间.乙车先行驶路程:41×2=82(千米),甲、乙两车同时相对而行路程:770-82=688(千米),甲、乙两车速度和45+41=86(千米/时),甲车行的时间:688÷86=8(小时).
例题5:
【解析】甲、乙两车出发时间有先有后,乙车先出发2小时,这段时间甲车没有行驶,那么乙车这2小时所行的路程不是甲、乙两车同时相对而行的路程,所以要先求出甲、乙两车同时相对而行的路程,再除以速度和,才是甲、乙两车同时相对而行的时间.乙车先行驶路程:22×2=44(千米),甲、乙两车同时相对而行路:144-44=100(千米),甲、乙两车速度和:28+22=50(千米),与乙车相遇时甲车行的时间为:100÷50=2(小时).
巩固5:
【解析】妈妈先走了3分钟,就是先走了75×3=225(米).20分钟后妈妈和小红相遇,也就是说妈妈和小红共同走了20分钟,这一段的路程为:(75+60)×20=2700(米),这样妈妈先走的那一段路程,加上后来妈妈和小红走的这一段路程,就是小红家到学校的距离.即(75×3)+(75+60)×20=2925(米).
例题6:
【解析】因为客车在行驶中耽误1小时,而货车没有停止继续前行,也就是说,货车比客车多走1小时.如果从总路程中把货车单独行驶1小时的路程减去,然后根据余下的就是客车和货车共同走过的.再求出货车和客车每小时所走的速度和,就可以求出相遇时间.然后根据路程=速度×时间,可以分别求出客车和货车在相遇时各自行驶的路程.相遇时间:(530-50)÷(50+70)=4(小时)相遇时客车行驶的路程:70×4=280(千米)相遇时货车行驶的路程:50×(4+1)=250(千米).
巩固6:
【解析】(366-37×2)÷(37+36)=4(小时)
例题7:
【解析】题目中写的“还”相距15千米指的就是最简单的情况。

画线段图如下:
由图中可以看出,甲行驶了3+5=8(小时),行驶距离为:48×8=384(千米);乙行驶了5小时,行驶距离为:50×5=250(千米),此时两车还相距15千米,所以A、B两地间相距:384+250+15=649 (千米)
巩固7:
【解析】公式“相遇时间=路程和÷速度和”中,对于速度不变的两车,“相遇时间”与“路程和”是一一对应的.如图所示
2小时
5小时
2小时
141千米
5小时
B
A
5小时的相遇时间与A、B两地的距离相对应,(5-2)小时的相遇时间与141千米相对应.两车的速度之和
例题8:
【解析】每列车停车时间:15×4=60(分)=1(小时),两列车停车时间共2小时,共同行驶时间:7-1=6小时,速度和40+45=85(千米),两城距离:85×6=510(千米).
巩固8:
【解析】每列车停车时间:12×5=60(分)=1(小时),两列车停车时间共2小时,共同行驶时间:7-1=6小时,速度和:40+45=85(千米),两城距离:85×6=510(千米).
例题9:
【解析】①4小时后相差多少千米:(340-300)×4=160(千米).
②甲机提高速度后每小时飞行多少千米:160÷2+340=420(千米).
巩固9:
【解析】两人虽然不是相对而行,但是仍合力完成了路程,(50+60)×5=550(千米).
例题10:
【解析】两人虽然不是相对而行,但是仍合力完成了路程,(50+60)×3=330(千米).
巩固10:
【解析】因为是背向而行,所以每过1小时,两车就多相距40+42=82(千米),则5小时后两车相距是:(40+42)×5+80=490(千米).
例题11:
【解析】甲、乙二人开始是同向行走,乙走得快,先到达目标.当乙返回时运动的方向变成了同时相对而行,把相同方向行走时乙用的时间和返回时相对而行的时间相加,就是共同经过的时乙到达目标时所用时间:900÷100=9(分钟),甲9分钟走的路程:80×9=720(米),甲距目标还有:900-720=180(米),相遇时间:180÷(100+80)=1(分钟),共用时间:9+1=10(分钟).
巩固11:
【解析】要求他们各行了多少千米,那么就必须知道他们行驶的时间:255÷(45+40)=3(小时).悟空:45×3=135(千米),八戒:40×3=120(千米).
例题12:
【解析】根据题意列综合算式得到:3300÷(82+83)-15=5(分钟),所以两个人还需要5分钟相遇。

巩固12:
【解析】40+5=45(千米),(40+45)×4=340(千米),340千米<400千米,因为两车4小时共行340千米,所以4小时后两车没有相遇.
例题13:
【解析】注意:“还相距”与“相距”的区别.建议教师画线段图.可以先求出2小时孙悟空和猪八戒走(200+150)×2=700 (千米),又因为还差500米,所以花果山和高老庄之间的距离:700+500=1200(千的路程:
巩固13:
【解析】所求问题=全程-4小时行驶的路程和.路程和:38×4+40×4=312(千米),
450-312=138(千米).
例题14:
【解析】有两种情况,一种是甲乙两人一共走了30-10=20(千米),一种是甲乙两人一共走了30+10=40(千米),所以有两种答案:(30-10)÷(6+4)=2(小时)或(30+10)÷(6+4)=4(小时)
巩固14:
【解析】两车在相距450千米的两地相向而行,距离逐渐缩短,在相遇前某一时刻两车相距90千米,这时两车共行的路程应为(450-90)千米.即(450-90)÷(40+50)=4(小时).需要注意的是当两车相遇后继续行驶时,两车之间的距离又从零逐渐增大,到某一时刻,两车再一次相距90千米.这时两车共行的路程为450+90千米,即(450+90)÷(40+50)=6(小时).
例题15:
【解析】两车的相距路程减去5小时两车共行的路程,就得到了两车还相距的路程:
480-(40+42)×5=70(千米).
巩固15:
【解析】因为是背向而行,所以两车5小时后的距离是:(35+40)×5+40=415(千米)。

(二)
例题1:
【解析】根据2小时后相距54千米,5小时后相距27千米,可以求出甲、乙二人3小时行的路程和为(54-27)千米,即可求出两人的速度和:(54-27)÷(5-2)=9(千米),根据相遇问题的解题规律;相隔距离÷速度和=相遇时间,可以求出行27千米需要:5+27÷9=8(小时).
巩固1:
【解析】若经过5分钟,弟弟已到了A地,此时弟弟已走了40×5=200(米);哥哥每分钟比弟弟多走20米,几分钟可以追上这200米呢?40×5÷(60-40)=200÷20=10(分钟),哥哥10分钟可以追上弟弟.
例题2:
【解析】追及路程即为两地距离240千米,速度差90-60=30(千米),所以追及时间240÷30=8(小时)
巩固2:
【解析】出发时甲、乙二人相距10千米,以后两人的距离每小时都缩短15-10=5(千米),即两人的速度的差(简称速度差),所以10千米里有几个5千米就是几小时能追上.10÷(15-10)=10÷5=2(小时),还需要2个小时。

例题3:
【解析】(6×12)÷(78-6)=1(小时).
【解析】平平走了6千米后,兵兵才出发,这6千米就是平平和兵兵相距的路程.由于兵兵每小时比平平多走17-14=3(千米),要求兵兵几小时可以追上6千米,也就是求6千米里包含着几个3千米,用6÷3=2(小时).因为甲地和乙地相距40千米,兵兵每小时行17千米,2小时走了17×2=34(千米),所以兵兵追上平平时,距乙地还有40-34=6(千米)
例题4:
【解析】
当爸爸开始追小明时,小明已经离家:70×12=840(米),即爸爸要追及的路程为840米,也就是爸爸与小明的距离是840米,我们把这个距离叫做“路程差”,爸爸出发后,两人同时走,每过1分,他们之间的距离就缩短280-70=210(米),也就是爸爸与小明的速度差为280-70=210 (米/分),爸爸追及的时间:840÷210=4(分钟).当爸爸追上小明时,小明已经出发12+4=16(分钟),此时离家的距离是:70×16=1120(米)
巩固4:
【解析】哥哥出发的时候弟弟走了:40×5=200(米),哥哥追弟弟的追及时间为:200÷(65-40)=8(分钟),所以家离学校的距离为:8×65=520(米).
例题5:
【解析】小强出发的时候小明走了50×12=600(米),被小强追上时小明又走了:(1000-600)÷50=8(分钟),说明小强8分钟走了1000米,所以小强的速度为:1000÷8=125(米/分钟).
巩固5:
【解析】要求小明每分钟走多少米,就要先求小明所走的路程(已知)和小明所用的时间;要求小明所用的时间,就要先求小聪所用的时间,小聪所用的时间是:2400÷60=40(分钟),小明所用的时间是:40-10=30(分
钟),小明每分钟走的米数是:2400÷30=80(米).
例题6:
【解析】慢车先行的路程是:40×5=200(千米),快车每小时追上慢车的千米数是:90-40=50(千米),追及的时间是:200÷50=4(小时),快车行至中点所行的路程是:90×4=360(千米),甲乙两地间的路程是:360×2=720(千米).
例题7:
【解析】小强走的时间是两部分,一部分是和小季背向走的时间,另一部分是小季追他的时间,要求追及时间,就要求出他们的路程差.路程差是两人相背运动的总路程:(60+70)×3=390(米)追及时间为:390÷(70-60)=39(分钟)小强走的总路程为:70×(39+3)=2940(米)
巩固7:
【解析】同学们15分钟72×15=1080(米),即路程差.然后根据速度差=路程差÷追及时间,可以求出李老师和同学们的速度差,又知道同学们的速度是每分钟72米,就可以得出李老师的速度.即1080÷9+72=192(米).。

相关文档
最新文档