聊城市七年级上学期期末数学试题题及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

聊城市七年级上学期期末数学试题题及答案
一、选择题
1.如图,实数﹣3、x 、3、y 在数轴上的对应点分别为M 、N 、P 、Q ,这四个数中绝对值最小的数对应的点是( )
A .点M
B .点N
C .点P
D .点Q
2.如图,直线AB ⊥直线CD ,垂足为O ,直线EF 经过点O ,若35BOE ∠=,则
FOD ∠=( )
A .35°
B .45°
C .55°
D .125°
3.将连续的奇数1、3、5、7、…、,按一定规律排成如表:
图中的T 字框框住了四个数字,若将T 字框上下左右移动,按同样的方式可框住另外的四个数, 若将T 字框上下左右移动,则框住的四个数的和不可能得到的数是( ) A .22
B .70
C .182
D .206
4.有理数a ,b 在数轴上的对应点的位置如图所示,则下列各式成立的是( )
A .a >b
B .﹣ab <0
C .|a |<|b |
D .a <﹣b
5.如图,点A ,B 在数轴上,点O 为原点,OA OB =.按如图所示方法用圆规在数轴上截取
BC AB =,若点A 表示的数是a ,则点C 表示的数是( )
A .2a
B .3a -
C .3a
D .2a -
6.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出44⨯个位置的16个数(如1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25).若用这样的正方形圈出这张数字卡片上的16个数,则圈出的16个数的和不可能为下列数中的( )
A .208
B .480
C .496
D .592
7.直线3l 与12,l l 相交得如图所示的5个角,其中互为对顶角的是( )
A .3∠和5∠
B .3∠和4∠
C .1∠和5∠
D .1∠和4∠
8.一项工程,甲独做需10天完成,乙单独做需15天完成,两人合作4天后,剩下的部分由乙独做全部完成,设乙独做x 天,由题意得方程( )
A .
410 +
4
15x -=1 B .
410 +
4
15
x +=1 C .
410x + +4
15
=1 D .
410x + +15
x
=1 9.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( )
A .﹣4
B .﹣5
C .﹣6
D .﹣7
10.如图,∠ABC=∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF ,以下结论:
①AD ∥BC ;②∠ACB=2∠ADB ;③∠ADC+∠ABD=90°;④∠BDC=∠BAC ;其中正确的结论有( )
A .1个
B .2个
C .3个
D .4个
11.若OC 是∠AOB 内部的一条射线,则下列式子中,不能表示“OC 是∠AOB 的平分线”的
是( )
A .∠AOC=∠BOC
B .∠AOB=2∠BO
C C .∠AOC=
1
2
∠AOB D .∠AOC+∠BOC=∠AOB
12.若a<b,则下列式子一定成立的是( ) A .a+c>b+c
B .a-c<b-c
C .ac<bc
D .
a b c c
< 13.如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面上的字是( )
A .设
B .和
C .中
D .山 14.已知a ﹣b=﹣1,则3b ﹣3a ﹣(a ﹣b )3的值是( ) A .﹣4
B .﹣2
C .4
D .2
15.下列图形中,哪一个是正方体的展开图( ) A .
B .
C .
D .
二、填空题
16.单项式2x m y 3与﹣5y n x 是同类项,则m ﹣n 的值是_____.
17.数轴上到原点的距离不大于3个单位长度的点表示的最小整数的数是_____. 18.如图,是一个正方体的表面展开图,则原正方体中“国”字所在的面相对的面上标的字是_____.
19.根据下列图示的对话,则代数式2a +2b ﹣3c +2m 的值是_____.
20.把53°24′用度表示为_____.
21.如图,点B 在线段AC 上,且AB =5,BC =3,点D ,E 分别是AC ,AB 的中点,则线段ED 的长度为_____.
22.计算:(
)2
22a
-=____;()23
23x x ⋅-=_____.
23.如图所示,ABC 90∠=,CBD 30∠=,BP 平分ABD.∠则ABP ∠=______度.
24.若关于x 的方程2x 3a 4+=的解为最大负整数,则a 的值为______.
25.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.
26.请先阅读,再计算: 因为:111122=-⨯,1112323=-⨯,1113434=-⨯,…,111910910
=-⨯, 所以:
111
1
122334
910
++++⨯⨯⨯⨯ 1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
1111111191122334
9101010
=-+-+-+
+-=-= 则
111
1
100101101102102103
20192020
+++
+
=⨯⨯⨯⨯_________.
27.小何买了5本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费_____元(用含a ,b 的代数式表示).
28.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________. 29.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x 为_____.
30.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是
2400米高的山上的气温是____________________. 三、压轴题
31.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等.
6a b x-1-2...
(1)可求得x =______,第 2021 个格子中的数为______;
(2)若前k 个格子中所填数之和为 2019,求k 的值;
(3)如果m ,n为前三个格子中的任意两个数,那么所有的|m-n | 的和可以通过计算
|6-a|+|6-b|+|a-b|+|a-6| +|b-6|+|b-a| 得到.若m ,n为前8个格子中的任意两个数,
求所有的|m-n|的和.
32.已知有理数a,b,c在数轴上对应的点分别为A,B,C,且满足(a-1)2+|ab+3|=0,
c=-2a+b.
(1)分别求a,b,c的值;
(2)若点A和点B分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相
向运动,设运动时间为t秒.
i)是否存在一个常数k,使得3BC-k•AB的值在一定时间范围内不随运动时间t的改变而改
变?若存在,求出k的值;若不存在,请说明理由.
ii)若点C以每秒3个单位长度的速度向右与点A,B同时运动,何时点C为线段AB的三
等分点?请说明理由.
33.如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的
距离为10.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q
从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t(t
>0)秒,数轴上点B表示的数是,点P表示的数是(用含t的代数式表
示);(2)若点P、Q同时出发,求:①当点P运动多少秒时,点P与点Q相遇?②当点
P运动多少秒时,点P与点Q间的距离为8个单位长度?
34.对于数轴上的点P,Q,给出如下定义:若点P到点Q的距离为d(d≥0),则称d为点P
到点Q的d追随值,记作d[PQ].例如,在数轴上点P表示的数是2,点Q表示的数是5,
则点P到点Q的d追随值为d[PQ]=3.
问题解决:
(1)点M,N都在数轴上,点M表示的数是1,且点N到点M的d追随值d[MN]=a(a≥0),
则点N表示的数是_____(用含a的代数式表示);
(2)如图,点C表示的数是1,在数轴上有两个动点A,B都沿着正方向同时移动,其中A
点的速度为每秒3个单位,B点的速度为每秒1个单位,点A从点C出发,点B表示的数
是b,设运动时间为t(t>0).
①当b=4时,问t为何值时,点A到点B的d追随值d[AB]=2;
②若0<t≤3时,点A到点B的d追随值d[AB]≤6,求b的取值范围.
35.如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是段AB的“2倍点”.
(1)线段的中点__________这条线段的“2倍点”;(填“是”或“不是”)
(2)若AB=15cm,点C是线段AB的“2倍点”.求AC的长;
(3)如图②,已知AB=20cm.动点P从点A出发,以2c m/s的速度沿AB向点B匀速移动.点Q从点B出发,以1c m/s的速度沿BA向点A匀速移动.点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s),当t=_____________s时,点Q 恰好是线段AP的“2倍点”.(请直接写出各案)
36.已知:A、O、B三点在同一条直线上,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为度;
(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;
(3)将图1中的三角板绕点O按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM所在直线恰好平分∠BOC时,时间t的值为(直接写结果).37.点A在数轴上对应的数为﹣3,点B对应的数为2.
(1)如图1点C在数轴上对应的数为x,且x是方程2x+1=1
2
x﹣5的解,在数轴上是否存在
点P使PA+PB=1
2
BC+AB?若存在,求出点P对应的数;若不存在,说明理由;
(2)如图2,若P点是B点右侧一点,PA的中点为M,N为PB的三等分点且靠近于P点,
当P在B的右侧运动时,有两个结论:①PM﹣3
4
BN的值不变;②
13
PM
24
BN的值不
变,其中只有一个结论正确,请判断正确的结论,并求出其值
38.如图①,点O 为直线AB 上一点,过点O 作射线OC ,使∠AOC=120°,将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方. (1)将图①中的三角板OMN 摆放成如图②所示的位置,使一边OM 在∠BOC 的内部,当OM 平分∠BOC 时,∠BO N= ;(直接写出结果)
(2)在(1)的条件下,作线段NO 的延长线OP (如图③所示),试说明射线OP 是∠AOC 的平分线;
(3)将图①中的三角板OMN 摆放成如图④所示的位置,请探究∠NOC 与∠AOM 之间的数量关系.(直接写出结果,不须说明理由)
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.B 解析:B 【解析】 【分析】 【详解】
∵实数-3,x ,3,y 在数轴上的对应点分别为M 、N 、P 、Q , ∴原点在点P 与N 之间,
∴这四个数中绝对值最小的数对应的点是点N . 故选B .
2.C
解析:C 【解析】 【分析】
根据对顶角相等可得:BOE AOF ∠=∠,进而可得FOD ∠的度数. 【详解】
解:根据题意可得:BOE AOF ∠=∠,
903555FOD AOD AOF ∴∠=∠-∠=-=. 故答案为:C. 【点睛】
本题考查的是对顶角和互余的知识,解题关键在于等量代换.
3.D
解析:D 【解析】 【分析】
根据题意设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x +, 根据其相邻数字之间都是奇数,进而得出x 的个位数只能是3或5或7,然后把T 字框中的数字相加把x 代入即可得出答案. 【详解】
设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x + 2x -,x ,2x +这三个数在同一行
∴x 的个位数只能是3或5或7
∴T 字框中四个数字之和为()()()2210410x x x x x +-++++=+
A .令41022x += 解得3x =,符合要求;
B .令41070x += 解得15x =,符合要求;
C .令410182x +=解得43x =,符合要求;
D .令410206x +=解得49x =,因为47, 49, 51不在同一行,所以不符合要求. 故选D. 【点睛】
本题考查的是列代数式,规律型:数字的变化类,一元一次方程的应用,解题关键是把题意理解透彻以及找出其规律即可.
4.D
解析:D 【解析】 【分析】
根据各点在数轴上的位置得出a 、b 两点到原点距离的大小,进而可得出结论. 【详解】
解:∵由图可知a <0<b , ∴ab <0,即-ab >0 又∵|a |>|b |, ∴a <﹣b . 故选:D . 【点睛】
本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.
5.B
【解析】 【分析】
根据题意和数轴可以用含a 的式子表示出点B 表示的数,从而得到点C 表示的数. 【详解】
解:由点O 为原点,OA OB =,可知A 、B 表示的数互为相反数, 点A 表示的数是a ,所以B 表示的数为-a , 又因为BC AB =,所以点C 表示的数为3a -. 故选B. 【点睛】
本题考查数轴,解答本题的关键是明确题意结合相反数,利用数形结合的思想解答.
6.C
解析:C 【解析】 【分析】
由题意设第一列第一行的数为x ,依次表示每个数,并相加进行分析得出选项. 【详解】
解:设第一列第一行的数为x ,第一行四个数分别为,1,2,3x x x x +++, 第二行四个数分别为7,8,9,10x x x x ++++, 第三行四个数分别为14,15,16,17x x x x ++++, 第四行四个数分别为21,22,23,24x x x x ++++,
16个数相加得到16192x +,当相加数为208时x 为1,当相加数为480时x 为18,相加数为496时x 为19,相加数为592时x 为25,由数字卡片可知,x 为19时,不满足条件. 故选C. 【点睛】
本题考查列代数式求解问题,理解题意设未知数并列出方程进行分析即可.
7.A
解析:A 【解析】 【分析】
两条直线相交后所得的有公共顶点,且两边互为反向延长线的两个角互为对顶角,据此逐一判断即可. 【详解】
A.3∠和5∠只有一个公共顶点,且两边互为反向延长线,是对顶角,符合题意,
B.3∠和4∠两边不是互为反向延长线,不是对顶角,不符合题意,
C.1∠和5∠没有公共顶点,不是对顶角,不符合题意,
D.1∠和4∠没有公共顶点,不是对顶角,不符合题意, 故选:A.
本题考查对顶角,两条直线相交后所得的有公共顶点且两边互为反向延长线的两个角叫做对顶角;熟练掌握对顶角的定义是解题关键.
8.B
解析:B
【解析】
【分析】
直接利用总工作量为1,分别表示出两人完成的工作量进而得出方程即可.
【详解】
设乙独做x天,由题意得方程:
4 10+
4
15
x
=1.
故选B.
【点睛】
本题主要考查了由实际问题抽象出一元一次方程,正确表示出两人完成的工作量是解题的关键.
9.A
解析:A
【解析】
【分析】
由已知可得3b﹣6a+5=-3(2a﹣b)+5,把2a﹣b=3代入即可.
【详解】
3b﹣6a+5=-3(2a﹣b)+5=-9+5=-4.
故选:A
【点睛】
利用乘法分配律,将代数式变形.
10.C
解析:C
【解析】
①∵AD平分△ABC的外角∠EAC,
∴∠EAD=∠DAC,
∵∠EAC=∠ACB+∠ABC,且∠ABC=∠ACB,
∴∠EAD=∠ABC,
∴AD∥BC,
故①正确.
②由(1)可知AD∥BC,
∴∠ADB=∠DBC,
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∴∠ABC=2∠ADB,
∵∠ABC=∠ACB,
∴∠ACB=2∠ADB,
故②正确.
③在△ADC中,∠ADC+∠CAD+∠ACD=180°,
∵CD平分△ABC的外角∠ACF,
∴∠ACD=∠DCF,
∵AD∥BC,
∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB
∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,
∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,∴∠ADC+∠ABD=90°
∴∠ADC=90°−∠ABD,
故③正确;
④∵∠BAC+∠ABC=∠ACF,
∴1
2
∠BAC+
1
2
∠ABC=
1
2
∠ACF,
∵∠BDC+∠DBC=1
2
∠ACF,
∴1
2
∠BAC+
1
2
∠ABC=∠BDC+∠DBC,
∵∠DBC=1
2
∠ABC,
∴1
2
∠BAC=∠BDC,即∠BDC=
1
2
∠BAC.
故④错误.
故选C.
点睛:本题主要考查了三角形的内角和,平行线的判定和性质,三角形外角的性质等知识,解题的关键是正确找各角的关系.
11.D
解析:D
【解析】
A. ∵∠AOC=∠BOC,
∴OC平分∠AOB,
即OC是∠AOB的角平分线,正确,故本选项错误;
B. ∵∠AOB=2∠BOC=∠AOC+∠BOC,
∴∠AOC=∠BOC,
∴OC平分∠AOB,
即OC是∠AOB的角平分线,正确,故本选项错误;
C. ∵∠AOC=1
2
∠AOB,
∴∠AOB=2∠AOC=∠AOC+∠BOC,
∴∠AOC=∠BOC,
∴OC平分∠AOB,
即OC是∠AOB的角平分线,正确,故本选项错误;
D. ∵∠AOC+∠BOC=∠AOB,
∴假如∠AOC=30°,∠BOC=40°,∠AOB=70°,符合上式,但是OC不是∠AOB的角平分线,故本选项正确.
故选D.
点睛:本题考查了角平分线的定义,注意:角平分线的表示方法,①OC是∠AOB的角平分线,②∠AOC=∠BOC,③∠AOB=2∠BOC(或2∠AOC),④∠AOC(或
∠BOC)=1
2
∠AOB.
12.B
解析:B
【解析】
【分析】
根据不等式的基本性质逐一进行分析判断即可.
【详解】
A.由a<b,两边同时加上c,可得 a+c<b+c,故A选项错误,不符合题意;
B. 由a<b,两边同时减去c,得a-c<b-c,故B选项正确,符合题意;
C. 由a<b,当c>0时,ac<bc,当c<0时,ac<bc,当c=0时,ac=bc,故C选项错误,不符合题意;
D.由 a<b,当a>0,c≠0时,a b
c c
<,当a<0时,
a b
c c
>,故D选项错误,
故选B.
【点睛】
本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键. 13.A
解析:A
【解析】
【分析】
正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】
解:正方体的表面展开图,相对的面之间一定相隔一个正方形,
“美”与“设”是相对面,
“和”与“中”是相对面,
“建”与“山”是相对面.
【点睛】
本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.
14.C
解析:C
【解析】
【分析】
由题意可知3b-3a-(a-b)3=3(b-a)-(a-b)3,因此可以将a-b=-1整体代入即可.
【详解】
3b-3a-(a-b)3=3(b-a)-(a-b)3=-3(a-b)-(a-b)3=3-(-1)
=4;
故选C.
【点睛】
代数式中的字母表示的数没有明确告知,而是隐含在题设中,利用“整体代入法”求代数式
的值.
15.D
解析:D
【解析】
【分析】
根据由平面图形的折叠及立体图形的表面展开图的特点解题.
【详解】
解:A、能围成正方体的4个侧面,但.上、下底面不能围成,故不是正方体的展开图;
B、C、四个面连在了起不能折成正方体,故不是正方体的展开图;D、是“141"型,所以D是正方体的表面展开图.
故答案是D.
【点睛】
本题考查正方体的表面展开图及空间想象能力,熟练掌握正方体的展开图是解决本题的关键.
二、填空题
16.-2.
【解析】
【分析】
所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.
【详解】
解:∵单项式2xmy3与﹣5ynx是同类项,
∴m=1,n=3,
∴m﹣n=1﹣3=﹣2.
解析:-2.
【解析】
【分析】
所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.
【详解】
解:∵单项式2x m y3与﹣5y n x是同类项,
∴m=1,n=3,
∴m﹣n=1﹣3=﹣2.
故答案为:﹣2.
【点睛】
本题主要考查的是同类项的定义,熟练掌握同类项的概念是解题的关键.
17.-3
【解析】
【分析】
根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.
【详解】
数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、
解析:-3
【解析】
【分析】
根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.【详解】
数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、3,
所以最小的整数是﹣3.
故答案为:﹣3.
【点睛】
本题考查了数轴,注意数轴上距离某个点是一个定值的点有两个,左右各一个,不要漏掉任一种情况.
18.伟
【解析】
【分析】
根据在正方体的表面展开图中,相对的面之间一定相隔一个正方形即可解答.【详解】
解:正方体的表面展开图,相对的面之间一定相隔一个正方形,
“伟”与“国”是相对面,
“人”与
解析:伟
【解析】
【分析】
根据在正方体的表面展开图中,相对的面之间一定相隔一个正方形即可解答.
【详解】
解:正方体的表面展开图,相对的面之间一定相隔一个正方形,
“伟”与“国”是相对面,
“人”与“中”是相对面,
“的”与“梦”是相对面.
故答案为:伟.
【点睛】
本题主要考查了正方体与展开图的面的关系,掌握相对的面之间一定相隔一个正方形是解答本题的关键.
19.﹣3或5.
【解析】
【分析】
根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.
【详解】
解:根据题意得:a+b=0,c=﹣,m=2或﹣2,
当m=2时,原式=2(a+b)
解析:﹣3或5.
【解析】
【分析】
根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.
【详解】
解:根据题意得:a+b=0,c=﹣1
3
,m=2或﹣2,
当m=2时,原式=2(a+b)﹣3c+2m=1+4=5;
当m=﹣2时,原式=2(a+b)﹣3c+2m=1﹣4=﹣3,
综上,代数式的值为﹣3或5,
故答案为:﹣3或5.
【点睛】
此题考查了代数式求值,熟练掌握运算法则是解本题的关键.20.4°.
【解析】
【分析】
根据度分秒之间60进制的关系计算.
【详解】
解:53°24′用度表示为53.4°,
故答案为:53.4°.
【点睛】
此题考查度分秒的换算,由度化分应乘以60,由分化度
解析:4°.
【解析】
【分析】
根据度分秒之间60进制的关系计算.
【详解】
解:53°24′用度表示为53.4°,
故答案为:53.4°.
【点睛】
此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.
21.5
【解析】
【分析】
首先求出AC的长度是多少,根据点D是AC的中点,求出AD的长度是多少;然后求出AE的长度,即可求出线段ED的长度为多少.
【详解】
解:∵AB=5,BC=3,
∴AC=5+3
解析:5
【解析】
【分析】
首先求出AC的长度是多少,根据点D是AC的中点,求出AD的长度是多少;然后求出AE的长度,即可求出线段ED的长度为多少.
【详解】
解:∵AB=5,BC=3,
∴AC=5+3=8;
∵点D是AC的中点,
∴AD=8÷2=4;
∵点E是AB的中点,
∴AE =5÷2=2.5,
∴ED =AD ﹣AE =4﹣2.5=1.5.
故答案为:1.5.
【点睛】
此题主要考查了两点间的距离,以及线段的中点的含义和应用,要熟练掌握.
22.【解析】
【分析】
根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答
【详解】
【点睛】
此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键 解析:44a 56x -
【解析】
【分析】
根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答
【详解】
()2
22a -=44a ()2323x x ⋅-=56x -
【点睛】
此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键
23.60
【解析】
【分析】
本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分 ,所以只要求 的度数即可.
【详解】
解:,,

平分,

故答案为60.
【点睛】
解析:60
【解析】
【分析】
本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分ABD ∠ ,所以只要求ABD ∠ 的度数即可. 【详解】
解:ABC 90∠=,CBD 30∠=,
ABD 120∠∴=,
BP 平分ABD ∠,
ABP 60∠∴=. 故答案为60.
【点睛】
角平分线的性质是将两个角分成相等的两个角角平分线的性质在求角中经常用到. 24.2
【解析】
【分析】
求出最大负整数解,再把x=-1代入方程,即可求出答案.
【详解】
解:最大负整数为,
把代入方程得:,
解得:,
故答案为2.
【点睛】
本题考查有理数和一元一次方程的解,能
解析:2
【解析】
【分析】
求出最大负整数解,再把x=-1代入方程,即可求出答案.
【详解】
解:最大负整数为1-,
把x 1=-代入方程2x 3a 4+=得:23a 4-+=,
解得:a 2=,
故答案为2.
【点睛】
本题考查有理数和一元一次方程的解,能得出关于a 的一元一次方程是解此题的关键. 25.2+
【解析】
【分析】
先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】
∵数轴上点A,B表示的数分别是1,–,
∴AB=1–(–)=1+,
则点C表示的数为1+1+
解析:2+2
【解析】
【分析】
先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.
【详解】
∵数轴上点A,B表示的数分别是1,–2,
∴AB=1–(–2)=1+2,
则点C表示的数为1+1+2=2+2,
故答案为2
【点睛】
本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.
26.【解析】
【分析】
根据给出的例子找出规律,然后依据规律列出式子解决即可.
【详解】
解:
故答案为
【点睛】
本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的
解析:
24 2525
【解析】【分析】
根据给出的例子找出规律,然后依据规律列出式子解决即可.
【详解】 解:111110010110110210210320192020++++⨯⨯⨯⨯ 1111111110010110110210210320192020⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
⎝⎭ 1111111110010110110210210320192020
-+-+-++-= 96
10100242525=
= 故答案为
242525
【点睛】
本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的规律,利用规律将所求算式进行化简计算. 27.(5a+10b ).
【解析】
【分析】
由题意得等量关系:小何总花费本笔记本的花费支圆珠笔的花费,再代入相应数据可得答案.
【详解】
解:小何总花费:,
故答案为:.
【点睛】
此题主要考查了列代数
解析:(5a +10b ).
【解析】
【分析】
由题意得等量关系:小何总花费5=本笔记本的花费10+支圆珠笔的花费,再代入相应数据可得答案.
【详解】
解:小何总花费:510a b +,
故答案为:(510)a b +.
【点睛】
此题主要考查了列代数式,关键是正确理解题意,找出题目中的数量关系.
28.1或-7
【分析】
设这个数为x,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x即可. 【详解】
设这个数为x,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,

解析:1或-7
【解析】
【分析】
设这个数为x,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x即可.
【详解】
设这个数为x,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,
解得x=1或-7.
【点睛】
本题考查数轴的应用,使用两点间的距离公式列出方程是解题的关键.
29.2
【解析】
【分析】
直接利用有理数的加法运算法则得出符合题意的答案.
【详解】
解:如图所示:x的值为2.
故答案为:2.
【点睛】
此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键
解析:2
【解析】
【分析】
直接利用有理数的加法运算法则得出符合题意的答案.
【详解】
解:如图所示:x的值为2.
故答案为:2.
此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键.
30.【解析】
【分析】
从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.
【详解】
解:由题意可得,
高度是2400米高的山上的气温是
-︒
解析:18.4C
【解析】
【分析】
从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.
【详解】
解:由题意可得,
高度是2400米高的山上的气温是:-4-2400÷100×0.6=-4-14.4=-18.4℃,
故答案为:-18.4℃.
【点睛】
本题考查有理数的混合运算,解答本题的关键是根据题意列出正确的算式.
三、压轴题
31.(1)6,-1;(2)2019或2014;(3)234
【解析】
【分析】
(1)根据三个相邻格子的整数的和相等列式求出a、x的值,再根据第9个数是-2可得
b=-2,然后找出格子中的数每3个为一个循环组依次循环,在用2021除以3,根据余数的情况确定与第几个数相同即可得解.
(2)可先计算出这三个数的和,再照规律计算.
(3)由于是三个数重复出现,因此可用前三个数的重复多次计算出结果.
【详解】
(1)∵任意三个相邻格子中所填整数之和都相等,∴6+a+b=a+b+x,解得x=6,a+b+x=b+x-1,∴a=-1,所以数据从左到右依次为6、-1、b、6、-1、b,第9个数与第三个数相同,即b=-2,所以每3个数“6、-1、-2”为一个循环组依次循环.
∵2021÷3=673…2,∴第2021个格子中的整数与第2个格子中的数相同,为-1.
故答案为:6,-1.
(2)∵6+(-1)+(-2)=3,∴2019÷3=673.
∵前k个格子中所填数之和可能为2019,2019=673×3或2019=671×3+6,∴k的值为:
673×3=2019或671×3+1=2014.
故答案为:2019或2014.
(3)由于是三个数重复出现,那么前8个格子中,这三个数中,6和-1都出现了3次,-2出现了2次.
故代入式子可得:(|6+2|×2+|6+1|×3)×3+(|-1-6|×3+|-1+2|×2)×3+(|-2-6|×3+|-2+1|×3)×2=234.
【点睛】
本题考查了列一元一次方程解实际问题的运用,规律推导的运用,此类题的关键是找出是按什么规律变化的,然后再按规律找出字母所代表的数,再进行进一步的计算.32.(1)1,-3,-5(2)i)存在常数m,m=6这个不变化的值为26,ii)11.5s
【解析】
【分析】
(1)根据非负数的性质求得a、b、c的值即可;
(2)i)根据3BC-k•AB求得k的值即可;
ii)当AC=1
3
AB时,满足条件.
【详解】
(1)∵a、b满足(a-1)2+|ab+3|=0,
∴a-1=0且ab+3=0.
解得a=1,b=-3.
∴c=-2a+b=-5.
故a,b,c的值分别为1,-3,-5.
(2)i)假设存在常数k,使得3BC-k•AB不随运动时间t的改变而改变.则依题意得:AB=5+t,2BC=4+6t.
所以m•AB-2BC=m(5+t)-(4+6t)=5m+mt-4-6t与t的值无关,即m-6=0,解得m=6,
所以存在常数m,m=6这个不变化的值为26.
ii)AC=1
3 AB,
AB=5+t,AC=-5+3t-(1+2t)=t-6,
t-6=1
3
(5+t),解得t=11.5s.
【点睛】
本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.33.(1)﹣4,6﹣5t;(2)①当点P运动5秒时,点P与点Q相遇;②当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.
【解析】
【分析】
(1)根据题意可先标出点A,然后根据B在A的左侧和它们之间的距离确定点B,由点P
从点A出发向左以每秒5个单位长度匀速运动,表示出点P即可;
(2)①由于点P和Q都是向左运动,故当P追上Q时相遇,根据P比Q多走了10个单位长度列出等式,根据等式求出t的值即可得出答案;
②要分两种情况计算:第一种是点P追上点Q之前,第二种是点P追上点Q之后.
【详解】
解:(1)∵数轴上点A表示的数为6,
∴OA=6,
则OB=AB﹣OA=4,
点B在原点左边,
∴数轴上点B所表示的数为﹣4;
点P运动t秒的长度为5t,
∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,
∴P所表示的数为:6﹣5t,
故答案为﹣4,6﹣5t;
(2)①点P运动t秒时追上点Q,
根据题意得5t=10+3t,
解得t=5,
答:当点P运动5秒时,点P与点Q相遇;
②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,
当P不超过Q,则10+3a﹣5a=8,解得a=1;
当P超过Q,则10+3a+8=5a,解得a=9;
答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.
【点睛】
在数轴上找出点的位置并标出,结合数轴求追赶和相遇问题是本题的考点,正确运用数形结合解决问题是解题的关键,注意不要漏解.
34.(1)1+a或1-a;(2)1
2

5
2
;(3)1≤b≤7.
【解析】
【分析】
(1)根据d追随值的定义,分点N在点M左侧和点N在点M右侧两种情况,直接写出答案即可;
(2)①分点A在点B左侧和点A在点B右侧两种情况,类比行程问题中的追及问题,根据“追及时间=追及路程÷速度差”计算即可;②
【详解】
解:(1)点N在点M右侧时,点N表示的数是1+a;
点N在点M左侧时,点N表示的数是1-a;
(2)①b=4时,AB相距3个单位,
当点A在点B左侧时,t=(3-2)÷(3-1)=1
2
,。

相关文档
最新文档