中考数学培优专题复习圆的综合练习题附答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学培优专题复习圆的综合练习题附答案解析

一、圆的综合

1.如图,以O为圆心,4为半径的圆与x轴交于点A,C在⊙O上,∠OAC=60°.

(1)求∠AOC的度数;

(2)P为x轴正半轴上一点,且PA=OA,连接PC,试判断PC与⊙O的位置关系,并说明理由;

(3)有一动点M从A点出发,在⊙O上按顺时针方向运动一周,当S△MAO=S△CAO时,求动点M所经过的弧长,并写出此时M点的坐标.

【答案】(1)60°;(2)见解析;(3)对应的M点坐标分别为:M1(2,﹣3M2(﹣2,﹣3)、M3(﹣2,3M4(2,3).

【解析】

【分析】

(1)由于∠OAC=60°,易证得△OAC是等边三角形,即可得∠AOC=60°.

(2)由(1)的结论知:OA=AC,因此OA=AC=AP,即OP边上的中线等于OP的一半,由此可证得△OCP是直角三角形,且∠OCP=90°,由此可判断出PC与⊙O的位置关系.(3)此题应考虑多种情况,若△MAO、△OAC的面积相等,那么它们的高必相等,因此有四个符合条件的M点,即:C点以及C点关于x轴、y轴、原点的对称点,可据此进行求解.

【详解】

(1)∵OA=OC,∠OAC=60°,

∴△OAC是等边三角形,

故∠AOC=60°.

(2)由(1)知:AC=OA,已知PA=OA,即OA=PA=AC;

∴AC=1

OP,因此△OCP是直角三角形,且∠OCP=90°,

2

而OC是⊙O的半径,

故PC与⊙O的位置关系是相切.

(3)如图;有三种情况:

①取C点关于x轴的对称点,则此点符合M点的要求,此时M点的坐标为:M1(2,﹣

3

劣弧MA的长为:6044 1803

ππ

=;

②取C点关于原点的对称点,此点也符合M点的要求,此时M点的坐标为:M2(﹣2,﹣3

劣弧MA的长为:12048 1803

ππ

=;

③取C点关于y轴的对称点,此点也符合M点的要求,此时M点的坐标为:M3(﹣2,

3

优弧MA的长为:240416 1803

ππ

=;

④当C、M重合时,C点符合M点的要求,此时M4(2,3);

优弧MA的长为:300420 1803

ππ

=;

综上可知:当S△MAO=S△CAO时,动点M所经过的弧长为481620

,,,

3333

ππππ

对应的M点坐

标分别为:M1(2,﹣3M2(﹣2,﹣3)、M3(﹣2,3M4(2,3

【点睛】

本题考查了切线的判定以及弧长的计算方法,注意分类讨论思想的运用,不要漏解.

2.如图,AB为⊙O的直径,点E在⊙O上,过点E的切线与AB的延长线交于点D,连接BE,过点O作BE的平行线,交⊙O于点F,交切线于点C,连接AC

(1)求证:AC是⊙O的切线;

(2)连接EF,当∠D=°时,四边形FOBE是菱形.

【答案】(1)见解析;(2)30. 【解析】 【分析】

(1)由等角的转换证明出OCA OCE ∆∆≌,根据圆的位置关系证得AC 是⊙O 的切线. (2)根据四边形FOBE 是菱形,得到OF=OB=BF=EF ,得证OBE ∆为等边三角形,而得出

60BOE ∠=︒,根据三角形内角和即可求出答案. 【详解】

(1)证明:∵CD 与⊙O 相切于点E , ∴OE CD ⊥, ∴90CEO ∠=︒,

又∵OC BE P ,

∴COE OEB ∠=∠,∠OBE=∠COA ∵OE=OB ,

∴OEB OBE ∠=∠, ∴COE COA ∠=∠, 又∵OC=OC ,OA=OE , ∴OCA OCE SAS ∆∆≌(), ∴90CAO CEO ∠=∠=︒, 又∵AB 为⊙O 的直径, ∴AC 为⊙O 的切线;

(2)解:∵四边形FOBE 是菱形, ∴OF=OB=BF=EF , ∴OE=OB=BE ,

∴OBE ∆为等边三角形, ∴60BOE ∠=︒, 而OE CD ⊥, ∴30D ∠=︒. 故答案为30. 【点睛】

本题主要考查与圆有关的位置关系和圆中的计算问题,熟练掌握圆的性质是本题的解题关键.

3.不用圆规、三角板,只用没有刻度的直尺,用连线的方法在图1、2中分别过圆外一点A作出直径BC所在射线的垂线.

【答案】画图见解析.

【解析】

【分析】根据直角所对的圆周角是直角,构造直角三角形,利用直角三角形性质可画出垂线;或结合圆的轴对称性质也可以求出垂线.

【详解】解:画图如下:

【点睛】本题考核知识点:作垂线.解题关键点:结合圆的性质和直角三角形性质求出垂线.

4.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD 的延长线于点E,点F为CE的中点,连接DB, DF.

(1)求证:DF是⊙O的切线;

(2)若DB平分∠ADC,AB=52AD

,∶DE=4∶1,求DE的长.

【答案】(1)见解析5

【解析】

分析:(1)直接利用直角三角形的性质得出DF=CF=EF,再求出∠FDO=∠FCO=90°,得出答案即可;

(2)首先得出AB=BC即可得出它们的长,再利用△ADC~△ACE,得出AC2=AD•AE,进而得出答案.

详解:(1)连接OD.

∵OD=CD,∴∠ODC=∠OCD.

∵AC为⊙O的直径,∴∠ADC=∠EDC=90°.

∵点F为CE的中点,∴DF=CF=EF,∴∠FDC=∠FCD,∴∠FDO=∠FCO.

又∵AC⊥CE,∴∠FDO=∠FCO=90°,∴DF是⊙O的切线.

(2)∵AC为⊙O的直径,∴∠ADC=∠ABC=90°.

∵DB平分∠ADC,∴∠ADB=∠CDB,∴¶AB=¶BC,∴BC=AB=52.

在Rt△ABC中,AC2=AB2+BC2=100.

又∵AC⊥CE,∴∠ACE=90°,

∴△ADC~△ACE,∴AC

AD =

AE

AC

,∴AC2=AD•AE.

设DE为x,由AD:DE=4:1,∴AD=4x,AE=5x,

∴100=4x•5x,∴x=5,∴DE=5.

点睛:本题主要考查了切线的判定以及相似三角形的判定与性质,正确得出AC2=AD•AE是解题的关键.

5.如图,在⊙O中,直径AB⊥弦CD于点E,连接AC,BC,点F是BA延长线上的一点,且∠FCA=∠B.

(1)求证:CF是⊙O的切线; (2)若AE=4,tan∠ACD=1

2

,求AB和FC的长.

【答案】(1)见解析;(2) ⑵AB=20 ,

40

3 CF

相关文档
最新文档