北师大版五年级小学数学下册应用题(40题)及解析答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版五年级小学数学下册应用题(40题)及解析答案
一、北师大小学数学解决问题五年级下册应用题
1.张华买了一批菜油,放在A,B两个桶里,两个桶都未能装满。
如果把A桶油倒入B桶后,B桶装满,A桶还剩10升菜油;如果把B桶油倒入A桶后,A桶还要再加20升菜油才满。
已知A桶容量是B桶的2.5倍。
问:张华一共买了多少升菜油?
2.先认真阅读下面的背景资料再根据信息完成问题。
幸福小区里有个为民超市,超市房间从里面量长8米,宽5.6米,高3米,门窗面积共5.2平方米。
超市收银台旁有一个长6分米,宽5分米,高4分米的长方体鱼缸。
新冠肺炎疫情得到控制后,今年5月,超市进行了重新装修:房间的四壁和房顶贴上了新的墙纸,地面重新铺了正方形的地板砖,鱼缸(无盖)的棱上贴上了装饰条儿,鱼缸还放了美丽的珊瑚……6月1日超市重新开业,购进大量的商品,其中有很多小朋友爱喝的饮料,还有一些大米和80桶食用油。
(1)装修时至少用了多大面积的墙纸(门窗不贴墙纸)?
(2)如果用边长8分米,每块单价为108元的地砖来铺地,一共需要多少钱?
3.某公司订购400根方木,每根方木横截面的面积是25平方分米,长是4米,这些木料一共有多少方?(1方=1立方米)
4.将小正方体按下图靠墙摆放。
小正方体的个数24681012…2a
露在外面的面的个数
5.水果店运来一批水果,其中香蕉360千克,菠萝的质量是香蕉的,橘子的质量比菠萝
的少15千克。
水果店运来橘子多少千克?(先画线段图分析数量关系,再列式计算)6.小华的妈妈买了香蕉和苹果各2kg,共花了14.4元.如果香蕉的价钱是苹果的1.25倍,每千克香蕉和苹果各多少元?(用方程解答)
7.同学们摘桃子,一班比二班多摘28千克,一班有52人,平均每人摘4千克,二班有50人,平均每人摘多少千克?(列方程解答)
8.你能把宣传栏上破损的数补上吗?(用方程解)
9.把的分子、分母加上同一个数以后,正好可以约成。
这个加上去的数是多少?10.某工厂用一批钢材做零件,每个零件用钢4.5kg,可做160个,改进技术后,每个零件节约用钢1.3kg,改进技术后,这批钢材可做多少个零件?(用方程解)
11.如图所示:一个长方体的水槽,被一块玻璃隔板分成左、右两部分。
A部分的底面积为25平方分米,B部分的底面积为15平方分米,水槽高为4分米。
左边原来装满了水,现将隔板抽出,水槽里的水有多高?
12.要粉刷一个长24m、宽10m、高3m的礼堂,门窗的面积是64m2,如果每平方米的涂料费是6元,粉刷礼堂四周墙壁共需涂料费多少元?
13.如图,计算这块空心砖的表面积。
(单位:厘米)
14.果园里有桃树和梨树共420棵,梨树的棵数比桃树的3倍还少20棵,果园里有桃树、梨树各多少棵?
15.甲、乙两人赛跑,甲的速度是7米/秒,乙的速度是5.5米/秒,甲在乙后面15米,两人同时同向起跑,问甲经过几秒追上乙?
16.一辆汽车从甲地开往乙地,平均每小时行驶60km。
这辆汽车到达乙地后又以90千米时的速度返回甲地,往返一次共用2.5小时。
求甲、乙两地间的路程。
17.某公司买了8箱防疫物资,箱子的棱长是1m,要堆放在仓库里。
小青设计了如下沿墙角摆放的方法:
① ② ③ ④
(1)占地面积最大的是第________种摆放方法,占地面积是________m2。
(2)露在外面的面积最少的是第几种摆放方法?露在外面的面积是多少?
18.一个长方体罐头盒,长12厘米,宽8厘米,高10厘米。
(1)在它的四周贴上商标纸,这张纸的面积至少是多少?(接缝处不计)
(2)小明打开罐头后吃了一些,现在盒内罐头只剩下2厘米高了,小明吃了多少立方厘米的罐头?(罐头盒厚度不计,食物装满状态)
19.一个长方体高24厘米,平行于底面截成三个长方体后,表面积比原来增加了120平方厘米,原来长方体的体积是多少立方厘米?
20.有两袋大米,甲袋大米的质量是乙袋大米的1.2倍。
若从甲袋往乙袋倒4kg大米,则两袋大米一样重。
原来两袋大米各有多少千克?(用方程解答)
21.欣欣食品厂要做一个正方体广告箱,棱长0.8m。
(1)先用铝合金条做成正方体框架,共需多少米铝合金条?(不计接头和损耗)
(2)然后用广告布把它各面都包装起来,至少要用多少平方米的广告布?
22.一块方钢长80厘米,横截面是边长3厘米的正方形,如果每立方厘米的钢重7.8克,这块方钢共重多少千克?
23.学校要粉刷新教室的四周和屋顶,已知教室的长是8m,宽是6m,高是3m,门窗的面积是11.4平方米。
如果每平方米需要花6元涂料费,粉刷这个教室需要花费多少元?24.一个养殖场一共养鸡680只,其中母鸡的只数是公鸡的2.4倍。
公鸡和母鸡各有多少只?
25.南湖小区准备修建一个长4m,宽2.5m,高3.6m的长方体小型蓄水池。
(1)给这个蓄水池的地面铺正方形地砖,要使铺的地砖都是整块,地砖的边长最长是多少?一共需要这样的地砖多少块?
(2)在蓄水池的四壁上贴2.4米高的瓷砖,需要多少平方米的瓷砖?
26.有两个没有标识容积大小的杯子,如图。
(1)请你设计实验比较这两个杯子的容积大小,工具不限,写一写你的方法。
(2)奇思想知道①号杯子的容积是多少mL,他家有一个长方体的容器(足够大),刻度尺和适量水,你能帮助他利用以上工具测量一下吗?写一写你的方法。
(3)笑笑家里也有一个长方体的容器,它的长是2.2dm,宽是2dm,高是1.5dm,有一天她看到妈妈买了一些黄豆回来做饭,出于对知识的探究欲望,她想知道一颗黄豆体积大约是多少,你能帮助她设计一个实验测量一下吗?写一写你的方法。
(可用工具:她家里的这个长方体容器,刻度尺和适量水)
27.富安小区要建一个游泳池,游泳池长12m,宽是6m,深2m。
(1)这个游泳池的占地面积是多少平方米?
(2)如果在游泳池的四周和底面贴上瓷砖,这个游泳池需要贴多少平方米的瓷砖?
(3)这个游泳池最多可以装多少升水?
28.一个长方体,如果高增加3厘米,就成为一个正方体。
这时表面积比原来增加了96平方厘米,原来的长方体的体积是多少立方厘米?
29.少年宫和学校相距800米。
小童和小乐分别从少年宫和学校门口同时向相反方向走去(如下图),7分钟后两人相距1360米。
小童每分钟走37米。
小乐每分钟走多少米?(列方程解)
30.一间长方体库房,长5m、宽4m、高3m,在房顶和四面刷油漆(门窗忽略不计),刷油漆的面积是多少平方米?
31.一个长方体玻璃鱼缸(无盖),长50厘米、宽40厘米、高30厘米。
(1)做这个鱼缸至少需要玻璃多少平方厘米?
(2)在鱼缸里注入40升水,水深大约多少厘米?
(3)往水里放入鹅卵石,测得水面上升了2.5厘米,求放入物体的体积一共是多少立方厘米?
32.一杯纯牛奶,乐乐喝了半杯后,觉得有些凉,就兑满了热水。
他又喝了半杯,就出去玩了。
乐乐一共喝了多少杯纯牛奶?多少杯水?
33.挖一个长50m、宽30m、深3m的水池。
(1)水池占地多少平方米?
(2)在水池底部和四壁抹上水泥,如果每平方米需要 3.5kg水泥,至少需要多少千克水泥?
34.一个无盖的长方体铁皮水槽(如下图),做这个水槽至少需要多少平方分米铁皮?这个水槽最多可以盛水多少升?(单位:dm)
35.AB两地相距384千米,甲乙两辆汽车同时从A地开往B地,当甲车到达B地时,乙车离B地还有60千米,已知乙车每小时行54千米,甲车每小时行多少千米?
36.一根方钢,长6米,横截面是一个边长为4厘米的正方形。
(1)这块方钢重多少吨?(1立方厘米钢重10克)
(2)一辆载重5吨的货车能否一次运载50根这样的方钢?
37.一种盒装纸巾的长、宽、高(如图1)所示。
用塑料包装纸将3盒这样的纸巾包装起来(如图2),至少需要多少平方厘米的塑料包装纸?(接头处忽略不计)
38.有两桶油,甲桶油的质量是乙桶油质量的3倍,如果从甲桶油倒24千克给乙桶,则两桶油同样重。
原来甲乙两桶油各重多少千克?
39.有一块长32cm,宽16cm的长方形铁皮,通过折、割或焊等方法做出一个高为4cm的无盖长方体盒子,使这个盒子的容积尽可能的大,你会怎样设计?请画出示意图。
(1)我的设计是:长________cm,宽________cm,高4cm。
(2)我画的示意图:
(3)请列式计算出它的容积:
40.一个棱长2分米的正方体容器中,有水7升,当放入一个土豆后(土豆完全浸入水中),这时水深变为1.8分米。
这个土豆的体积是多少立方分米?
【参考答案】***试卷处理标记,请不要删除
一、北师大小学数学解决问题五年级下册应用题
1.解:设B桶能装x升油,则A桶的容量是2.5x升。
x+10=2.5x-20
x+10-x=2.5x-20-x
10=1.5x-20
1.5x-20=10
1.5x=20+10
1.5x=30
x=30÷1.5
x=20
20+10=30(升)
答:张华一共买了30升油。
【解析】【分析】本题可列方程进行解答,更好理解。
设B桶能装x升油,A桶容量是B 桶的2.5倍,所以A桶的容量是2.5x升,由于把A桶油倒入B桶后,B桶装满,A桶还多10升,由此可知,共有油(x+10)升;又把B桶倒入A桶,A 桶还能再加20升才满,则油的总量是(2.5x-20)升,则此可得方程:x+10=2.5x-20,解此方程求出B桶的容量后,即能求出张华一共买了多少升油。
分析本题要注意两次倒入的油的总量没有发生变化,并由此列出等量关系式是完成本题的关键。
2.(1)解:8×5.6+(5.6×3+8×3)×2-5.2
=44.8+(16.8+24)×2-5.2
=44.8+81.6-5.2
=126.4-5.2
=121.2(m²)
答:装修时至少用了121.2m²的墙纸。
(2)解:8m=80dm,5.6m=56dm
80÷8=10
56÷8=7
10×7×108=7560(元)
或 80×56÷ (8×8)×108=7560(元)
答:一共需要7560元钱。
【解析】【分析】(1)墙纸面积=房间的四壁和房顶面积- 门窗面积,房间的四壁和房顶面积=长×宽+(宽×高+长×高)×2。
(2)1米=10分米,总价=数量×单价,数量=行数×列数,行数=宽÷地砖边长,列数=长÷地砖边长。
3. 25平方分米=0.25平方米
0.25×4×400=400(立方米)=400(方)
答:这些木料一共有400方。
【解析】【分析】1根方木体积=方木横截面的面积×长,1根方木体积×400根=400根方木体积。
露在外面的面的个数71013161922……3a+4
的倍数,当有2a个小正方体靠墙摆放时,露在外面的面有3a+4,据此规律解答。
5.解:如图所示:
360××-15
=270×-15
=180-15
=165(千克)
答:水果店运来橘子165千克。
【解析】【分析】根据题目信息,先画出香蕉的千克数,再将其平均分成4份,其中的3份表示菠萝的质量,菠萝中的2份表示再减去15千克即表示橘子的千克数。
橘子的千克数
=菠萝的千克数(香蕉的千克数×)×-15,代入数值计算即可。
6.解:设每千克苹果的价钱为x元,则每千克香蕉的价钱为1.25x元,由题意得:
(x+1.25x)×2=14.4
(x+1.25x)×2÷2=14.4÷2
x+1.25x=7.2
2.25x=7.2
2.25x÷2.25=7.2÷2.25
x=3.2
3.2×1.25=4(元)
答:每千克香蕉4元,每千克苹果3.2元。
【解析】【分析】等量关系:(苹果单价+香蕉单价)×购买数量=总价;根据等量关系列方程,根据等式性质解方程。
7.解:设平均每人摘x千克。
52×4-50x=28
208-50x=28
50x=208-28
50x=180
x=180÷50
x=3.6
答:平均每人摘3.6千克。
【解析】【分析】等量关系:一班摘的桃子重量-二班摘的桃子重量=一班比二班多摘重量,根据等量关系列方程,根据等式性质解方程。
8.解:设梯形的高是x米。
(95+117)×x÷2=5830
(95+117)×x=5830×2
(95+117)×x=11660
212x=11660
x=11660÷212
x=55
答:梯形的高是55米。
【解析】【分析】等量关系:(梯形的上底+下底)×高÷2=梯形面积;根据等量关系列方程,根据等式性质解方程。
9.解:设加上去的数是x。
3×(5+x)=2×(23+x)
15+3x=46+2x
3x-2x=46-15
x=31
答:加上去的数是31。
【解析】【分析】等量关系:的分子分母都加上x,等于,根据等量关系列方程,根据等式性质解方程。
10.解:设改进技术后,这批钢材可做x个零件。
(4.5-1.3)x=4.5×160
3.2x=720
x=720÷3.2
x=225
答:改进技术后,这批钢材可做225个零件.
【解析】【分析】等量关系:改进技术后,每个零件用钢的质量×做的零件个数=改进技术前,每个零件用钢的质量×做的零件个数,根据等量关系列方程,根据等式性质解方程。
11.解:25×4=100(立方分米)
100÷(15+25)
=100÷40
=2.5(分米)
答:水槽里的水高2.5分米。
【解析】【分析】由于前后水的体积不变,只需先求出水槽左边部分的容积,再除以这个水槽的底面积,就能求出现在水槽里水的高度,据此列式解答。
12.解:(24×3+10×3)×2﹣64
=(72+30)×2﹣64
=204﹣64
=140(平方米)
140×6=840(元)
答:粉刷礼堂四周墙壁共需涂料费840元。
【解析】【分析】四个侧面积=(长×高+宽×高)×2;需要粉刷的面积=四个侧面积-门框面积;粉刷的面积×6元=需要的涂料费。
13.解:(40×30+30×25+40×25)×2-12×10×2+(12+10)×25×2=6760(平方厘米)
答:这块空心砖的表面积是6760平方厘米。
【解析】【分析】先计算出大长方体的表面积,然后减去两个长12厘米、宽10厘米的长方形的面积,最后加上空心部分四周的面积即可.
14.解:设桃树有x棵,那么梨树有(3x-20)棵。
3x-20+x=420
x=110
3x-20=3×110-20=310
答:果园里有桃树110棵,梨树310棵。
【解析】【分析】本题可以用方程作答,即设桃树有x棵,那么梨树有(3x-20)棵,题中存在的等量关系是:梨树的棵数+桃树的棵数=果园里一共有树的棵数,据此代入数据和字母作答即可。
15.解:设甲经过几秒追上乙。
5.5x+15=7x
x=10
答:甲经过10秒追上乙。
【解析】【分析】本题可以用方程作答,即设甲经过几秒追上乙,题中存在的等量关系是:乙的速度×甲追上乙用的时间+甲和乙之间的距离=甲的速度×甲追上乙用的时间,据此代入数据和字母作答即可。
16.解:设去时时间为x小时,则返回时间为(2.5-x)小时,
60x=90×(2.5-x)
60x=90×2.5-90x
60x+90x=90×2.5-90x+90x
150x=225
150x÷150=225÷150
x=1.5
1.5×60=90(千米)
答:甲、乙两地间的路程是90千米。
【解析】【分析】此题主要考查了列方程解决问题,去时与返回时的路程不变,设去时时间为x小时,则返回时间为(2.5-x)小时,去时速度×去时用的时间=返回速度×返回用的时间,据此列方程解答,然后用速度×时间=路程,据此列式解答。
17.(1)1;8
(2)解:①露在外面的面积:1×1×8×2+1×1=16+1=17(m²);
②露在外面的面积:1×1×8+1×1×4+1×1×2=8+4+2=12+2=14(m²);
③露在外面的面积:1×1×4×3=4×3=12(m²);
④露在外面的面积:1×1+1×1×4+1×1×5+1×1×6=1+4+5+6=10+6=16(m²);
17>16>14>12;
答:露在外面的面积最少的是第③中摆放方法,露在外面的面积是12m²。
【解析】【解答】(1)①占地面积:1×1×8=1×8=8(m²);②占地面积:1×1×4=1×4=4(m²);③占地面积1×1×4=1×4=4(m²);④占地面积:1×1×6=1×6=6(m²);8>6>4;占地面积最大的是第1种摆放方法,占地面积是8m²。
故答案为:1;8。
【分析】占地面积一般是指几何体的底层面积;露在外面的面积一般是指不接触底面或墙面的面积;据此解答即可。
18.(1)(12×10+10×8)×2
=(120+80)×2
=200×2
=400(平方厘米)
答:这张纸的面积至少是400平方厘米。
(2)12×8×(10-2)
=96×8
=768(立方厘米)
答:小明吃了768立方厘米的罐头。
【解析】【分析】(1)四周四个面都是长方形,分别是长12厘米、宽10厘米的面两个,长10厘米、宽8厘米的面两个;计算出四个面的面积就是这张纸的面积;
(2)小明吃罐头的高度是(10-2)厘米,根据长方体体积公式,用长乘宽再乘吃罐头的高度即可求出小明吃罐头的体积。
19.解:120÷4×24
=30×24
=720(立方厘米)
答:原来长方体的体积是720立方厘米。
【解析】【分析】沿着平行于底面截成三个长方体后,表面积比原来增加了4个横截面的面积,平均每个横截面的面积(原来长方体的底面积)=表面积增加的总面积÷4,长方体的体积=底面积×高,代入数值计算,据此解答即可。
【解析】【分析】等量关系:我国省级行政区总数× =6个省级行政区;根据等量关系列方程,根据等式性质解方程。
20.解:设乙袋大米有x千克,则甲袋大米有1.2x千克,
1.2x-4=x+4
1.2x-4-x=x+4-x
0.2x-4=4
0.2x-4+4=4+4
0.2x=8
0.2x÷0.2=8÷0.2
x=40
甲袋:40×1.2=48(千克)
答:甲袋有48千克,乙袋有40千克。
【解析】【分析】此题主要考查了列方程解答应用题,设乙袋大米有x千克,则甲袋大米有1.2x千克,用甲袋大米的质量-4=乙袋大米的质量+4,据此列方程解答。
21.(1)解:0.8×12=9.6(米)
答:共需9.6米铝合金条。
(2)解:0.8×0.8×6=3.84(平方米)
答:至少要用3.84平方米的广告布。
【解析】【分析】(1)正方体棱长和=正方体棱长×12;
(2)正方体表面积=棱长×棱长×6。
22.解:3×3×80×7.8÷1000
=9×80×7.8÷1000
=720×7.8÷1000
=5616÷1000
=5.616(千克)
答:这块方钢共重5.616千克。
【解析】【分析】根据题意可知长方体的体积=底面积×高,计算出体积后,体积× 每立方厘米的质量=总质量,关键最后要单位换算。
23.解:(8×6+8×3×2+6×3×2-11.4)×6
=(48+48+36-11.4)×6
=120.6×6
=723.6(元)
答:粉刷这个教室需要花费723.6元。
【解析】【分析】要粉刷的面积=教室5个面的面积-门窗的面积,要粉刷的面积×6=粉刷这个教室需要花费的钱数。
24.解:设公鸡有x只,则母鸡有2.4x只,
x+2.4x=680
3.4x=680
3.4x÷3.4=680÷3.4
x=200
母鸡:200×2.4=480(只)
答:公鸡有200只,母鸡有480只。
【解析】【分析】此题主要考查了列方程解决问题,设公鸡有x只,则母鸡有2.4x只,公鸡的只数+母鸡的只数=养殖场一共养鸡的只数,据此列方程解答。
25.(1)解:4m=40dm;2.5m=25dm,
因为40和25的最大公因数是5,所以地砖的边长最长是5dm,
所以一共需要这样的地砖的块数=(40÷5)×(25÷5)
=8×5
=40(块)
答:地砖的边长最长是0.5米;一共需要这样的地砖40块。
(2)解:需要瓷砖的面积=(4×2.4+2.5×2.4)×2
=(9.6+6)×2
=15.6×2
=31.2(平方米)
答:需要31.2平方米的瓷砖。
【解析】【分析】(1)将4m和2.5m转化成dm,即4m=40dm;2.5m=25dm,地砖的边长最长是40和25的最大公因数,40和25的最大公因数是5dm,所以一共需要地砖的块数=(蓄水池的长÷最大公因数)×(蓄水池的宽÷最大公因数),代入数值计算即可;(2)需要瓷砖的面积=(蓄水池的长×四壁贴瓷砖的高度+蓄水池的宽×四壁贴瓷砖的高度)×2,代入数值计算即可。
26.(1)解:在①号杯子里面加满水,然后把①号杯子的水倒入②号容器,如果刚好加满,说明两个杯子容积相等;如果不能加满,说明②号杯子小于①号杯子的容积;如果加不完,说明①号杯子容积大于②号杯子容积。
(2)解:测量出长方体容器的长、宽、高分别是多少厘米。
然后把①号杯子装满水,再把水倒入长方体容器中,测量出容器中水的高度,然后根据长方体体积公式计算出水的体积,就是①号杯子的容积。
(3)解:①在这个长方体容器里面倒入1dm高度的水;
②数出100粒黄豆,把这100颗黄豆倒数容器中,再测量出水面的高度;
③用长方体容器的底面积乘水面上升的高度即可求出100颗黄豆的体积;
④用100粒黄豆的体积除以100即可求出一颗黄豆的体积。
【解析】【分析】(1)容积是容器所能容纳物体的体积,可以采用倒水的方法来比较它们容积的大小;
(2)可以根据把①号杯子里面的水倒入长方体容器中,然后根据长方体体积公式计算杯子的容积;
(3)采用排水法求出100颗黄豆的体积,进而求出1颗黄豆的体积大约是多少即可。
27.(1)解:12×6=72(平方米)
答:这个游泳池的占地面积是72平方米。
(2)解:12×6+(12×2+6×2)×2
=72+(24+12)×2
=72+36×2
=72+72
=144(平方米)
答:这个游泳池需要贴144平方米的瓷砖。
(3)解:12×6×2
=72×2
=144(立方米)
=144000升
答:这个游泳池最多可以装水144000升水。
【解析】【分析】(1)游泳池的占地面积=游泳池的底面积=长×宽,代入数值计算即可;(2)需要贴瓷砖的平方米数=长×宽+(长×高+宽×高)×2,长方体的表面积-上面的面积,代入数值计算即可;
(3)水的体积=长×宽×高,最后将单位转化成升即可。
28.解:设原长方体的长为x厘米,则它的宽也为x厘米。
3x×4=96
12x=96
12x÷12=96÷12
x=8
8×8×(8-3)=64×5=320(立方厘米)
答:原来的长方体的体积是320立方厘米。
【解析】【分析】表面积增加数量=长方体的长×3×4,据此列出方程,求出原长方题的长;长方体体积=长×宽×高。
29.解:设小乐每分钟走x米。
列方程,得:37×7+7x=1360-800
259+7x=560
7x=301
x=43
答:小乐每分钟走43米。
【解析】【分析】小童的速度×时间+小乐的速度×时间=两人在7分钟内一共走的距离,两人在7分钟内一共走的距离=两人相距的距离-少年宫和学校的距离,据此列出方程,解答即可。
30.解:房顶:5×4=20(平方米)
前后:5×3×2=30(平方米)
左右::4×3×2=24(平方米)
总面积:20+30+24=74(平方米)
答:刷油漆的面积是74平方米。
【解析】【分析】刷油漆的面积一共是5个面的面积,长方体上面的面积+前后左右的面积=刷油漆的面积;
长×宽=上面的面积,长×高×2=前后面的面积;宽×高×2=左右面的面积。
31.(1)解:50×40+(50×30+40×30)×2
=50×40+(1500+1200)×2
=50×40+2700×2
=2000+5400
=7400(平方厘米)
答:做这个鱼缸至少需要玻璃7400平方厘米。
(2)解:40×1000=40000(立方厘米)
40000÷(50×40)
=40000÷2000
=20(厘米)
答:水深大约20厘米。
(3)解:50×40×2.5
=2000×2.5
=5000(立方厘米)
答:放入物体的体积一共是5000立方厘米。
【解析】【分析】(1)无盖的长方体的表面积=长×宽+(长×高+宽×高)×2;
(2)水深就是水的高,高=容积÷底面积;
(3)求物体的体积就等于容器内水上升的体积=底面积×高。
32.解:纯牛奶:
+×
=+
=(杯)
水喝了×=(杯)
答:乐乐一共喝了杯纯牛奶,杯水。
【解析】【分析】根据题意可知,把这杯纯牛奶的总量看作单位“1”,先喝了半杯,则喝了
杯纯牛奶,剩下杯纯牛奶;然后兑满了热水,他又喝了半杯,此时喝了剩下杯纯牛奶的
一半,一共喝了+×杯纯牛奶;水则喝了杯的一半,据此解答。
33.(1)解:50×30=1500(m2)
答:水池占地1500平方米。
(2)解:50×30+(50×3+30×3)×2=1980(m2)
1980×3.5=6930(kg)
答:至少需要6930千克水泥。
【解析】【分析】(1)已知长方体水池的长、宽、高,要求水池的占地面积,依据长方体的底面积=长×宽,据此列式解答;
(2)要求在水池底部和四壁抹上水泥,就是求无盖长方体的表面积,无盖长方体的表面
积=长×宽+(长×高+宽×高)×2,据此列式计算;
要求需要的水泥质量,每平方米需要的水泥质量×抹水泥的面积=需要的水泥总质量,据此列式解答。
34.解:12×5+(12×2+5×2)×2=128(dm2)
12×5×2=120(dm3)=120(L)
答:做这个水槽至少需要128平方分米铁皮,这个水槽最多可以盛水120升。
【解析】【分析】因为无盖,所以做这个水槽至少需要的铁皮面积就是5个面的面积,长×宽+长×高×2+宽×高×2=至少需要铁皮的面积;长×宽×高=长方体体积,据此先算出长方体体积,再把体积单位化为容积单位。
35.解:设甲车每小时行x千米,则
384÷x=(384-60)÷54
384÷x=324÷54
384÷x=6
x=384÷6
x=64
答:甲车每小时行64千米。
【解析】【分析】设甲车每小时行x千米,根据甲车和乙车行驶的时间相同即可得出等量关系式“甲车行驶的路程÷甲车的速度=乙车行驶的路程÷乙车的速度”,可列出方程384÷x=(384-60)÷54,根据等式的基本性质求解即可得出x的值。
36.(1)解:6米=600厘米
4×4×600×10
=16×600×10
=9600×10
=96000(克)
96000÷1000÷1000=0.096(吨)
答:这块方钢重0.096吨。
(2)解:0.096×50=4.8(吨)
4.8<5,所以能运完。
答:一辆载重5吨的货车能一次运载50根这样的方钢。
【解析】【分析】(1)方钢的体积=截面的面积(边长×边长)×长(方钢的长,注意将方钢长的单位化为厘米),再用方钢的体积×1立方厘米钢重的克数计算出一根方钢的克数,再将其化成吨数即可;
(2)用一根方钢的吨数×方钢的根数=50根方钢的吨数,再与货车载重的吨数比较即可。
37.解:8×3=24(cm)
(21×10+21×24+10×24)×2
=(210+504+240)×2
=954×2
=1908(平方厘米)
答:至少需要1908平方厘米的塑料包装纸。
【解析】【分析】观察图可知,先求出现在的长方体的高,然后用公式:长方体的表面积=
(长×宽+长×高+宽×高)×2,据此列式解答。
38.解:设乙桶油重x千克,则甲桶油重3x千克,根据题意得
3x-24=x+24
2x=48
x=24
24×3=72(千克)
答:甲桶油重72千克,乙桶油重24千克。
【解析】【分析】可设乙桶油重x千克,则甲桶油重3x千克,根据甲桶油-24千克=乙桶油+24千克列方程,解方程可求出乙桶油的重量,进而可计算出甲桶油的重量。
39.(1)24;8
(2)解:
(3)解:32-2×4=24(cm)
16-2×4=8(cm)
24×8×4=768(cm3)
答:它的容积是768cm3。
【解析】【解答】解:(1)长:32-4×2=24(cm),宽:16-4×2=8(cm)
(2)
(3)24×8×4=768(cm3)
【分析】这个无盖长方体的长,是在原来长方形的两端各剪去一个4cm,长方体的宽,是在原来长方形宽的两端各剪去一个4cm,这样就相当于在原来长方形的四个角剪去了边长是4cm的小正方形,这个长方体的体积=长×宽×高。
40.解:7升=7立方分米;
土豆体积=2×2×(1.8-7÷2÷2)
=2×2×(1.8-1.75)
=4×0.05
=0.2(立方分米)
答:这个土豆的体积是0.2立方分米。
【解析】【分析】未放土豆前水的高度=水的体积÷正方体容器的底面积(棱长×棱长),土豆的体积=正方体容器的底面积×水面上升的高度(放入土豆后水的深度-未放土豆前水的高度),代入数值计算即可。