高考数学压轴专题(易错题)备战高考《平面向量》难题汇编及解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新数学复习题《平面向量》专题解析
一、选择题
1.在ABC V 中,D 为边AC 上的点,若2133
BD BA BC =+u u u r u u u r u u u r ,AD DC λ=u u u v u u u v
,则λ=
( )
A .
13
B .
12
C .3
D .2
【答案】B 【解析】 【分析】
根据2133
BD BA BC =+u u u v u u u v u u u v ,将,AD DC u u u r u u u r 都用基底()
BA
BC u u u r u u u r ,表示,再根据AD DC λ=u u u v u u u v 求解. 【详解】
因为2133BD BA BC =+u u u v u u u v u u u v ,
所以1122,+3333
AD BD BA BA BC DC BC BD BA BC =-=-+=-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u
u r u u u r ,
因为AD DC λ=u u u v u u u v ,
所以λ= 12
, 故选:B 【点睛】
本题主要考查平面向量的基本定理和共线向量定理,还考查运算求解的能力,属于中档题.
2.已知点M 在以1(,2)C a a -为圆心,以1为半径的圆上,距离为,P Q 在圆
222:8120C x y y +-+=上,则MP MQ ⋅u u u r u u u u r
的最小值为( )
A .18-
B .19-
C .18+
D .19+【答案】B 【解析】 【分析】
设PQ 中点D ,得到,MP MD DP MQ MD DQ =+=+u u u r u u u u r u u u r u u u u r u u u u r u u u r ,求得2
3MP MQ MD ⋅=-u u u r u u u u r u u u u r ,再
利用圆与圆的位置关系,即可求解故()
2
23MP MQ ⋅≥-u u u r u u u u r ,得到答案.
【详解】
依题意,设PQ 中点D ,
则,MP MD DP MQ MD DQ =+=+u u u r u u u u r u u u r u u u u r u u u u r u u u r ,所以2
3MP MQ MD ⋅=-u u u r u u u u r u u u u r ,
2
2
2
22(
)12
PQ C D QC =-=
Q ,D ∴在以1为半径,以2C 为圆心的圆上, 22221[(2)4]2(3)1832C C a a a =+--=-+≥Q ,
1221min min MD C C C D MC ∴=--
故()
2
322319122MP MQ ⋅≥--=-u u u r u u u u r .
【点睛】
本题主要考查了圆的方程,圆与圆的位置关系的应用,以及平面向量的数量积的应用,着重考查了推理论证能力以及数形结合思想,转化与化归思想.
3.若向量a b r r ,的夹角为3
π
,|2|||a b a b -=+r r r r ,若()a ta b ⊥+r r r ,则实数t =( )
A .1
2
-
B .
12
C 3
D .3 【答案】A 【解析】 【分析】
由|2|||a b a b -=+r r r r 两边平方得22b a b =⋅r r r ,结合条件可得b a =r r ,又由()a ta b ⊥+r r r ,可得20t a a b ⋅+⋅=r r r
,即可得出答案.
【详解】
由|2|||a b a b -=+r r r r
两边平方得2222442a a b b a a b b -⋅+=+⋅+r r r r r r r r .
即22b a b =⋅r r r ,也即22cos 3
b a b π
=r r r ,所以b a =r r .
又由()a ta b ⊥+r r r ,得()0a ta b ⋅+=r r r
,即20t a a b ⋅+⋅=r r r . 所以222
1122b
a b t a b
⋅=-=-=-r r r r r 故选:A 【点睛】
本题考查数量积的运算性质和根据向量垂直求参数的值,属于中档题.
4.延长线段AB 到点C ,使得2AB BC =u u u r u u u r ,O AB ∉,2OD OA =u u u v u u u v
,则( )
A .1263BD OA OC =-u u u v u u u v u u u v
B .5263BD OA O
C =-u u u v u u u v u u u v
C .5163
BD OA OC =-u u u v u u u v u u u v
D .1163
BD OA OC =+u u u v u u u v u u u v
【答案】A 【解析】 【分析】
利用向量的加法、减法的几何意义,即可得答案;
【详解】
Q BD OD OB =-u u u v u u u v u u u v ,()
22123333
OB OA AC OA OC OA OA OC =+=+-=+u u u
v u u u v u u u v u u u v u u u v u u u v u u u v u u u v ,
12OD OA =u u u v u u u v ,
∴1263
BD OA OC =-u u u v u u u v u u u v ,
故选:A. 【点睛】
本题考查向量的线性运算,考查函数与方程思想、转化与化归思想,考查运算求解能力.
5.在ABC ∆中,若点D 满足3CD DB =u u u r u u u r ,点M 为线段AC 中点,则MD =u u u u r
( )
A .3144A
B A
C -u u u
r u u u r B .1136
AB AC -u u u r u u u r
C .2133AB AC -u u u r u u u r
D .3144
AB AC +u u u
r u u u r
【答案】A 【解析】 【分析】
根据MD MA AB BD =++u u u r u u u u u u r u r u u u r
,化简得到答案. 【详解】
()
11312444
MD MA AB BD AC AB AC AB AB AC =++=-++-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u
u u u u r r u u u r .
故选:A . 【点睛】
本题考查了向量的运算,意在考查学生的计算能力.
6.已知向量(sin ,cos )a αα=r
,(1,2)b =r
, 则以下说法不正确的是( )
A .若//a b r r ,则1tan 2α=
B .若a b ⊥r r ,则1tan 2
α=
C .若()f a b α=⋅r
r 取得最大值,则1tan 2
α= D .||a b -r r 1
【答案】B 【解析】 【分析】
根据向量平行、垂直、模以及向量的数量积的坐标运算即可判断. 【详解】
A 选项,若//a b r r ,则2sin cos αα=,即1
tan 2
α=,A 正确.
B 选项,若a b ⊥r r
,则sin 2cos 0αα+=,则tan 2α=-,B 不正确.
C 选项,若()f a b α=⋅r r
取得最大值时,则())f ααϕ=+,取得最大值时,
()sin 1αϕ+=,2,2
k k Z π
αϕπ+=
+∈,又tan 2ϕ=,则1
tan 2
α=
,则C 正确.
D 选项,||a b -=
=r r
的最大值为
1=,选项D 正确.
故选:B . 【点睛】
本题主要考查向量的坐标运算,以及模的求法,掌握向量平行、垂直、数量积的坐标运算是解题的关键,是基础题.
7.若向量(1,1)a =r ,(1,3)b =-r ,(2,)c x =r 满足(3)10a b c +⋅=r r r
,则x =( )
A .1
B .2
C .3
D .4
【答案】A 【解析】 【分析】
根据向量的坐标运算,求得(3)(2,6)a b +=r
r ,再根据向量的数量积的坐标运算,即可求
解,得到答案. 【详解】
由题意,向量(1,1)a =r
,(1,3)b =-r ,(2,)c x =r ,则向量(3)3(1,1)(1,3)(2,6)a b +=+-=r
r ,
所以(3)(2,6)(2,)22610a b c x x +⋅=⋅=⨯+=r r r
,解得1x =,故选A.
【点睛】
本题主要考查了向量的坐标运算,及向量的数量积的坐标运算的应用,其中解答中熟记向量的数量积的坐标运算公式,准确运算是解答的关键,着重考查了运算与求解能力,属于
8.已知A ,B ,C 是抛物线24y x =上不同的三点,且//AB y 轴,90ACB ∠=︒,点C 在AB 边上的射影为D ,则CD =( ) A .4 B .2
2
C .2
D .2
【答案】A 【解析】 【分析】
画出图像,设222112112,,,,,444y y y A y B y C y ⎛⎫⎛⎫⎛⎫
- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,12y y >, 由90ACB ∠=︒可求2
2
1
216y y -=,结合22
1244
y y CD =-即可求解 【详解】
如图:设222112112,,,,,444y y y A y B y C y ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
,12y y >, 由90ACB ∠=︒可得0CA CB ⋅=u u u r u u u r ,22221212
1212,,,44y y y y CA y y CB y y ⎛⎫⎛⎫--=-=-- ⎪ ⎪⎝⎭⎝⎭
u u u r u u u r ,
()2
22221212004y y CA CB y y ⎛⎫-⋅=⇔--= ⎪⎝⎭u u u r u u u r ,即()()222122212016
y y y y ---= 解得2
2
1
216y y -=(0舍去),所以2222
12124444
y y y y CD -=-==
【点睛】
本题考查抛物线的几何性质与向量的综合应用,计算能力,逻辑推理能力,属于中档题
9.如图,在圆O 中,若弦AB =3,弦AC =5,则AO uuu v ·BC uuu v
的值是
A .-8
B .-1
C .1
D .8
【答案】D 【解析】 【分析】 【详解】
因为AO AC CO AB BO =+=+u u u v u u u v u u u v u u u v u u u v
,所以1()2
AO AC BO AB CO =+++u u u v u u u v u u u v u u u v u u u v ,
而BC AC AB BO CO =-=-u u u v u u u v u u u v u u u v u u u v
,所以1()2
BC AC AB BO CO =-+-u u u v u u u v u u u v u u u v u u u v ,则
1()()4AO BC AC AB CO BO AC AB BO CO ⋅=+++-+-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v
1()()()()()()4AC AB AC AB AC AB BO CO CO BO AC AB =+-++-++-u u u
v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v ()()CO BO BO CO ++-u u u v u u u v u u u v u u u v
221(||4AC AB AC BO AC CO AB BO AB CO =-+⋅-⋅+⋅-⋅u u u
v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v 22||)CO AC CO AB BO AC BO AB BO CO +⋅-⋅+⋅-⋅+-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v 2211(||)()4
2
AC AB AC BO AB CO =-+⋅-⋅u u u
v u u u v u u u v u u u v u u u v u u u v
2211(||)[()]4
2
AC AB AB BC BO AB CO =-++⋅-⋅u u u
v u u u v u u u
v u u u v u u u v u u u v u u u v
2211(||)()4
2
AC AB AB BC BC BO =-+⋅+⋅u u u
v u u u v u u u v u u u v u u u v u u u v
2211(||)4
2
AC AB AO BC =-+⋅u u u
v u u u v u u u v u u u v
所以22
1(|
|)82
AO BC AC AB ⋅=-=u u u v u u u v u u u v u u u v ,故选D
10.如图所示,ABC ∆中,点D 是线段BC 的中点,E 是线段AD 的靠近A 的三等分点,则AC =u u u v
( )
A .43
AD BE +u u u
v u u u v
B .53
AD BE +u u u
v u u u v
C .4132A
D B
E +u u u
v u u u v
D .5132
AD BE +u u u
v u u u v
【答案】B 【解析】 【分析】
利用向量的加减运算求解即可 【详解】 据题意,
2533
AC DC DA BD AD BE ED AD BE AD AD AD BE =-=+=++=++=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r
.
故选B . 【点睛】
本题考查向量加法、减法以及向量的数乘运算,是基础题
11.设x ,y 满足10
2024x x y x y -≥⎧⎪
-≤⎨⎪+≤⎩
,向量()2,1a x =r ,()1,b m y =-r ,则满足a b ⊥r r 的实数m
的最小值为( ) A .
125
B .125
-
C .
32
D .32
-
【答案】B 【解析】 【分析】
先根据平面向量垂直的坐标表示,得2m y x =-,根据约束条件画出可行域,再利用m 的几何意义求最值,只需求出直线2m y x =-过可行域内的点C 时,从而得到m 的最小值即
可. 【详解】
解:不等式组表示的平面区域如图所示:因为()2,1a x =r ,()1,b m y =-r
,
由a b ⊥r r
得20x m y +-=,∴当直线经过点C 时,m 有最小值,
由242x y x y +=⎧⎨=⎩,得85
4
5x y ⎧=⎪⎪⎨⎪=⎪⎩
,∴84,55C ⎛⎫ ⎪⎝⎭,
∴416122555
m y x =-=-=-, 故选:B.
【点睛】
本题主要考查了平面向量共线(平行)的坐标表示,用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属于中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.
12.平面向量a →与b →
的夹角为π3
,()2,0a →
=,1b →=,则2a b →→-=( )
A .3
B 6
C .0
D .2
【答案】D 【解析】 【分析】
根据向量的模的计算和向量的数量积的运算即可求出答案. 【详解】
()2,0a →
=Q ,
||2a →
∴=
2
2
222(2)||4||444421cos 43
a b a b a b a b π
→
→→
→
∴-=-=+-⋅=+-⨯⨯⨯=r r r r ,
|2|2a b ∴-=r r
,
故选:D 【点睛】
本题考查了向量的模的计算和向量的数量积的运算,属于中档题.
13.已知ABC V 为直角三角形,,6,82
C BC AC π
=
==,点P 为ABC V 所在平面内一
点,则()PC PA PB ⋅+u u u r u u u r u u u r
的最小值为( )
A .252
-
B .8-
C .172
-
D .175
8
-
【答案】A 【解析】 【分析】
根据,2
C π
=以C 点建系, 设(,)P x y ,则2
2
325()=2(2)222PC PA PB x y ⎛⎫⋅+-+-- ⎪⎝⎭u u u r u u u r u u u r ,即当
3
=2=2
x y ,时,取得最小值.
【详解】
如图建系,(0,0), (8,0), (0,6)C A B ,
设(,)P x y ,(8,)PA x y =--u u u r ,(,6)PB x y =--u u u r
,
则22()(,)(82,62)2826PC PA PB x y x y x x y y ⋅+=--⋅--=-+-u u u r u u u r u u u r
2
2
325252(2)2222x y ⎛
⎫=-+--≥- ⎪⎝
⎭.
故选:A. 【点睛】
本题考查平面向量数量积的坐标表示及其应用,根据所求关系式运用几何意义是解题的关键,属于中档题.
14.在△ABC 中,A 、B 、C 的对边分别为a 、b 、c ,且3a 2+3c 2-3b 2=2ac ,BA u u u r ⋅BC uuu
r =2,则
△ABC 的面积为( ) A 2B .
3
2
C .22
D .42【答案】C 【解析】 【分析】
利用余弦定理求出B 的余弦函数值,结合向量的数量积求出ca 的值,然后求解三角形的面
积.
【详解】
在△ABC中,A、B、C的对边分别为a、b、c,且3a2+3c2﹣3b2=2ac,
可得cosB
2221
23 a c b
ac
+-
=
=,则sinB
22
=,
BA
u u u r
⋅BC=
u u u r
2,可得cacosB=2,则ac=6,
∴△ABC的面积为:
1122
6
223
acsinB=⨯⨯=22.
故选C.
【点睛】
本题考查三角形的解法,余弦定理以及向量的数量积的应用,考查计算能力.
15.在菱形ABCD中,4
AC=,2
BD=,E,F分别为AB,BC的中点,则
DE DF
⋅=
u u u r u u u r
()
A.
13
4
-B.
5
4
C.5 D.
15
4
【答案】B
【解析】
【分析】
据题意以菱形对角线交点O为坐标原点建立平面直角坐标系,用坐标表示出,
DE DF
u u u r u u u r
,再根据坐标形式下向量的数量积运算计算出结果.
【详解】
设AC与BD交于点O,以O为原点,BD
u u u r
的方向为x轴,CA
u u u r
的方向为y轴,建立直角坐标系,
则
1
,1
2
E
⎛⎫
-
⎪
⎝⎭
,
1
,1
2
F
⎛⎫
--
⎪
⎝⎭
,(1,0)
D,
3
,1
2
DE
⎛⎫
=-
⎪
⎝⎭
u u u r
,
3
,1
2
DF
⎛⎫
=--
⎪
⎝⎭
u u u r
,
所以95144
DE DF ⋅=-=u u u r u u u r . 故选:B.
【点睛】
本题考查建立平面直角坐标系解决向量的数量积问题,难度一般.长方形、正方形、菱形中的向量数量积问题,如果直接计算较麻烦可考虑用建系的方法求解.
16.在边长为2的等边三角形ABC 中,若1,3
AE AC BF FC ==u u u v u u u v u u u v u u u v ,则BE AF ⋅=u u u v u u u v ( ) A .23- B .43- C .8
3- D .2-
【答案】D
【解析】
【分析】
运用向量的加减运算和向量数量积的定义计算可得所求值.
【详解】
在边长为2的等边三角形ABC 中,若13
AE AC =u u u r u u u r , 则BE AF ⋅=u u u r u u u v (AE AB -u u u r u u u r )•12
(AC AB +u u u r u u u r ) =(13AC AB -u u u r u u u r )•12
(AC AB +u u u r u u u r ) 1123AC =u u u r (2AB -u u u r 223AB -u u u r •AC =u u u r )142142222332⎛⎫--⨯⨯⨯=- ⎪⎝⎭
故选:D
【点睛】
本题考查向量的加减运算和向量数量积的定义和性质,向量的平方即为模的平方,考查运算能力,属于基础题.
17.已知平面向量,,a b c r r r 满足||||2a b ==r r ,a b ⊥r r ,()()a c b c -⊥-r r r r ,则(a b c ⋅r r r +)的取值范围是( )
A .[0,2]
B .[0,
C .[0,4]
D .[0,8] 【答案】D
【解析】
【分析】 以点O 为原点,OA u u u r ,OB uuu r 分别为x 轴,y 轴的正方向建立直角坐标系,根据AC BC ⊥,得到点C 在圆22
(1)(1)2x y -+-=,再结合直线与圆的位置关系,即可求解.
【详解】
设,,OA a OB b OC c ===u u u r r u u u r r u u u r r
, 以点O 为原点,OA u u u r ,OB uuu r 分别为x 轴,y 轴的正方向建立直角坐标系,则
(2,0),(0,2)A B ,
依题意,得AC BC ⊥,所以点C 在以AB 为直径的圆上运动,
设点(,)C x y ,则22(1)(1)2x y -+-=,()22a b c x y +⋅=+r r r ,
由圆心到直线22x y t +=
的距离d =
≤,可得[0,8]t ∈.
故选:D .
【点睛】
本题主要考查了向量的数量积的坐标运算,以及直线与圆的位置关系的综合应用,着重考查了转化思想,以及推理与运算能力.
18.在四边形ABCD 中,//AD BC ,2AB =,5AD =,3BC =,60A ∠=︒,点E 在线段CB 的延长线上,且AE BE =,点M 在边CD 所在直线上,则AM ME ⋅u u u u r u u u r 的最大值为( )
A .714-
B .24-
C .514-
D .30-
【答案】A
【解析】
【分析】
依题意,如图以A 为坐标原点建立平面直角坐标系,表示出点的坐标,根据AE BE =求出E 的坐标,求出边CD
所在直线的方程,设(,M x +,利用坐标表示,AM ME u u u u r u u u r ,根据二次函数的性质求出最大值.
【详解】
解:依题意,如图以A 为坐标原点建立平面直角坐标系,由2AB =,5AD =,3BC =,60A ∠=︒,
()0,0A ∴
,(B
,(C ,()5,0D
因为点E 在线段CB
的延长线上,设(0E x ,01x < AE BE =Q
()222001x x +=-解得01x =-
(E ∴-
(C Q ,()5,0D CD ∴
所在直线的方程为y =+
因为点M 在边CD 所在直线上,故设(),353M x x -+ (),353AM x x ∴=-+u u u u r
()1,343E x M x -=--u u u r
()()()
3433531AM ME x x x x --∴⋅=--++u u u u r u u u r 242660x x =-+-
242660x x =-+-
23714144x ⎛⎫= ⎪⎭---⎝
当134
x =时()max 714
AM ME ⋅=-u u u u r u u u r 故选:A
【点睛】
本题考查向量的数量积,关键是建立平面直角坐标系,属于中档题.
19.已知向量()1,3a =-v ,()3,b m =v ,若a b ⊥v v ,则2a b +v v 等于( )
A .10
B .16
C .52
D .410【答案】C
【解析】
【分析】 先利用向量垂直的坐标表示求出实数m 的值,得出向量b r 的坐标,并计算出向量2a b +r r ,
最后利用向量模的坐标运算得出结果.
【详解】 ()1,3a =-r Q ,()3,b m =r ,a b ⊥r r ,则1330a b m ⋅=⨯-=r r ,得1m =,()3,1b ∴=r ,
则()()()221,33,15,5a b +=-+=-r r ,因此,2a b +==r r C.
【点睛】
本题考查向量垂直的坐标表示以及向量模的坐标运算,意在考查学生对这些公式的理解掌握情况,考查运算求解能力,属于中等题.
20.在ABC V 中,AD 为BC 边上的中线,E 为AD 的中点,且||1,||2AB AC ==u u u r u u u r ,
120BAC ∠=︒
,则||EB =u u u r ( )
A .4
B
C .2
D .4
【答案】A 【解析】
【分析】
根据向量的线性运算可得3144
EB AB AC =-u u u r u u u r u u u r ,利用22||B EB E =u u r u u u r u 及||1,||2AB AC ==u u u r u u u r ,120BAC ∠=︒计算即可. 【详解】
因为11131()22244
EB EA AB AD AB AB AC AB AB AC =+=-+=-⨯++=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r , 所以22229311216441||6
EB AB AB B AC AC E =-⨯=⨯⋅+u u u r u u u r u u u r u u u r u u r u u u r u 229311112()2168216
=⨯-⨯⨯⨯-+⨯ 1916
=
,
所以||4
EB =u u u r , 故选:A
【点睛】 本题主要考查了向量的线性运算,向量数量积的运算,向量数量积的性质,属于中档题.。