高一物理下册 机械能守恒定律易错题(Word版 含答案)(1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、第八章 机械能守恒定律易错题培优(难)
1.如图所示,质量为1kg 的物块(可视为质点),由A 点以6m/s 的速度滑上正沿逆时针
转动的水平传送带(不计两转轮半径的大小),传送带上A 、B 两点间的距离为8m ,已知传送带的速度大小为3m/s ,物块与传送带间的动摩擦因数为0.2,重力加速度为
210m/s 。

下列说法正确的是( )
A .物块在传送带上运动的时间为2s
B .物块在传送带上运动的时间为4s
C .整个运动过程中由于摩擦产生的热量为16J
D .整个运动过程中由于摩擦产生的热量为28J 【答案】BD 【解析】 【分析】 【详解】
AB .滑块先向右匀减速,根据牛顿第二定律有
mg ma μ=
解得
22m/s a g μ==
根据运动学公式有
010v at =-
解得
13s t =
匀减速运动的位移
0106
3m 9m 8m 22
v x t L +=
=⨯==> 物体向左匀加速过程,加速度大小仍为22m/s a =,根据运动学公式得物体速度增大至2m/s v =时通过的位移
2212m 1m 222
v x a ===⨯
用时
22
s 1s 2
v t a =
== 向左运动时最后3m 做匀速直线运动,有
233
=
s 1s 3
x t v == 即滑块在传送带上运动的总时间为
1234s t t t t =++=
物块滑离传送带时的速率为2m/s 。

选项A 错误,B 正确;
C .向右减速过程和向左加速过程中,摩擦力为恒力,故摩擦力做功为
110.211041J 6J f W f x x mg x x μ=--=--=-⨯⨯⨯-=-()()()
选项C 错误;
D .整个运动过程中由于摩擦产生的热量等于滑块与传送带之间的一对摩擦力做功的代数和,等于摩擦力与相对路程的乘积;物体向右减速过程,传送带向左移动的距离为
114m l vt ==
物体向左加速过程,传送带运动距离为
222m l vt ==

121[]Q fS mg l x l x μ==++-()()
代入数据解得
28J Q =
选项D 正确。

故选BD 。

2.如图所示,竖直平面内固定两根足够长的细杆L 1、L 2,两杆分离不接触,且两杆间的距离忽略不计.两个小球a 、b (视为质点)质量均为m ,a 球套在竖直杆L 1上,b 杆套在水平杆L 2上,a 、b 通过铰链用长度为L 的刚性轻杆连接,将a 球从图示位置由静止释放(轻杆与L 2杆夹角为45°),不计一切摩擦,已知重力加速度为g .在此后的运动过程中,下列说法中正确的是
A .a 球和b 球所组成的系统机械能守恒
B .b 球的速度为零时,a 球的加速度大小一定等于g
C .b 22gL +()
D .a 2gL
【解析】 【详解】
A .a 球和b 球组成的系统没有外力做功,只有a 球和b 球的动能和重力势能相互转换,因此a 球和b 球的机械能守恒,故A 正确;
B .当再次回到初始位置向下加速时,b 球此时刻速度为零,但a 球的加速度小于g ,故B 错误;
C .当杆L 和杆L 1平行成竖直状态,球a 运动到最下方,球b 运动到L 1和L 2交点的位置的时候球b 的速度达到最大,此时由运动的关联可知a 球的速度为0,因此由系统机械能守恒有:
22122b mg L L mv ⎛⎫+= ⎪ ⎪⎝⎭
得:
()2+2b v gL =
故C 正确;
D .当轻杆L 向下运动到杆L 1和杆L 2的交点的位置时,此时杆L 和杆L 2平行,由运动的关联可知此时b 球的速度为零,有系统机械能守恒有:
2
2122
a
mg L mv ⋅= 得:
2a v gL =
此时a 球具有向下的加速度g ,因此此时a 球的速度不是最大,a 球将继续向下运动到加
速度为0时速度达到最大,故D 错误.
3.如图,滑块a 、b 的质量均为m ,a 套在固定竖直杆上,与光滑水平地面相距,b 放在地面上.a 、b 通过铰链用刚性轻杆连接,由静止开始运动,不计摩擦,a 、b 可视为质点,重力加速度大小为,则
A .a 减少的重力势能等于b 增加的动能
B .轻杆对b 一直做正功,b 的速度一直增大
C .当a 运动到与竖直墙面夹角为θ时,a 、b 的瞬时速度之比为tanθ
D .a 落地前,当a 的机械能最小时,b 对地面的压力大小为mg
【解析】
【分析】
【详解】
ab构成的系统机械能守恒,a减少的重力势能大于b增加的动能.当a落到地面时,b的速度为零,故b先加速后减速.轻杆对b先做正功,后做负功.由于沿杆方向的速度大小相等,则
cos sin
a b
v v
θθ
=

tan
a
b
v
v
θ
=
当a的机械能最小时,b动能最大,此时杆对b作用力为零,故b对地面的压力大小为mg.综上分析,CD正确,AB错误;
故选CD.
4.如图所示,将质量为2m的重物悬挂在轻绳的一端,轻绳的另一端系一质量为m的环,环套在竖直固定的光滑直杆上,光滑的轻小定滑轮与直杆的距离为d,杆上的A点与定滑轮等高,杆上的B点在A点下方距离为d处.现将环从A处由静止释放,不计一切摩擦阻力,下列说法正确的是()
A.环到达B处时,重物上升的高度h=d/2
B.小环在B(322)gd
-
C.环从A到B,环沿着杆下落的速度大小小于重物上升的速度大小
D.环能下降的最大高度为4d/3
【答案】BD
【解析】
【分析】
【详解】
A、根据几何关系有,环从A下滑至B点时,重物上升的高度2
h d d
=-,故A错误;
B、C、对B的速度沿绳子方向和垂直于绳子方向分解,在沿绳子方向上的分速度等于重物的速度,有:v环cos45°=v物,根据系统机械能守恒定律可得
22
11
2+2
22
mgd mgh mv mv
-=⋅
环物
,解得:环的速度(322)
v gd
-

B正确.故C
错误.D 、设环下滑到最大高度为H 时环和重物的速度均为0,此时重物上升的最大高度为
2
2
H d d +-,根据机械能守恒有222()mgH mg H d d =+-,解得:4
3
H d =
,故D 正确.故选BD . 【点睛】
解决本题的关键要掌握系统机械能守恒,知道环沿绳子方向的分速度的等于重物的速度.
5.如图甲所示,轻弹簧下端固定在倾角37°的粗糙斜面底端A 处,上端连接质量5kg 的滑块(视为质点),斜面固定在水平面上,弹簧与斜面平行。

将滑块沿斜面拉动到弹簧处于原长位置的O 点,由静止释放到第一次把弹簧压缩到最短的过程中,其加速度a 随位移x 的变化关系如图乙所示,,重力加速度取10m/s 2,sin37°=0.6,cos37°=0.8。

下列说法正确的是 ( )
A .滑块在下滑的过程中,滑块和弹簧组成的系统机械能守恒
B .滑块与斜面间的动摩擦因数为0.1
C 13m/s
D .滑块在最低点时,弹簧的弹性势能为10.4J 【答案】BC 【解析】 【分析】 【详解】
A .滑块在下滑的过程中,除重力和弹簧的弹力做功外,还有摩擦力做功,故滑块和弹簧组成的系统机械能不守恒,故A 错误;
B .刚释放瞬间,弹簧的弹力为零,由图象可知此时加速度为a =5.2m/s 2,根据牛顿第二定律有
sin cos mg mg ma θμθ-=
解得0.1μ=,故B 正确;
C .当x =0.1m 时a =0,则速度最大,此时滑块受到的合力为零,则有
sin cos 0mg kx mg θμθ--=
解得260N /m k =,则弹簧弹力与形变量的关系为
F kx =
当形变量为x =0.1m 时,弹簧弹力F =26N ,则滑块克服弹簧弹力做的功为
11
2.60.1J 1.3J 22
W Fx =
=⨯⨯= 从下滑到速度最大,根据动能定理有
()2
m 1sin cos 2
mg mg x W mv θμθ--=
解得m 13
5
v =
m/s ,故C 正确; D .滑块滑到最低点时,加速度为25.2m/s a '=-,根据牛顿第二定律可得 sin cos mg mg kx ma θμθ--'='
解得0.2m x '=,从下滑到最低点过程中,根据动能定理有
()p sin cos 00mg mg x E θμθ'--=-
解得E p =5.2J ,故D 错误。

故选BC 。

6.戽斗是古代最常见的提水器具,两人相对而立,用手牵拉绳子,从低处戽水上岸,假设戽斗装水后重20kg ,左右两根轻绳长均为2m ,最初绳子竖直下垂,戽水时两人均沿水平方向朝相反的方向做直线运动,戽斗以加速度21m /s 匀加速度直线上升,己知重力加速度
210m /s g =,(绳子可以看成轻质细绳)则戽斗上升1m 时( )
A .两绳的拉力大小均为200N
B 2m /s
C .两人对戽斗做的功均为110J
D .绳子拉力的总功率为2202W 【答案】CD 【解析】 【分析】 【详解】
A .此时戽斗已经向上移动了1m ,对戽斗进行受力分析如下
沿戽斗运动方向根据牛顿第二定律有
2cos T ABD mg ma ∠-=
其中1cos 2
ABD ∠=
带入数据解得
220N T =
故A 错误;
B .上升1m 的过程根据速度位移公式可得
202v ax -=戽
如下图,戽斗与人在沿绳方向的分速度相等
cos cos ABD v v BAD ∠=人戽
联立并带入数据解得
2m/s v =戽
2
m/s 3
v =
人 故B 错误;
C .戽斗上升过程根据动能定理有
2
122
W mgh mv -=戽人
带入数据解得每人对戽斗做的功W 人为110J ,故C 正确; D .上升1m 后的瞬时功率为
222c 2s 0W o P Fv T ABD v ===∠⨯戽
故D 正确。

故选CD 。

7.如图所示,倾角为的足够长倾斜传送带沿逆时针方向以恒定速率运行,一个小物块无初速度的放在传送带上端,传送带与物块间动摩擦因数tan μθ<,取传送带底端为零势能面,下列描述小物块速度v ,重力势能E P ,动能E k 和机械能E 四个物理量随物块沿传送带运动距离x 的变化趋势中正确的有( )
A .
B .
C .
D .
【答案】BCD 【解析】 【分析】 【详解】
A .小物块无初速度的放在传送带上,先向下加速,最初阶段传送带的速度大于小物体的速度,滑动摩擦力沿传送带向下,根据牛顿第二定律的小物体的加速度
1(sin cos )a g θμθ=+

212v a x =

12v a x =故v —x 图像应为向x 轴弯曲的一段曲线;
当小物体加速到与传送带的速度相等后,由于tan μθ<,重力沿斜面向下的分力大于滑动
摩擦力,小物体受到的合力沿传送带向下,小物块继续向下加速;小物块的速度大于传送带的速度v 0后,摩擦力沿传送带向上,加速度
2(sin cos )a g θμθ=-

22
022v v a x -=
解得
2022v v a x =+
故v-x 图像同样为向x 轴弯曲的一段曲线,故A 错误;
B .取传送带底端为零势能面,设初状态重力势能为E P0,重力势能表达式为
p p0sin E E mgx θ=-
E P -x 图像应为斜率为负值的一段直线,故B 正确; C .小物块加速度为a 1时,根据动能定理有动能的表达式为
k 1E F x ma x ==⋅合
设此过程获得的动能为E k0,E k -x 图像应为斜率为正值、过原点的一段直线;小物块的速度大于传送带速度后加速度为a 2,动能表达式为
k k0k02E E F x E ma x =+=+合
故E k -x 图像应为斜率为正值的一段直线;由于12a a >,斜率变小,故C 正确。

D .小物块加速度为a 1时,摩擦力做正功,机械能增加,机械能表达式为
p0cos E E mg x μθ=+⋅
E-x 图像应为斜率为正值的一段直线,纵轴截距为初状态的机械能E P0;小物体加速到与传送带的速度相等时,机械能增加到最大值E m ,小物块的速度大于传送带速度后,摩擦力做负功,机械能表达式为
m cos E E mg x μθ=-⋅
E-x 图像应为斜率为负值的一段直线,故D 正确。

故选BCD 。

8.如图a 所示,小物体从竖直弹簧上方离地高h 1处由静止释放,其动能E k 与离地高度h 的关系如图b 所示。

其中高度从h 1下降到h 2,图象为直线,其余部分为曲线,h 3对应图象的最高点,轻弹簧劲度系数为k ,小物体质量为m ,重力加速度为g 。

以下说法正确的是( )
A .小物体从高度h 2下降到h 4,弹簧的弹性势能增加了24()mg h h -
B .小物体下降至高度h 3时,弹簧形变量为
mg
k
C .小物体从高度h 1下降到h 5,弹簧的最大弹性势能为15()mg h h -
D .小物体下落至高度h 4时,物块处于失重状态 【答案】ABC 【解析】 【分析】 【详解】
A .小物体下落过程中,小物体和弹簧组成的系统机械能守恒;由图知,小物体下落至高度h 4的动能与下落至高度h 2时的动能相同,则小物体从高度h 2下降到h 4过程,弹簧弹性势能的增加量等于重力势能的减少量,所以弹簧弹性势能的增加量为24()mg h h -,故A 正确;
B .小物体下降至高度h 3时,动能达到最大,加速度为零,此时有
kx mg =
弹簧形变量为
mg
k
,故B 正确; C .小物体到达最低点时,速度为0,弹簧压缩量最大,弹簧弹性势能最大;小物体从高度h 1下降到h 5,动能的变化量为0,弹簧弹性势能的增大等于重力势能的减少,所以弹簧的最大弹性势能为15()mg h h -,故C 正确;
D .小物体从高度h 3下降到高度h 5过程,小物体动能减小,向下做减速运动,则小物体下落至高度h 4时,小物体处于超重状态,故D 错误。

故选ABC 。

9.如图所示,水平转台上有一个质量为m 的物块,用长为L 的细绳将物块连接在转轴上,细线与竖直转轴的夹角为θ,此时绳中张力为零,物块与转台间动摩擦因数为μ(μ<tanθ),最大静摩擦力等于滑动摩擦力,物块随转台由静止开始缓慢加速转动,则( )
A .物块随转台由静止开始至绳中出现拉力时,转台对物块做的功为2sin mgL μθ
B .物块随转台由静止开始至绳中出现拉力时,转台对物块做的功为
1
sin 2
mgL μθ
C .物块随转台由静止开始至转台对物块支持力为零时,转台对物块做的功为2sin 2os mgL c θ
θ
D .物块随转台由静止开始至转台对物块支持力为零时,转台对物块做的功为34os mgL
c θ
【答案】BC 【解析】 【分析】
此题考查牛顿运动定律和功能关系在圆周运动中的应用,注意临界条件的分析,至绳中出现拉力时,摩擦力为最大静摩擦力;转台对物块支持力为零时,N =0,f =0。

【详解】
AB .对物体受力分析知物块离开圆盘前,合力为
2
sin v F f T m r
θ=+= …①
cos N T mg θ+=…②
根据动能定理知
2
12
k W E mv ==
…③ 又
T =0,r =L sin θ…④
由①②③④解得
11
sin sin 22
W fL mgL θμθ=
≤ 至绳中出现拉力时,转台对物块做的功为1
sin 2
mgL μθ,选项A 错误,B 正确; CD .当N =0,f =0,由①②③知
21sin sin tan 22cos mgL W mgL θ
θθθ
==
选项C 正确;D 错误。

故选BC 。

10.一物体沿光滑水平面运动时,其速度v 随位移x 变化的关系如图所示,则物体
A .相同时间内速度变化量相同
B .相同时间内速度变化量越来越小
C .相同位移内所受外力做功相同
D .相同位移内所受外力的冲量相同 【答案】D 【解析】 【分析】
本题考查速度位移图像的理解,速度和位移成正比,分析相关物理量的变化。

【详解】
由图得速度和位移成正比,物体不是做匀变速直线运动。

AB .随着位移增大,物体速度均匀增大,所以相同时间内物体位移越来越大,速度变化量越来越大,AB 错误;
CD .相同位移速度变化量相同,对同一物体,动量变化量相同,但动能变化量不同,所以所受外力的冲量相同,做功不同,C 错误,D 正确; 故选D 。

11.如图,在竖直平面内有一光滑水平直轨道,与半径为R 的光滑半圆形轨道相切于B 点,一质量为m (可视为质点)的小球从A 点通过B 点进入半径为R 的半圆,恰好能通 过轨道的最高点M ,从M 点飞出后落在水平面上,不计空气阻力,则( )
A .小球在 A 点时的速度为 2gR
B .小球到达B 点时对轨道的压力大小为mg
C .小球从B 点到达M 点的过程中合力的冲量大小为6m gR
D .小球运动到与圆心等高处对轨道的压力大小为3mg 【答案】D 【解析】 【分析】 【详解】
A .小球恰好能通过半圆的最高点M ,由重力提供向心力,由牛顿第二定律得
2M
v mg m R
= 解得
M v gR 由A 到M ,由动能定理得
22M A 11222
mg R mv mv -⋅=
-
解得
A v 故A 错误;
B .由A 到B ,速度不变
B A v v =在B 点时,对B 点进行受力分析重力提供向心力,由牛顿第二定律得
2B
N v F mg m R
-=
所以
2
2B
=+=6N v
F mg m mg m
mg R
R
+=
由牛顿第三定律得,小球到达B 点时对轨道的压力大小为
==6N F F mg 压
故B 错误;
C .小球在B 点时速度向右,大小为B v =,在M 点时,速度向左,大小为
M v =B 点到达M 点的过程中,取向右为正,合力的冲量为动量的变化
=M B I mv mv --=-
故C 错误;
D .小球运动到与圆心等高处时,由动能定理知
22A 1122
mg R mv mv -⋅=
- 在那一点,弹力提供向心力
2
3mv F mg R
==
由牛顿第三定律得,小球到达B 点时对轨道的压力大小为
==3F F mg 压
故D 正确; 故选:D 。

12.一质量为m 的小球以初动能E k0从地面竖直向上抛出,已知上升过程中受到阻力作用,图中两条图线分别表示小球在上升过程中动能、重力势能中的某一个与其上升高度之间的关系,(以地面为零势能面,h o 表示上升的最大高度,图中坐标数据中的k 值为常数且满足0<k <l )则由图可知,下列结论正确的是( )
A .①表示的是动能随上升高度的图像,②表示的是重力势能随上升高度的图像
B .上升过程中阻力大小恒定且f =(k +1)mg
C .上升高度01
2
k h h k +=+时,重力势能和动能不相等 D .上升高度02
h h =时,动能与重力势能之差为02k
mgh
【答案】D 【解析】 【分析】 【详解】
A .根据动能定理可知小球上升过程中速度减小(动能减小,对应图象②),高度升高(重力势能增大,对应图象①),故A 错误;
B .从①和②图知动能与重力势能都随着高度的变化成线性关系,故合力恒定,受到的阻力大小恒定,由功能关系可知从抛出到最高点的过程中机械能的减少量等于阻力的功的大小,由②图得
k0
0k01
E fh E k =-
+ 由①图线结合动能定理得
00(+)k E mg f h =
解得f kmg =,故B 错误; C .当高度01
2
k h h k +=
+时,动能为 ()k k0E E mg f h =-+
联立解得
k 0+1
2k E mgh k =
+ 重力势能为
p 01
2
k E mgh mgh k +==
+ 所以在此高度时,物体的重力势能和动能相等,故C 错误;
D .当上升高度0
2
h h =
时,动能为 k 012
k
E mgh -=
重力势能为
p 0E mgh =
则动能与重力势能之差为02
k
mgh ,故D 正确。

故选D 。

13.如图所示,某同学将三个完全相同的物体从A 点沿三条不同的路径抛出,最终落在与A 点同高度的三个不同位置,三条路径的最高点是等高的,忽略空气阻力,下列说法正确的是( )
A .沿路径1抛出的物体在空中运动的时间最短
B .沿路径3运动的物体落地时重力的瞬时功率最大
C .三个物体落地时的动能相等
D .三个物体在运动过程中的任意相等时间内速度变化量相等 【答案】D 【解析】 【分析】 【详解】
A .它们的最高点是等高的,所以这三个物体在竖直方向的分速度v y 是相等的,所以这三个斜抛运动的物体在空中的运动时间
2y v t g
=
均相同,故A 错误;
B .由上面的分析可以知道,这三个做斜抛运动的物体在落地时竖直方向的分速度也是相等的,落地时重力的瞬时功率
G y P mgv =
一样大,故B 错误;
C .同学对小球做的功即为小球获得的初动能,由于三个小球竖直方向分速度相同,第3个小球水平位移大,则第3个小球水平分速度大,故第3个小球落地时的动能大,故C 错
误;
D .小球在空中只受重力作用,即小球所作的运动是匀变速运动,加速度g 恒定,所以在相等的时间内速度变化相等,故D 正确。

故选D 。

【点睛】
斜抛运动可看成水平方向的匀速直线运动和竖直方向的竖直上抛运动。

14.如图所示,光滑竖直杆固定,杆上套一质量为m 的环,环与轻弹簧一端相连,弹簧的另一端固定在O 点,O 点与B 点在同一水平线上,BC >AB ,AC =h ,环从A 处由静止释放运动到B 点时弹簧仍处于伸长状态,整个运动过程中弹簧始终处于弹性限度内,重力加速度为g ,环从A 处开始运动时的加速度大小为2g ,则在环向下运动的过程中( )
A .环在
B 处的加速度大小为0 B .环在
C 2gh C .环从B 到C 先加速后减速
D .环的动能和弹簧弹性势能的和先增大后减小 【答案】C 【解析】 【分析】 【详解】
A .环在
B 处时,水平方向受到弹簧的拉力和杆的支持力,二力平衡。

竖直方向受到重力,所以环在B 处的加速度大小为g ,故A 错误;
B .因为B
C >AB ,则环从A 到C 弹簧的弹性势能增加,根据环和弹簧组成的系统机械能守恒得
2
P 12
C mgh mv E =
+∆ P 0E ∆>,则2C v gh
故B 错误;
C .环从A 处开始运动时的加速度大小为2g ,根据牛顿第二定律得
=mg F ma +竖
得环从A 处时弹簧拉力的竖直向下的分量
=F mg 竖
设杆上A 点关于B 点的对称性为D 点(D 点在B 、C 之间),则环在D 点时,根据牛顿第二定律得
+
mg F ma
=


a=0
所以环从B到D做加速运动,环从D到C做减速运动,在D点时速度最大,故C正确;D.因环和弹簧的系统机械能守恒,则系统的动能、弹性势能和重力势能之和不变,而重力势能在环向下运动的过程中一直减小,则环的动能和弹簧弹性势能的和一直增大,故D 错误。

故选C。

15.如图所示,一质量为M的人站在台秤上,一根长为R的悬线一端系一个质量为m的小球,手拿悬线另一端,小球绕悬线另一端点在竖直平面内做圆周运动,且小球恰好能通过圆轨道最高点,则下列说法正确的是()
A.小球运动到最高点时,小球的速度为零
B.当小球运动到最高点时,台秤的示数最小,且为Mg
C.小球在a、b、c三个位置时,台秤的示数相同
D.小球从最高点运动到最低点的过程中台秤的示数增大,人处于超重状态
【答案】C
【解析】
【分析】
【详解】
A.小球恰好能通过圆轨道最高点,由
2
v
=
mg m
R

=
v gR
A项错误;
B.小球运动到最高点时,细线中拉力为零,台秤的示数为Mg,但不是最小,当小球处于如图所示状态时,
设其速度为v 1,由牛顿第二定律有
2
1cos v T mg m R
θ+=
由最高点到该位置,由机械能守恒定律
22111
(1cos )22
mv mgR mv θ+-= 解得悬线拉力为
T =3mg (1-cosθ)
其分力为
T y =T cosθ=3mgcosθ-3mgcos 2θ
当cosθ=0.5,即θ=60°时,台秤的最小示数为
F min =Mg -T y =Mg -0.75mg
故B 错误;
C .小球在a 、b 、c 三个位置,竖直方向的加速度均为g ,小球均处于完全失重状态,台秤的示数相同,故C 正确;
D .人没有运动,不会有超重失重状态,故D 错误。

故选C 。

相关文档
最新文档