安徽省蚌埠市高三数学第一次质量检测试卷文(含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年安徽省蚌埠市高考数学一模试卷(文科)
一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.复数z=(﹣1+i)2的虚部为()
A.﹣2 B.﹣2i C.2 D.0
2.已知集合A={x|x<2},B={y|y=5x},则A∩B=()
A.{x|x<2} B.{x|x>2} C.{x|o≤x<2} D.{x|0<x<2}
3.设a=tan135°,b=cos(cos0°),c=(x2+)0,则a,b,c的大小关系是()A.c>a>b B.c>b>a C.a>b>c D.b>c>a
4.函数f(x)=1﹣xlnx的零点所在区间是()
A.(0,)B.(,1)C.(1,2) D.(2,3)
5.运行如图所示的程序框图,输出的所有实数对(x,y)所对应的点都在某函数图象上,则该函数的解析式为()
A.y=x+2 B.y=C.y=3x D.y=3x3
6.数列{a n}是等差数列,若a1+1,a3+2,a5+3构成公比为q的等比数列,则q=()
A.1 B.2 C.3 D.4
7.设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的()
A.必要不充分条件B.充分不必要条件
C.充分必要条件 D.既不充分也不必要条件
8.已知f(x)在R上是奇函数,且f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)=()
A.﹣2 B.2 C.﹣98 D.98
9.某几何体的三视图如图所示,则该几何体的体积为()
A.12+πB.6+π C.12﹣πD.6﹣π
10.函数g(x)是偶函数,函数f(x)=g(x﹣m),若存在φ∈(,),使f(sinφ)=f(cosφ),则实数m的取值范围是()
A.()B.(,] C.()D.(]
二、填空题(本大题共5小题,每小题5分,共25分.)
11.命题:“∀x∈R,都有x3≥1”的否定形式为.
12.不等式0<1﹣x2≤1的解集为.
13.若log2(2m﹣3)=0,则e lnm﹣1= .
14.已知x,y满足条件,则函数z=﹣2x+y的最大值是.
15.若正方形P1P2P3P4的边长为1,集合M={x|x=且i,j∈{1,2,3,4}},则对于下列命题:
①当i=1,j=3时,x=2;
②当i=3,j=1时,x=0;
③当x=1时,(i,j)有4种不同取值;
④当x=﹣1时,(i,j)有2种不同取值;
⑤M中的元素之和为0.
其中正确的结论序号为.(填上所有正确结论的序号)
三、解答题(本大题共6小题,满分75分.解答应写出文字说明、证明过程或演算步骤.)16.在△ABC中,角A,B,C所对的边分别为a,b,c.已知b2+c2=a2+bc.
(Ⅰ)求A的大小;
(Ⅱ)如果cosB=,b=2,求a的值.
17.我省城乡居民社会养老保险个人年缴费分100,200,300,400,500,600,700,800,900,1000(单位:元)十个档次,某社区随机抽取了50名村民,按缴费在100:500元,600:1000元,以及年龄在20:39岁,40:59岁之间进行了统计,相关数据如下:
(1)用分层抽样的方法在缴费100:500元之间的村民中随机抽取5人,则年龄在20:39岁之间应抽取几人?
(2)在缴费100:500元之间抽取的5人中,随机选取2人进行到户走访,求这2人的年龄都在40:59岁之间的概率.
18.已知三次函数f(x)的导函数f′(x)=3x2﹣3ax,f(0)=b,a、b为实数.
(1)若曲线y=f(x)在点(a+1,f(a+1))处切线的斜率为12,求a的值;
(2)若f(x)在区间[﹣1,1]上的最小值、最大值分别为﹣2、1,且1<a<2,求函数f (x)的解析式.
19.如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,PA⊥底面ABCD,且PA=AD,点F是棱PD的中点,点E为CD的中点.
(1)证明:EF∥平面PAC;
(2)证明:AF⊥EF.
20.某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.
(2)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润约为多少万元.(精确到1万元).
21.数列{a n}满足a1=,a n∈(﹣,),且tana n+1•cosa n=1(n∈N*).(Ⅰ)证明数列{tan2a n}是等差数列,并求数列{tan2a n}的前n项和;
(Ⅱ)求正整数m,使得11sina1•sina2•…•sina m=1.
2015年安徽省蚌埠市高考数学一模试卷(文科)
参考答案与试题解析
一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.复数z=(﹣1+i)2的虚部为()
A.﹣2 B.﹣2i C.2 D.0
【考点】复数代数形式的乘除运算;复数的基本概念.
【专题】数系的扩充和复数.
【分析】利用复数的运算法则、虚部的定义即可得出.
【解答】解:复数z=(﹣1+i)2=﹣2i虚部为﹣2.
故选:A.
【点评】本题考查了复数的运算法则、虚部的定义,属于基础题.
2.已知集合A={x|x<2},B={y|y=5x},则A∩B=()
A.{x|x<2} B.{x|x>2} C.{x|o≤x<2} D.{x|0<x<2}
【考点】交集及其运算.
【专题】集合.
【分析】求出B中y的范围确定出B,找出A与B的交集即可.
【解答】解:由B中y=5x>0,得到B={y|y>0},
∵A={x|x<2},
∴A∩B={x|0<x<2},
故选:D.
【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
3.设a=tan135°,b=cos(cos0°),c=(x2+)0,则a,b,c的大小关系是()A.c>a>b B.c>b>a C.a>b>c D.b>c>a
【考点】三角函数的化简求值;不等式比较大小.
【专题】三角函数的求值;不等式的解法及应用.
【分析】利用三角函数的值,判断a、b、c的范围,然后判断大小即可.
【解答】解:a=tan135°=﹣1,
b=cos(cos0°)=cos1∈(0,1),
c=(x2+)0=1.
∴a,b,c的大小关系是c>b>a.
故选:B.
【点评】本题考查三角函数的化简求值,数值大小比较,考查计算能力.
4.函数f(x)=1﹣xlnx的零点所在区间是()
A.(0,)B.(,1)C.(1,2) D.(2,3)
【考点】函数零点的判定定理.
【专题】函数的性质及应用.
【分析】利用根的存在定理分别判断端点值的符合关系.
【解答】解:∵f(1)=1>0,f(2)=1﹣2ln2=ln<0,
∴函数f(x)=1﹣xlnx的零点所在区间是(1,2).
故选:C.
【点评】本题主要考查函数零点区间的判断,判断的主要方法是利用根的存在性定理,判断函数在给定区间端点处的符号是否相反.
5.运行如图所示的程序框图,输出的所有实数对(x,y)所对应的点都在某函数图象上,则该函数的解析式为()
A.y=x+2 B.y=C.y=3x D.y=3x3
【考点】程序框图.
【专题】算法和程序框图.
【分析】模拟程序框图的运行过程,得出该程序运行后输出的是什么,从而求出对应的函数解析式.
【解答】解:模拟程序框图的运行过程,得;
该程序运行后输出的是实数对
(1,3),(2,9),(3,27),(4,81);
这组数对对应的点在函数y=3x的图象上.
故选:C.
【点评】本题考查了程序框图的应用问题,是基础题目.
6.数列{a n}是等差数列,若a1+1,a3+2,a5+3构成公比为q的等比数列,则q=()A.1 B.2 C.3 D.4
【考点】等差数列与等比数列的综合.
【专题】等差数列与等比数列.
【分析】设出等差数列的公差,由a1+1,a3+2,a5+3构成公比为q的等比数列列式求出公差,则由q=化简得答案
【解答】解:设等差数列{a n}的公差为d,
由a1+1,a3+2,a5+3构成等比数列,
得:(a3+2)2=(a1+1)(a5+3),
整理得:a32+4a3+4=a1a5+3a1+a5+3
即(a1+2d)2+4(a1+2d)+4=a1(a1+4d)+4a1+4d+3.
化简得:(2d+1)2=0,即d=﹣.
∴q===1.
故选:A.
【点评】本题考查了等差数列的通项公式,考查了等比数列的性质,是基础的计算题.
7.设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的()
A.必要不充分条件B.充分不必要条件
C.充分必要条件 D.既不充分也不必要条件
【考点】必要条件、充分条件与充要条件的判断.
【专题】简易逻辑.
【分析】根据充分条件和必要条件的定义结合面面垂直的性质即可得到结论.
【解答】解:∵b⊥m,∴当α⊥β,则由面面垂直的性质可得a⊥b成立,
若a⊥b,则α⊥β不一定成立,
故“α⊥β”是“a⊥b”的充分不必要条件,
故选:B.
【点评】本题主要考查充分条件和必要条件的判断,利用线面垂直的性质是解决本题的关键.
8.已知f(x)在R上是奇函数,且f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)=()
A.﹣2 B.2 C.﹣98 D.98
【考点】函数的周期性;奇函数;函数奇偶性的性质.
【分析】利用函数周期是4且为奇函数易于解决.
【解答】解:因为f(x+4)=f(x),故函数的周期是4
所以f(7)=f(3)=f(﹣1),
又f(x)在R上是奇函数,
所以f(﹣1)=﹣f(1)=﹣2×12=﹣2,
故选A.
【点评】本题考查函数的奇偶性与周期性.
9.某几何体的三视图如图所示,则该几何体的体积为()
A.12+πB.6+π C.12﹣πD.6﹣π
【考点】由三视图求面积、体积.
【专题】计算题;空间位置关系与距离.
【分析】由题目所给三视图可得,该几何体为棱柱与圆柱的组合体,棱柱下部挖去一个圆柱,根据三视图的数据,即可得出结论.
【解答】解:由题目所给三视图可得,该几何体为棱柱与圆柱的组合体,棱柱下部挖去一个圆柱,
棱柱为底面为边长为2正方形,高为3,圆柱的底面直径为2,高为1
则该几何体的体积为12﹣π.
故选:C
【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是简单组合体的体积.三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是高考的新增考点,不时出现在高考试题中,应予以重视.
10.函数g(x)是偶函数,函数f(x)=g(x﹣m),若存在φ∈(,),使f(sinφ)=f(cosφ),则实数m的取值范围是()
A.()B.(,] C.()D.(]
【考点】奇偶性与单调性的综合.
【专题】函数的性质及应用;三角函数的图像与性质.
【分析】根据函数的奇偶性确定f(x)关于x=m对称,结合三角函数的性质建立条件关系即可.
【解答】解:∵函数g(x)是偶函数,函数f(x)=g(x﹣m),
∴函数f(x)关于x=m对称,
若φ∈(,),
则sinφ>cosφ,
则由f(sinφ)=f(cosφ),
则=m,
即m==(sinφ×+cosαφ)=sin(φ+)
当φ∈(,),则φ+∈(,),
则<sin(φ+)<,
则<m<,
故选:A
【点评】本题主要考查函数奇偶性和对称性之间的应用以及三角函数的图象和性质,利用辅助角公式是解决本题的关键.
二、填空题(本大题共5小题,每小题5分,共25分.)
11.命题:“∀x∈R,都有x3≥1”的否定形式为∃x0∈R,都有x03<1 .
【考点】命题的否定.
【专题】简易逻辑.
【分析】直接利用全称命题的否定是特称命题写出结果即可.
【解答】解:因为全称命题的否定是特称命题.所以,命题:“∀x∈R,都有x3≥1”的否定形式为:命题:“∃x0∈R,都有x03<1”.
故答案为:∃x0∈R,都有x03<1.
【点评】本题考查全称命题与特称命题的否定关系,基本知识的考查.
12.不等式0<1﹣x2≤1的解集为(﹣1,1).
【考点】一元二次不等式的解法.
【专题】不等式的解法及应用.
【分析】直接利用二次不等式求解即可.
【解答】解:不等式0<1﹣x2≤1,可得不等式0<1﹣x2化为x2<1解得﹣1<x<1,又1﹣x2≤1的解集为x∈R.
∴不等式0<1﹣x2≤1的解集为(﹣1,1).
故答案为:(﹣1,1).
【点评】本题考查二次不等式的解法,基本知识的考查.
13.若log2(2m﹣3)=0,则e lnm﹣1= .
【考点】对数的运算性质.
【专题】函数的性质及应用.
【分析】由已知得2m﹣3=1,解得m=2,从而能求出e lnm﹣1的值.
【解答】解:∵log2(2m﹣3)=0,
∴2m﹣3=1,解得m=2,
∴e lnm﹣1=e ln2÷e=.
故答案为:.
【点评】本题考查指数式化简求值,是基础题,解题时要注意对数方程的合理运用.
14.已知x,y满足条件,则函数z=﹣2x+y的最大值是 4 .
【考点】简单线性规划.
【专题】数形结合;不等式的解法及应用.
【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,求得最优解,把最优解的坐标代入目标函数得答案.
【解答】解:由约束条件作出可行域如图,
化目标函数z=﹣2x+y为y=2x+z,由图可知,当直线y=2x+z过点A(﹣2,0)时,
直线y=2x+z在y轴上的截距最大,即z最大,此时z=﹣2×(﹣2)+0=4.
故答案为:4.
【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.
15.若正方形P1P2P3P4的边长为1,集合M={x|x=且i,j∈{1,2,3,4}},则对于下列命题:
①当i=1,j=3时,x=2;
②当i=3,j=1时,x=0;
③当x=1时,(i,j)有4种不同取值;
④当x=﹣1时,(i,j)有2种不同取值;
⑤M中的元素之和为0.
其中正确的结论序号为①③⑤.(填上所有正确结论的序号)
【考点】命题的真假判断与应用.
【专题】平面向量及应用.
【分析】建系如图,则P1(0,1),P2(0,0),P3(1,0),P4(1,1),由于集合M={x|x=
且i,j∈{1,2,3,4}},利用向量的坐标运算对①②③④⑤五个选项逐一分析判断即可.【解答】解:建立直角坐标系如图:
则P1(0,1),P2(0,0),P3(1,0),P4(1,1).
∵集合M={x|x=且i,j∈{1,2,3,4}},
对于①,当i=1,j=3时,x==(1,﹣1)•(1,﹣1)=1+1=2,故①正确;
对于②,当i=3,j=1时,x==(1,﹣1)•(﹣1,1)=﹣2,故②错误;
对于③,∵集合M={x|x=且i,j∈{1,2,3,4}},
∴=(1,﹣1),==(0,﹣1),==(1,0),
∴•=1;•=1;•=1;•=1;
∴当x=1时,(i,j)有4种不同取值,故③正确;
④同理可得,当x=﹣1时,(i,j)有4种不同取值,故④错误;
⑤由以上分析,可知,当x=1时,(i,j)有4种不同取值;当x=﹣1时,(i,j)有4
种不同取值,当i=1,j=3时,x=2时,当i=3,j=1时,x=﹣2;
当i=2,j=4,或i=4,j=2时,x=0,
∴M中的元素之和为0,故⑤正确.
综上所述,正确的序号为:①③⑤,
故答案为:①③⑤.
【点评】本题考查命题的真假判断与应用,着重考查平面向量的坐标运算,建立直角坐标系,
求得=(1,﹣1),==(0,﹣1),==(1,0)是关键,考查分析、化归与运算求解能力,属于难题.
三、解答题(本大题共6小题,满分75分.解答应写出文字说明、证明过程或演算步骤.)16.在△ABC中,角A,B,C所对的边分别为a,b,c.已知b2+c2=a2+bc.
(Ⅰ)求A的大小;
(Ⅱ)如果cosB=,b=2,求a的值.
【考点】余弦定理;正弦定理.
【专题】三角函数的求值.
【分析】(Ⅰ)利用余弦定理表示出cosA,将已知等式变形后代入求出cosA的值,即可确定出A的大小;
(Ⅱ)由cosB的值,利用同角三角函数间的基本关系求出sinB的值,再由sinA,b的值,利用正弦定理即可求出a的值.
【解答】解:(Ⅰ)∵b2+c2=a2+bc,即b2+c2﹣a2=bc,
∴cosA==,
又∵A∈(0,π),
∴A=;
(Ⅱ)∵cosB=,B∈(0,π),
∴sinB==,
由正弦定理=,得a===3.
【点评】此题考查了正弦、余弦定理,以及同角三角函数间的基本关系,熟练掌握定理是解本题的关键.
17.我省城乡居民社会养老保险个人年缴费分100,200,300,400,500,600,700,800,900,1000(单位:元)十个档次,某社区随机抽取了50名村民,按缴费在100:500元,600:1000元,以及年龄在20:39岁,40:59岁之间进行了统计,相关数据如下:
(1)用分层抽样的方法在缴费100:500元之间的村民中随机抽取5人,则年龄在20:39岁之间应抽取几人?
(2)在缴费100:500元之间抽取的5人中,随机选取2人进行到户走访,求这2人的年龄都在40:59岁之间的概率.
【考点】分层抽样方法.
【专题】概率与统计.
【分析】(1)根据分层抽样的定义建立比例关系进行求解即可.
(2)利用列举法结合古典概型的概率公式进行期间.
【解答】解:(1)设抽取x人,则,解得x=2,
即年龄在20:39岁之间应抽取2人.
(2)设在缴费100:500元之间抽取的5人中,年龄在20:39岁年龄的两人为A,B,在40:59岁之间为a,b,c,
随机选取2人的情况有(A,B),(A,a),(A,b),(A,c),(B,a),(B,b),(B,c),
(a,b),(a,c),(b,c),共10种,
年龄都在40:59岁之间的有(a,b),(a,c),(b,c),共3种,
则对应的概率P=.
【点评】本题主要考查分层抽样的应用,以及古典概型的计算,利用列举法是解决本题的关键.
18.已知三次函数f(x)的导函数f′(x)=3x2﹣3ax,f(0)=b,a、b为实数.
(1)若曲线y=f(x)在点(a+1,f(a+1))处切线的斜率为12,求a的值;
(2)若f(x)在区间[﹣1,1]上的最小值、最大值分别为﹣2、1,且1<a<2,求函数f (x)的解析式.
【考点】利用导数求闭区间上函数的最值;函数解析式的求解及常用方法;导数的运算.【专题】计算题.
【分析】(1)求出x=a+1处的导数值即切线的斜率,令其为12,列出方程,求出a的值.(2)据导函数的形式设出f(x),求出导函数为0的两个根,判断出根与定义域的关系,求出函数的最值,列出方程求出f(x)的解析式.
【解答】解:(1)由导数的几何意义f′(a+1)=12
∴3(a+1)2﹣3a(a+1)=12
∴3a=9∴a=3
(2)∵f′(x)=3x2﹣3ax,f(0)=b
∴
由f′(x)=3x(x﹣a)=0得x1=0,x2=a
∵x∈[﹣1,1],1<a<2
∴当x∈[﹣1,0)时,f′(x)>0,f(x)递增;当x∈(0,1]时,f′(x)<0,f(x)递减.
∴f(x)在区间[﹣1,1]上的最大值为f(0)
∵f(0)=b,
∴b=1
∵,
∴f(﹣1)<f(1)
∴f(﹣1)是函数f(x)的最小值,
∴
∴
∴f(x)=x3﹣2x2+1
【点评】曲线在切点处的导数值为曲线的切线斜率;求函数的最值,一定要注意导数为0
的根与定义域的关系.
19.如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,PA⊥底面ABCD,且PA=AD,点F是棱PD的中点,点E为CD的中点.
(1)证明:EF∥平面PAC;
(2)证明:AF⊥EF.
【考点】直线与平面平行的判定;直线与平面垂直的性质.
【专题】空间位置关系与距离.
【分析】(1)证明EF∥平面PAC,可直接利用三角形的中位线定理得到EF∥PC,然后由线面平行的判定定理得结论;
(2)要证PE⊥AF,因为PE⊂面PCD,可证AF⊥面PCD,由已知底面ABCD是正方形,PA⊥平面ABCD,易得AF⊥CD,再由PA=AD,点F是棱PD的中点得到AF⊥PD,AF⊥平面PDC,即可证明AF⊥EF;
【解答】(1)证明:如图,
∵点E,F分别为CD,PD的中点,
∴EF∥PC.
∵PC⊂平面PAC,EF⊄平面PAC,
∴EF∥平面PAC.
(2)证明:∵PA⊥平面ABCD,CD⊂平面ABCD,
又ABCD是矩形,∴CD⊥AD,
∵PA∩AD=A,∴CD⊥平面PAD.
∵AF⊂平面PAD,∴AF⊥CD.
∵PA=AD,点F是PD的中点,∴AF⊥PD.
又CD∩PD=D,∴AF⊥平面PDC.
∵EF⊂平面PDC,
∴AF⊥EF.
【点评】本题考查了线面平行的判定,考查了由线面垂直得线线垂直,综合考查了学生的空间想象能力和思维能力,是中档题.
20.某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.
(2)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润约为多少万元.(精确到1万元).
【考点】函数模型的选择与应用.
【专题】应用题.
【分析】(1)根据函数的模型设出函数解析式,从两个图中分别找出特殊点坐标,代入函数解析式求出两个函数解析式.
(2)将企业获利表示成对产品B投资x的函数,再用换元法,将函数转化为二次函数,即可求出函数的最值.
【解答】解:(1)投资为x万元,A产品的利润为f(x)万元,B产品的利润为g(x)万元,
由题设f(x)=k1x,g(x)=k2,(k1,k2≠0;x≥0)
由图知f(1)=,∴k1=
又g(4)=,∴k2=
从而f(x)=,g(x)=(x≥0)
(2)设A产品投入x万元,则B产品投入10﹣x万元,设企业的利润为y万元
y=f(x)+g(10﹣x)=,(0≤x≤10),
令,∴(0≤t≤)
当t=,y max≈4,此时x=3.75
∴当A产品投入3.75万元,B产品投入6.25万元时,企业获得最大利润约为4万元.
【点评】本题考查利用待定系数法求函数的解析式、考查将实际问题的最值问题转化为函数的最值问题.解题的关键是换元,利用二次函数的求最值的方法求解.
21.数列{a n}满足a1=,a n∈(﹣,),且tana n+1•cosa n=1(n∈N*).
(Ⅰ)证明数列{tan2a n}是等差数列,并求数列{tan2a n}的前n项和;
(Ⅱ)求正整数m,使得11sina1•sina2•…•sina m=1.
【考点】数列的求和.
【专题】等差数列与等比数列.
【分析】(Ⅰ)由于对任意正整数n,a n∈(﹣,),且tana n+1•cosa n=1(n∈N*).可
得tan2a n+1==1+tan2a n,即可证明数列{tan2a n}是等差数列,再利用通项公式及其前n 项和公式即可得出.
(II)由cosa n>0,tana n+1>0,.可得tana n,cosa n,利用同角三角函数基本关系式可得sina1•sina2•…•sina m=(tana2•cosa1)•(tana3cosa2)•…•(tana m•cosa m
)•(tana1•cosa m)=(tana1•cosa m),即可得出.
﹣1
【解答】(Ⅰ)证明:∵对任意正整数n,a n∈(﹣,),且tana n+1•cosa n=1(n∈N*).
故tan2a n+1==1+tan2a n,
∴数列{tan2a n}是等差数列,首项tan2a1=,以1为公差.
∴=.
∴数列{tan2a n}的前n项和=+=.
(Ⅱ)解:∵cosa n>0,∴tana n+1>0,.
∴tana n=,,
∴sina1•sina2•…•sina m=(tana1cosa1)•(tana2•cosa2)•…•(tana m•cosa m)
=(tana2•cosa1)•(tana3cosa2)•…•(tana m•cosa m﹣1)•(tana1•cosa m)
21 =(tana 1•cosa m )=
=,
由,得m=40. 【点评】本题考查了等差数列的通项公式及其前n 项和公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于难题.。