2020-2021备战中考数学提高题专题复习平行四边形练习题附答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021备战中考数学提高题专题复习平行四边形练习题附答案
一、平行四边形
1.(问题情景)利用三角形的面积相等来求解的方法是一种常见的等积法,此方法是我们解决几何问题的途径之一.
例如:张老师给小聪提出这样一个问题:
如图1,在△ABC中,AB=3,AD=6,问△ABC的高AD与CE的比是多少?
小聪的计算思路是:
根据题意得:S△ABC=1
2
BC•AD=
1
2
AB•CE.
从而得2AD=CE,∴
1
2 AD CE
请运用上述材料中所积累的经验和方法解决下列问题:
(1)(类比探究)
如图2,在▱ABCD中,点E、F分别在AD,CD上,且AF=CE,并相交于点O,连接BE、BF,
求证:BO平分角AOC.
(2)(探究延伸)
如图3,已知直线m∥n,点A、C是直线m上两点,点B、D是直线n上两点,点P是线段CD中点,且∠APB=90°,两平行线m、n间的距离为4.求证:PA•PB=2AB.
(3)(迁移应用)
如图4,E为AB边上一点,ED⊥AD,CE⊥CB,垂足分别为D,C,∠DAB=∠B,
AB=34,BC=2,AC=26,又已知M、N分别为AE、BE的中点,连接DM、CN.求
△DEM与△CEN的周长之和.
【答案】(1)见解析;(2)见解析;(3)34
【解析】
分析:(1)、根据平行四边形的性质得出△ABF和△BCE的面积相等,过点B作OG⊥AF于
G,OH⊥CE于H,从而得出AF=CE,然后证明△BOG和△BOH全等,从而得出
∠BOG=∠BOH,即角平分线;(2)、过点P作PG⊥n于G,交m于F,根据平行线的性质得出△CPF和△DPG全等,延长BP交AC于E,证明△CPE和△DPB全等,根据等积法得出
AB=AP×PB,从而得出答案;(3)、,延长AD,BC交于点G,过点A作AF⊥BC于F,设CF=x,根据Rt△ABF和Rt△ACF的勾股定理得出x的值,根据等积法得出AE=2DM=2EM,BE=2CN=2EN, DM+CN=AB,从而得出两个三角形的周长之和.
同理:EM+EN=AB
详解:证明:(1)如图2,∵四边形ABCD是平行四边形,
∴S△ABF=S▱ABCD,S△BCE=S▱ABCD,∴S△ABF=S△BCE,
过点B作OG⊥AF于G,OH⊥CE于H,∴S△ABF=AF×BG,S△BCE=CE×BH,
∴AF×BG=CE×BH,即:AF×BG=CE×BH,∵AF=CE,∴BG=BH,
在Rt△BOG和Rt△BOH中,,∴Rt△BOG≌Rt△BOH,∴∠BOG=∠BOH,
∴OB平分∠AOC,
(2)如图3,过点P作PG⊥n于G,交m于F,∵m∥n,∴PF⊥AC,
∴∠CFP=∠BGP=90°,∵点P是CD中点,
在△CPF和△DPG中,,∴△CPF≌△DPG,∴PF=PG=FG=2,
延长BP交AC于E,∵m∥n,∴∠ECP=∠BDP,∴CP=DP,
在△CPE和△DPB中,,∴△CPE≌△DPB,∴PE=PB,
∵∠APB=90°,∴AE=AB,∴S△APE=S△APB,
∵S△APE=AE×PF=AE=AB,S△APB=AP×PB,
∴AB=AP×PB,即:PA•PB=2AB;
(3)如图4,延长AD,BC交于点G,∵∠BAD=∠B,
∴AG=BG,过点A作AF⊥BC于F,
设CF=x(x>0),∴BF=BC+CF=x+2,在Rt△ABF中,AB=,
根据勾股定理得,AF2=AB2﹣BF2=34﹣(x+2)2,在Rt△ACF中,AC=,
根据勾股定理得,AF2=AC2﹣CF2=26﹣x2,
∴34﹣(x+2)2=26﹣x2,∴x=﹣1(舍)或x=1,∴AF==5,
连接EG,∵S△ABG=BG×AF=S△AEG+S△BEG=AG×DE+BG×CE=BG(DE+CE),
∴DE+CE=AF=5, 在Rt △ADE 中,点M 是AE 的中点, ∴AE=2DM=2EM , 同理:BE=2CN=2EN , ∵AB=AE+BE , ∴2DM+2CN=AB , ∴DM+CN=AB ,
同理:EM+EN=AB ∴△DEM 与△CEN 的周长之和=DE+DM+EM+CE+CN+EN=(DE+CE )+[(DM+CN )+(EM+EN )] =(DE+CN )+AB=5+

点睛:本题主要考查的就是三角形全等的判定与性质以及三角形的等积法,综合性非常强,难度较大.在解决这个问题的关键就是作出辅助线,然后根据勾股定理和三角形全等得出各个线段之间的关系.
2.如图,四边形ABCD 中,∠BCD =∠D =90°,E 是边AB 的中点.已知AD =1,AB =2. (1)设BC =x ,CD =y ,求y 关于x 的函数关系式,并写出定义域; (2)当∠B =70°时,求∠AEC 的度数; (3)当△ACE 为直角三角形时,求边BC 的长.
【答案】(1)()223
03y x x x =-++<<;(2)∠AEC =105°;(3)边BC 的长为
2或
117
2
. 【解析】
试题分析:(1)过A 作AH ⊥BC 于H ,得到四边形ADCH 为矩形.在△BAH 中,由勾股定理即可得出结论.
(2)取CD 中点T ,连接TE ,则TE 是梯形中位线,得ET ∥AD ,ET ⊥CD ,∠AET =∠B =70°.
又AD =AE =1,得到∠AED =∠ADE =∠DET =35°.由ET 垂直平分CD ,得∠CET =∠DET =35°,即可得到结论.
(3)分两种情况讨论:①当∠AEC =90°时,易知△CBE ≌△CAE ≌△CAD ,得∠BCE =30°, 解△ABH 即可得到结论.
②当∠CAE =90°时,易知△CDA ∽△BCA ,由相似三角形对应边成比例即可得到结论. 试题解析:解:(1)过A 作AH ⊥BC 于H .由∠D =∠BCD =90°,得四边形ADCH 为矩形. 在△BAH 中,AB =2,∠BHA =90°,AH =y ,HB =1x -,∴2
2221y x =+-, 则()223
03y x x x =
-++<<
(2)取CD 中点T ,联结TE ,则TE 是梯形中位线,得ET ∥AD ,ET ⊥CD ,∴∠AET =∠B =70°.
又AD =AE =1,∴∠AED =∠ADE =∠DET =35°.由ET 垂直平分CD ,得∠CET =∠DET =35°,∴∠AEC =70°+35°=105°.
(3)分两种情况讨论:①当∠AEC =90°时,易知△CBE ≌△CAE ≌△CAD ,得∠BCE =30°, 则在△ABH 中,∠B =60°,∠AHB =90°,AB =2,得BH =1,于是BC =2. ②当∠CAE =90°时,易知△CDA ∽△BCA ,又2224AC BC AB x =
-=-,

22
4117
4
AD CA
x x AC CB
x -±=⇒=
⇒=-(舍负) 易知∠ACE <90°,所以边BC 的长为
117
+. 综上所述:边BC 的长为2或
117
2
+.
点睛:本题是四边形综合题.考查了梯形中位线,相似三角形的判定与性质.解题的关键是掌握梯形中常见的辅助线作法.
3.已知Rt △ABD 中,边AB=OB=1,∠ABO=90° 问题探究:
(1)以AB 为边,在Rt △ABO 的右边作正方形ABC ,如图(1),则点O 与点D 的距离为 .
(2)以AB 为边,在Rt △ABO 的右边作等边三角形ABC ,如图(2),求点O 与点C 的距离.
问题解决:
(3)若线段DE=1,线段DE的两个端点D,E分别在射线OA、OB上滑动,以DE为边向外作等边三角形DEF,如图(3),则点O与点F的距离有没有最大值,如果有,求出最大值,如果没有,说明理由.
【答案】(1)、5;(2)、62
2
+
;(3)、
321
2
++
.
【解析】
【分析】
试题分析:(1)、如图1中,连接OD,在Rt△ODC中,根据OD=22
OC CD
+计算即可.(2)、如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.在Rt△OCE中,根据
OC=22
OE CE
+计算即可.(3)、如图3中,当OF⊥DE时,OF的值最大,设OF交DE于H,在OH上取一点M,使得OM=DM,连接DM.分别求出MH、OM、FH即可解决问题.
【详解】
试题解析:(1)、如图1中,连接OD,
∵四边形ABCD是正方形,∴AB=BC=CD=AD=1,∠C=90°在Rt△ODC中,∵∠C=90°,OC=2,CD=1,
∴OD=2222
215
OC CD
+=+=
(2)、如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.
∵∠FBE=∠E=∠CFB=90°,∴四边形BECF是矩形,∴BF=CF=1
2,CF=BE=
3
2

在Rt △OCE 中,OC=2
2
2231122OE CE ⎛⎫⎛⎫+=++ ⎪ ⎪ ⎪⎝⎭
⎝⎭=622+. (3)、如图3中,当OF ⊥DE 时,OF 的值最大,设OF 交DE 于H ,在OH 上取一点M ,使得OM=DM ,连接DM .
∵FD=FE=DE=1,OF ⊥DE , ∴DH=HE ,OD=OE ,∠DOH=
1
2
∠DOE=22.5°, ∵OM=DM , ∴∠MOD=∠MDO=22.5°, ∴∠DMH=∠MDH=45°, ∴DH=HM=12, ∴DM=OM=2, ∵FH=223DF DH -=, ∴OF=OM+MH+FH=2132++
=321++. ∴OF 的最大值为
321
++. 考点:四边形综合题.
4.(1)(问题发现)
如图1,在Rt △ABC 中,AB =AC =2,∠BAC =90°,点D 为BC 的中点,以CD 为一边作正方形CDEF ,点E 恰好与点A 重合,则线段BE 与AF 的数量关系为 (2)(拓展研究)
在(1)的条件下,如果正方形CDEF 绕点C 旋转,连接BE ,CE ,AF ,线段BE 与AF 的数量关系有无变化?请仅就图2的情形给出证明; (3)(问题发现)
当正方形CDEF 旋转到B ,E ,F 三点共线时候,直接写出线段AF 的长.
【答案】(1)2AF ;(2)无变化;(3)AF 313. 【解析】
试题分析:(1)先利用等腰直角三角形的性质得出2 ,再得出BE=AB=2,即可得出结论;
(2)先利用三角函数得出
2CA CB =,同理得出2
CF CE =
,夹角相等即可得出△ACF ∽△BCE ,进而得出结论;
(3)分两种情况计算,当点E 在线段BF 上时,如图2,先利用勾股定理求出
,,即可得出,借助(2)得出的结论,当点E 在线段BF 的延长线上,同前一种情况一样即可得出结论. 试题解析:(1)在Rt △ABC 中,AB=AC=2,
根据勾股定理得,,
点D 为BC 的中点,∴AD=
1
2
, ∵四边形CDEF 是正方形,∴
, ∵BE=AB=2,∴
AF ,
故答案为AF ; (2)无变化;
如图2,在Rt △ABC 中,AB=AC=2,
∴∠ABC=∠ACB=45°,∴sin ∠ABC=2
CA CB =
, 在正方形CDEF 中,∠FEC=1
2
∠FED=45°,
在Rt △CEF 中,sin ∠FEC=CF CE =

CF CA
CE CB
=, ∵∠FCE=∠ACB=45°,∴∠FCE ﹣∠ACE=∠ACB ﹣∠ACE ,∴∠FCA=∠ECB ,
∴△ACF ∽△BCE ,∴
BE CB
AF CA
=∴AF , ∴线段BE 与AF 的数量关系无变化; (3)当点E 在线段AF 上时,如图2,
由(1)知,,
在Rt △BCF 中,,,
根据勾股定理得,,∴BE=BF ﹣,
由(2)知,,∴﹣1, 当点E 在线段BF 的延长线上时,如图3,
在Rt △ABC 中,AB=AC=2,∴∠ABC=∠ACB=45°,∴sin ∠ABC=2
CA CB =
, 在正方形CDEF 中,∠FEC=
1
2
∠FED=45°,
在Rt △CEF 中,sin ∠FEC=
2
2
CF CE =
,∴CF CA CE CB = , ∵∠FCE=∠ACB=45°,∴∠FCB+∠ACB=∠FCB+∠FCE ,∴∠FCA=∠ECB , ∴△ACF ∽△BCE ,∴
BE CB
AF CA
= =2,∴BE=2AF , 由(1)知,CF=EF=CD=2, 在Rt △BCF 中,CF=2,BC=22,
根据勾股定理得,BF=6,∴BE=BF+EF=6+2, 由(2)知,BE=2AF ,∴AF=3+1.
即:当正方形CDEF 旋转到B ,E ,F 三点共线时候,线段AF 的长为3﹣1或3+1.
5.(1)如图1,将矩形ABCD 折叠,使BC 落在对角线BD 上,折痕为BE ,点C 落在点C '处,若42ADB =o ∠,则DBE ∠的度数为______o .
(2)小明手中有一张矩形纸片ABCD ,4AB =,9AD =.
(画一画)如图2,点E 在这张矩形纸片的边AD 上,将纸片折叠,使AB 落在CE 所在直线上,折痕设为MN (点M ,N 分别在边AD ,BC 上),利用直尺和圆规画出折痕
MN (不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);
(算一算)如图3,点F 在这张矩形纸片的边BC 上,将纸片折叠,使FB 落在射线FD 上,折痕为GF ,点,A B 分别落在点A ',B '处,若7
3
AG =
,求B D '的长.
【答案】(1)21;(2)画一画;见解析;算一算:3
B D'=
【解析】
【分析】
(1)利用平行线的性质以及翻折不变性即可解决问题;
(2)【画一画】,如图2中,延长BA交CE的延长线由G,作∠BGC的角平分线交AD于M,交BC于N,直线MN即为所求;
【算一算】首先求出GD=9-720
33
=,由矩形的性质得出AD∥BC,BC=AD=9,由平行线的
性质得出∠DGF=∠BFG,由翻折不变性可知,∠BFG=∠DFG,证出∠DFG=∠DGF,由等腰三
角形的判定定理证出DF=DG=20
3
,再由勾股定理求出CF,可得BF,再利用翻折不变性,
可知FB′=FB,由此即可解决问题.【详解】
(1)如图1所示:
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠ADB=∠DBC=42°,
由翻折的性质可知,∠DBE=∠EBC=1
2
∠DBC=21°,
故答案为21.
(2)【画一画】如图所示:
【算一算】
如3所示:
∵AG=7
3
,AD=9,
∴GD=9-720
33
=,
∵四边形ABCD是矩形,
∴AD∥BC,BC=AD=9,
∴∠DGF=∠BFG,
由翻折不变性可知,∠BFG=∠DFG,∴∠DFG=∠DGF,
∴DF=DG=20
3

∵CD=AB=4,∠C=90°,
∴在Rt△CDF中,由勾股定理得:
2
222
2016
4
33 DF CD
⎛⎫
-=-=

⎝⎭

∴BF=BC-CF=91611
33
-=,
由翻折不变性可知,FB=FB′=11 3

∴B′D=DF-FB′=20113
33
-=.
【点睛】
四边形综合题,考查了矩形的性质、翻折变换的性质、勾股定理、等腰三角形的判定、平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用翻折不变性解决问题.
6.如图1,在正方形ABCD中,AD=6,点P是对角线BD上任意一点,连接PA,PC过点P 作PE⊥PC交直线AB于E.
(1)求证:PC=PE;
(2)延长AP交直线CD于点F.
①如图2,若点F是CD的中点,求△APE的面积;
②若ΔAPE的面积是216
25
,则DF的长为
(3)如图3,点E在边AB上,连接EC交BD于点M,作点E关于BD的对称点Q,连接
PQ,MQ,过点P作PN∥CD交EC于点N,连接QN,若PQ=5,MN=72
3
,则△MNQ的
面积是
【答案】(1)略;(2)①8,②4或9;(3)5 6
【解析】
【分析】
(1)利用正方形每个角都是90°,对角线平分对角的性质,三角形外角等于和它不相邻的两个内角的和,等角对等边等性质容易得证;
(2)作出△ADP和△DFP的高,由面积法容易求出这个高的值.从而得到△PAE的底和高,并求出面积.第2小问思路一样,通过面积法列出方程求解即可;
(3)根据已经条件证出△MNQ是直角三角形,计算直角边乘积的一半可得其面积.
【详解】
(1) 证明:∵点P在对角线BD上,
∴△ADP≌△CDP,
∴AP=CP, ∠DAP =∠DCP,
∵PE⊥PC,∴∠EPC=∠EPB+∠BPC=90°,
∵∠PEA=∠EBP+∠EPB=45°+90°-∠BPC=135°-∠BPC,
∵∠PAE=90°-∠DAP=90°-∠DCP,
∠DCP=∠BPC-∠PDC=∠BPC-45°,
∴∠PAE=90°-(∠BPC-45°)= 135°-∠BPC,
∴∠PEA=∠PAE,
∴PC=PE;
(2)①如图2,过点P分别作PH⊥AD,PG⊥CD,垂足分别为H、G.延长GP交AB于点
M.
∵四边形ABCD 是正方形,P 在对角线上,
∴四边形HPGD 是正方形,
∴PH=PG,PM ⊥AB,
设PH=PG=a,
∵F 是CD 中点,AD =6,则FD=3,ADF S n =9,
∵ADF S n =ADP DFP S S +n n =
1122AD PH DF PG ⨯+⨯, ∴1163922
a a ⨯+⨯=,解得a=2, ∴AM=HP=2,MP=MG-PG=6-2=4,
又∵PA=PE,
∴AM=EM,AE=4,
∵APE S n =1144822
EA MP ⨯=⨯⨯=, ②设HP =b,由①可得AE=2b,MP=6-b,
∴APE S n =()121626225
b b ⨯⨯-=, 解得b=2.4 3.6或,
∵ADF S n =ADP DFP S S +n n =
1122
AD PH DF PG ⨯+⨯, ∴11166222
b DF b DF ⨯⨯+⨯=⨯, ∴当b=2.4时,DF=4;当b =3.6时,DF =9,
即DF 的长为4或9;
(3)如图,
∵E 、Q 关于BP 对称,PN ∥CD,
∴∠1=∠2,∠2+∠3=∠BDC=45°,
∴∠1+∠4=45°,
∴∠3=∠4,
易证△PEM ≌△PQM, △PNQ ≌△PNC,
∴∠5=∠6, ∠7=∠8 ,EM=QM,NQ=NC,
∴∠6+∠7=90°,
∴△MNQ 是直角三角形,
设EM=a,NC=b 列方程组
222252372 3a b a b ⎧+=⎪⎪⎨⎛⎪+= ⎪⎝⎭⎩
, 可得12ab=56
, ∴MNQ 56S V =
, 【点睛】
本题是四边形综合题目,考查了正方形的性质、等腰直角三角形的判定与性质、全等三角形的判定与性质等知识;本题综合性强,有一定难度,熟练掌握正方形的性质,证明三角形全等是解决问题的关键.要注意运用数形结合思想.
7.△ABC 为等边三角形,AF AB =.BCD BDC AEC ∠=∠=∠.
(1)求证:四边形ABDF 是菱形.
(2)若BD 是ABC ∠的角平分线,连接AD ,找出图中所有的等腰三角形.
【答案】(1)证明见解析;(2)图中等腰三角形有△ABC,△BDC,△ABD,△ADF,△ADC,△ADE.
【解析】
【分析】
(1)先求证BD∥AF,证明四边形ABDF是平行四边形,再利用有一组邻边相等的平行四边形是菱形即可证明;(2)先利用BD平分∠ABC,得到BD垂直平分线段AC,进而证明△DAC是等腰三角形,根据BD⊥AC,AF⊥AC,找到角度之间的关系,证明△DAE是等腰三角形,进而得到BC=BD=BA=AF=DF,即可解题,见详解.
【详解】
(1)如图1中,∵∠BCD=∠BDC,
∴BC=BD,
∵△ABC是等边三角形,
∴AB=BC,
∵AB=AF,
∴BD=AF,
∵∠BDC=∠AEC,
∴BD∥AF,
∴四边形ABDF是平行四边形,
∵AB=AF,
∴四边形ABDF是菱形.
(2)解:如图2中,∵BA=BC,BD平分∠ABC,
∴BD垂直平分线段AC,
∴DA=DC,
∴△DAC是等腰三角形,
∵AF∥BD,BD⊥AC
∴AF⊥AC,
∴∠EAC=90°,
∵∠DAC=∠DCA,∠DAC+∠DAE=90°,∠DCA+∠AEC=90°,
∴∠DAE=∠DEA,
∴DA=DE,
∴△DAE是等腰三角形,
∵BC=BD=BA=AF=DF,
∴△BCD ,△ABD ,△ADF 都是等腰三角形,
综上所述,图中等腰三角形有△ABC ,△BDC ,△ABD ,△ADF ,△ADC ,△ADE .
【点睛】
本题考查菱形的判定,等边三角形的性质,等腰三角形的判定等知识,属于中考常考题型,熟练掌握等腰三角形的性质是解题的关键.
8.在平面直角坐标系中,O 为原点,点A (﹣6,0)、点C (0,6),若正方形OABC 绕点O 顺时针旋转,得正方形OA′B′C′,记旋转角为α:
(1)如图①,当α=45°时,求BC 与A′B′的交点D 的坐标;
(2)如图②,当α=60°时,求点B′的坐标;
(3)若P 为线段BC′的中点,求AP 长的取值范围(直接写出结果即可).
【答案】(1)(62,6)-;(2)(333,333)+;(3)323323AP 剟.
【解析】
【分析】
(1)当α=45°时,延长OA′经过点B ,在Rt △BA′D 中,∠OBC =45°,A′B =626,可求得BD 的长,进而求得CD 的长,即可得出点D 的坐标;
(2)过点C′作x 轴垂线MN ,交x 轴于点M ,过点B′作MN 的垂线,垂足为N ,证明△OMC′≌△C′NB′,可得C′N =OM =33,B′N =C′M =3,即可得出点B′的坐标;
(3)连接OB ,AC 相交于点K ,则K 是OB 的中点,因为P 为线段BC′的中点,所以PK =12
OC′=3,即点P 在以K 为圆心,3为半径的圆上运动,即可得出AP 长的取值范围. 【详解】
解:(1)∵A(﹣6,0)、C(0,6),O(0,0),
∴四边形OABC是边长为6的正方形,
当α=45°时,
如图①,延长OA′经过点B,
∵OB=62,OA′=OA=6,∠OBC=45°,
∴A′B=626
-,
∴BD=(626
-)×21262
=-,
∴CD=6﹣(1262
-,
-)=626
∴BC与A′B′的交点D的坐标为(662
-,6);
(2)如图②,过点C′作x轴垂线MN,交x轴于点M,过点B′作MN的垂线,垂足为N,∵∠OC′B′=90°,
∴∠OC′M=90°﹣∠B′C′N=∠C′B′N,
∵OC′=B′C′,∠OMC′=∠C′NB′=90°,
∴△OMC′≌△C′NB′(AAS),
当α=60°时,
∵∠A′OC′=90°,OC′=6,
∴∠C′OM=30°,
∴C′N=OM=33,B′N=C′M=3,
∴点B′的坐标为)
-+;
333,333
(3)如图③,连接OB,AC相交于点K,
则K是OB的中点,
∵P 为线段BC′的中点,
∴PK =12OC′=3, ∴P 在以K 为圆心,3为半径的圆上运动,
∵AK =32,
∴AP 最大值为323+,AP 的最小值为323-,
∴AP 长的取值范围为323323AP -+剟.
【点睛】
本题考查正方形性质,全等三角形判定与性质,三角形中位线定理.(3)问解题的关键是利用中位线定理得出点P 的轨迹.
9.定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”.
性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.
理解:如图①,在△ABC 中,CD 是AB 边上的中线,那么△ACD 和△BCD 是“友好三角形”,并且S △ACD =S △BCD .
应用:如图②,在矩形ABCD 中,AB=4,BC=6,点E 在AD 上,点F 在BC 上,AE=BF ,AF 与BE 交于点O .
(1)求证:△AOB 和△AOE 是“友好三角形”;
(2)连接OD ,若△AOE 和△DOE 是“友好三角形”,求四边形CDOF 的面积.
探究:在△ABC 中,∠A=30°,AB=4,点D 在线段AB 上,连接CD ,△ACD 和△BCD 是“友好三角形”,将△ACD 沿CD 所在直线翻折,得到△A′CD ,若△A′CD 与△ABC 重合部分的面积等于△ABC 面积的,请直接写出△ABC 的面积.
【答案】(1)见解析;(2)12;探究:2或2

【解析】
试题分析:(1)利用一组对边平行且相等的四边形是平行四边形,得到四边形ABFE是平行四边形,然后根据平行四边形的性质证得OE=OB,即可证得△AOE和△AOB是友好三角形;
(2)△AOE和△DOE是“友好三角形”,即可得到E是AD的中点,则可以求得△ABE、
△ABF的面积,根据S四边形CDOF=S矩形ABCD-2S△ABF即可求解.
探究:画出符合条件的两种情况:①求出四边形A′DCB是平行四边形,求出BC和A′D推出∠ACB=90°,根据三角形面积公式求出即可;②求出高CQ,求出△A′DC的面积.即可求出△ABC的面积.
试题解析:(1)∵四边形ABCD是矩形,
∴AD∥BC,
∵AE=BF,
∴四边形ABFE是平行四边形,
∴OE=OB,
∴△AOE和△AOB是友好三角形.
(2)∵△AOE和△DOE是友好三角形,
∴S△AOE=S△DOE,AE=ED=AD=3,
∵△AOB与△AOE是友好三角形,
∴S△AOB=S△AOE,
∵△AOE≌△FOB,
∴S△AOE=S△FOB,
∴S△AOD=S△ABF,
∴S四边形CDOF=S矩形ABCD-2S△ABF=4×6-2××4×3=12.
探究:
解:分为两种情况:①如图1,
∵S△ACD=S△BCD.
∴AD=BD=AB,
∵沿CD折叠A和A′重合,
∴AD=A′D=AB=×4=2,
∵△A′CD与△ABC重合部分的面积等于△ABC面积的,
∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,
∴DO=OB,A′O=CO,
∴四边形A′DCB是平行四边形,
∴BC=A′D=2,
过B作BM⊥AC于M,
∵AB=4,∠BAC=30°,
∴BM=AB=2=BC,
即C和M重合,
∴∠ACB=90°,
由勾股定理得:AC=,
∴△ABC的面积是×BC×AC=×2×2=2;
②如图2,
∵S△ACD=S△BCD.
∴AD=BD=AB,
∵沿CD折叠A和A′重合,
∴AD=A′D=AB=×4=2,
∵△A′CD与△ABC重合部分的面积等于△ABC面积的,
∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,
∴DO=OA′,BO=CO,
∴四边形A′BDC是平行四边形,
∴A′C=BD=2,
过C作CQ⊥A′D于Q,
∵A′C=2,∠DA′C=∠BAC=30°,
∴CQ=A′C=1,
∴S△ABC=2S△ADC=2S△A′DC=2××A′D×CQ=2××2×1=2;即△ABC的面积是2或2.
考点:四边形综合题.
10.如图,抛物线y=mx2+2mx+n经过A(﹣3,0),C(0,﹣3
2
)两点,与x轴交于另一
点B.
(1)求经过A,B,C三点的抛物线的解析式;
(2)过点C作CE∥x轴交抛物线于点E,写出点E的坐标,并求AC、BE的交点F的坐标(3)若抛物线的顶点为D,连结DC、DE,四边形CDEF是否为菱形?若是,请证明;若不是,请说明理由.
【答案】(1)y=1
2
x2+x﹣
3
2
;(2)F点坐标为(﹣1,﹣1);(3)四边形CDEF是菱
形.证明见解析
【解析】
【分析】
将A、C点的坐标代入抛物线的解析式中,通过联立方程组求得该抛物线的解析式;
根据(1)题所得的抛物线的解析式,可确定抛物线的对称轴方程以及B、C点的坐标,由CE∥x轴,可知C、E关于对称轴对称。

根据A、C点求得直线AC的解析式,根据B、E点求出直线BE的解析式,联立方程求得的解,即为F点的坐标;
由E、C、F、D的坐标可知DF和EC互相垂直平分,则可判定四边形CDEF为菱形.
【详解】
(1)∵抛物线y=mx2+2mx+n经过A(﹣3,0),C(0,﹣)两点,
∴,解得,
∴抛物线解析式为y=x2+x﹣;
(2)∵y=x2+x﹣,
∴抛物线对称轴为直线x=﹣1,
∵CE∥x轴,
∴C、E关于对称轴对称,
∵C(0,﹣),
∴E(﹣2,﹣),
∵A、B关于对称轴对称,
∴B(1,0),
设直线AC、BE解析式分别为y=kx+b,y=k′x+b′,
则由题意可得,,
解得,,
∴直线AC、BE解析式分别为y=﹣x﹣,y=x﹣,联立两直线解析式可得,解得,
∴F点坐标为(﹣1,﹣1);
(3)四边形CDEF是菱形.
证明:∵y=x2+x﹣=(x+1)2﹣2,
∴D(﹣1,﹣2),
∵F(﹣1,﹣1),
∴DF⊥x轴,且CE∥x轴,
∴DF⊥CE,
∵C(0,﹣),且F(﹣1,﹣1),D(﹣1,﹣2),
∴DF和CE互相平分,
∴四边形CDEF是菱形.
【点睛】
本题考查菱形的判定方法,二次函数的性质,以及二次函数与二元一次方程组.
11.如图1,若分别以△ABC 的AC 、BC 两边为边向外侧作的四边形ACDE 和BCFG 为正方形,则称这两个正方形为外展双叶正方形.
(1)发现:如图2,当∠C =90°时,求证:△ABC 与△DCF 的面积相等.
(2)引申:如果∠C ≠90°时,(1)中结论还成立吗?若成立,请结合图1给出证明;若不成立,请说明理由;
(3)运用:如图3,分别以△ABC 的三边为边向外侧作的四边形ACDE 、BCFG 和ABMN 为正方形,则称这三个正方形为外展三叶正方形.已知△ABC 中,AC =3,BC =4.当∠C =_____°时,图中阴影部分的面积和有最大值是________.
【答案】(1)证明见解析;(2)成立,证明见解析;(3)18.
【解析】
试题分析:(1)因为AC=DC ,∠ACB=∠DCF=90°,BC=FC ,所以△ABC ≌△DFC ,从而△ABC 与△DFC 的面积相等;
(2)延长BC 到点P ,过点A 作AP ⊥BP 于点P ;过点D 作DQ ⊥FC 于点Q .得到四边形ACDE ,BCFG 均为正方形,AC=CD ,BC=CF ,∠ACP=∠DCQ .所以△APC ≌△DQC . 于是AP=DQ .又因为S △ABC =12BC•AP ,S △DFC =12
FC•DQ ,所以S △ABC =S △DFC ; (3)根据(2)得图中阴影部分的面积和是△ABC 的面积三倍,若图中阴影部分的面积和有最大值,则三角形ABC 的面积最大,当△ABC 是直角三角形,即∠C 是90度时,阴影部分的面积和最大.所以S 阴影部分面积和=3S △ABC =3×
12
×3×4=18. (1)证明:在△ABC 与△DFC 中, ∵{AC DC
ACB DCF BC FC
∠∠===,
∴△ABC ≌△DFC .
∴△ABC 与△DFC 的面积相等;
(2)解:成立.理由如下:
如图,延长BC 到点P ,过点A 作AP ⊥BP 于点P ;过点D 作DQ ⊥FC 于点Q .
∵四边形ACDE ,BCFG 均为正方形,
∴AC=CD ,BC=CF ,∠ACP+∠PCD=90°,∠DCQ+∠PCD=90°,
∴∠ACP=∠DCQ .
∴{APC DQC
ACP DCQ AC CD
∠∠∠∠===,
△APC ≌△DQC (AAS ),
∴AP=DQ .
又∵S △ABC
=12
BC•AP ,S △DFC =12
FC•D Q , ∴S △ABC =S △DFC ;
(3)解:根据(2)得图中阴影部分的面积和是△ABC 的面积三倍,
若图中阴影部分的面积和有最大值,则三角形ABC 的面积最大,
∴当△ABC 是直角三角形,即∠C 是90度时,阴影部分的面积和最大.
∴S 阴影部分面积和=3S △ABC =3×
12
×3×4=18. 考点:四边形综合题
12.已知:在矩形ABCD 中,AB =10,BC =12,四边形EFGH 的三个顶点E 、F 、H 分别在矩形ABCD 边AB 、BC 、DA 上,AE =2.
(1)如图①,当四边形EFGH 为正方形时,求△GFC 的面积;
(2)如图②,当四边形EFGH 为菱形,且BF =a 时,求△GFC 的面积(用a 表示); (3)在(2)的条件下,△GFC 的面积能否等于2?请说明理由.
【答案】(1)10;(2)12-a ;(3)不能
【解析】
解:(1)过点G 作GM ⊥BC 于M .在正方形EFGH 中,
∠HEF =90°,EH =EF ,
∴∠AEH +∠BEF =90°.
∴∠AHE=∠BEF.
又∵∠A=∠B=90°,
∴△AHE≌△BEF.
同理可证△MFG≌△BEF.
∴GM=BF=AE=2.∴FC=BC-BF=10.
∴.
(2)过点G作GM⊥BC交BC的延长线于M,连接HF.
∵AD∥BC,∴∠AHF=∠MFH.
∵EH∥FG,∴∠EHF=∠GFH.
∴∠AHE=∠MFG.
又∵∠A=∠GMF=90°,EH=GF,
∴△AHE≌△MFG.∴GM=AE=2.
∴.
(3)△GFC的面积不能等于2.
说明一:∵若S△GFC=2,则12-a=2,∴a=10.
此时,在△BEF中,

在△AHE中,

∴AH>AD,即点H已经不在边AD上,故不可能有S△GFC=2.
说明二:△GFC的面积不能等于2.∵点H在AD上,
∴菱形边EH的最大值为,∴BF的最大值为.
又∵函数S△GFC=12-a的值随着a的增大而减小,
∴S△GFC的最小值为.
又∵,∴△GFC的面积不能等于2.
13.如图,P是边长为1的正方形ABCD对角线BD上一动点(P与B、D不重合),
∠APE=90°,且点E在BC边上,AE交BD于点F.
(1)求证:①△PAB≌△PCB;②PE=PC;
(2)在点P的运动过程中,的值是否改变?若不变,求出它的值;若改变,请说明理由;
(3)设DP=x,当x为何值时,AE∥PC,并判断此时四边形PAFC的形状.
【答案】(1)见解析;
(2);
(3)x=﹣1;四边形PAFC是菱形.
【解析】
试题分析:(1)根据四边形ABCD是正方形,得出AB=BC,∠ABP=∠CBP°,再根据
PB=PB,即可证出△PAB≌△PCB,
②根据∠PAB+∠PEB=180°,∠PEC+∠PEB=180°,得出∠PEC=∠PCB,从而证出PE=PC;(2)根据PA=PC,PE=PC,得出PA=PE,再根据∠APE=90°,得出∠PAE=∠PEA=45°,即可求
出;
(3)先求出∠CPE=∠PEA=45°,从而得出∠PCE,再求出∠BPC即可得出∠BPC=∠PCE,从而证出BP=BC=1,x=﹣1,再根据AE∥PC,得出∠AFP=∠BPC=67.5°,由△PAB≌△PCB 得出∠BPA=∠BPC=67.5°,PA=PC,从而证出AF=AP=PC,得出答案.
试题解析:(1)①∵四边形ABCD是正方形,∴AB=BC,∠ABP=∠CBP=∠ABC=45°.
∵PB=PB,∴△PAB≌△PCB (SAS).
②由△PAB≌△PCB可知,∠PAB=∠PCB.∵∠ABE=∠APE=90°,∴∠PAB+∠PEB=180°,
又∵∠PEC+∠PEB=180°,∴∠PEC=∠PAB=∠PCB,∴PE=PC.
(2)在点P的运动过程中,的值不改变.
由△PAB≌△PCB可知,PA=PC.
∵PE=PC,
∴PA=PE,
又∵∠APE=90°,
∴△PAE是等腰直角三角形,∠PAE=∠PEA=45°,∴=.
(3)∵AE∥PC,∴∠CPE=∠PEA=45°,∴在△PEC中,∠PCE=∠PEC=(180°﹣45°)
=67.5°.
在△PBC中,∠BPC=(180°﹣∠CBP﹣∠PCE)=(180°﹣45°﹣67.5°)=67.5°.
∴∠BPC=∠PCE=67.5°,∴BP=BC=1,∴x=BD﹣BP=﹣1.∵AE∥PC,
∴∠AFP=∠BPC=67.5°,由△PAB≌△PCB可知,∠BPA=∠BPC=67.5°,PA=PC,
∴∠AFP=∠BPA,∴AF=AP=PC,∴四边形PAFC是菱形.
考点:四边形综合题.
14.正方形ABCD的边长为1,对角线AC与BD相交于点O,点E是AB边上的一个动点(点E不与点A、B重合),CE与BD相交于点F,设线段BE的长度为x.
(1)如图1,当AD=2OF时,求出x的值;
(2)如图2,把线段CE绕点E顺时针旋转90°,使点C落在点P处,连接AP,设△APE 的面积为S,试求S与x的函数关系式并求出S的最大值.
【答案】(1)x=﹣1;
(2)S=﹣(x﹣)2+(0<x<1),
当x=时,S的值最大,最大值为,.
【解析】
试题分析:(1)过O作OM∥AB交CE于点M,如图1,由平行线等分线段定理得到
CM=ME,根据三角形的中位线定理得到AE=2OM=2OF,得到OM=OF,于是得到BF=BE=x,
求得OF=OM=解方程,即可得到结果;
(2)过P作PG⊥AB交AB的延长线于G,如图2,根据已知条件得到∠ECB=∠PEG,根据
全等三角形的性质得到EB=PG=x,由三角形的面积公式得到S=(1﹣x)•x,根据二次函数的性质即可得到结论.
试题解析:(1)过O作OM∥AB交CE于点M,如图1,
∵OA=OC,
∴CM=ME,
∴AE=2OM=2OF,
∴OM=OF,
∴,
∴BF=BE=x,
∴OF=OM=,
∵AB=1,
∴OB=,
∴,
∴x=﹣1;
(2)过P作PG⊥AB交AB的延长线于G,如图2,
∵∠CEP=∠EBC=90°,
∴∠ECB=∠PEG,
∵PE=EC,∠EGP=∠CBE=90°,
在△EPG与△CEB中,

∴△EPG≌△CEB,
∴EB=PG=x,
∴AE=1﹣x,
∴S=(1﹣x)•x=﹣x2+x=﹣(x﹣)2+,(0<x<1),∵﹣<0,
∴当x=时,S的值最大,最大值为,.
考点:四边形综合题
15.(本题满分10分)如图1,已知矩形纸片ABCD中,AB=6cm,若将该纸片沿着过点B的直线折叠(折痕为BM),点A恰好落在CD边的中点P处.
(1)求矩形ABCD的边AD的长.
(2)若P为CD边上的一个动点,折叠纸片,使得A与P重合,折痕为MN,其中M在边AD上,N在边BC上,如图2所示.设DP=x cm,DM=y cm,试求y与x的函数关系式,并指出自变量x的取值范围.
(3)①当折痕MN的端点N在AB上时,求当△PCN为等腰三角形时x的值;
②当折痕MN的端点M在CD上时,设折叠后重叠部分的面积为S,试求S与x之间的函数关系式
【答案】(1)AD=3;(2)y=-其中,0<x<3;(3)x=;(4)
S=.
【解析】
试题分析:(1)根据折叠图形的性质和勾股定理求出AD的长度;(2)根据折叠图形的性质以及Rt△MPD的勾股定理求出函数关系式;(3)过点N作NQ⊥CD,根据Rt△NPQ 的勾股定理进行求解;(4)根据Rt△ADM的勾股定理求出MP与x的函数关系式,然后得出函数关系式.
试题解析:(1)根据折叠可得BP=AB=6cm CP=3cm 根据Rt△PBC的勾股定理可得:AD=3.
(2)由折叠可知AM=MP,在Rt△MPD中,
∴∴y=-其中,0<x<3.
(3)当点N在AB上,x≥3,∴PC≤3,而PN≥3,NC≥3.
∴△PCN为等腰三角形,只可能NC=NP.
过N点作NQ⊥CD,垂足为Q,在Rt△NPQ中,
∴解得x=.
(4)当点M在CD上时,N在AB上,可得四边形ANPM为菱形.
设MP=y,在Rt△ADM中,,即∴ y=.
∴ S=
考点:函数的性质、勾股定理.。

相关文档
最新文档