扶风县第一中学校2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
扶风县第一中学校2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 函数f (x )=tan (2x+
),则( )
A .函数最小正周期为π,且在(﹣,)是增函数
B .函数最小正周期为
,且在(﹣
,)是减函数
C .函数最小正周期为π,且在(,)是减函数
D .函数最小正周期为
,且在(
,
)是增函数
2. 记集合T={0,1,2,3,4,5,6,7,8,9},M=,
将M 中的元素按从大到小排列,则第2013个数是( )
A .
B .
C .
D .
3. 已知函数f (x )=x 4cosx+mx 2+x (m ∈R ),若导函数f ′(x )在区间[﹣2,2]上有最大值10,则导函数f ′(x )在区间[﹣2,2]上的最小值为( ) A .﹣12 B .﹣10 C .﹣8 D .﹣6
4. 若集合M={y|y=2x ,x ≤1},N={x|
≤0},则 N ∩M ( )
A .(1﹣1,]
B .(0,1]
C .[﹣1,1]
D .(﹣1,2]
5. 命题“∀x ∈R ,2x 2+1>0”的否定是( )
A .∀x ∈R ,2x 2+1≤0
B .
C .
D .
6. 已知直线x ﹣y+a=0与圆心为C 的圆x 2+y 2+2
x ﹣4y+7=0相交于A ,B 两点,且
•
=4,则实数a
的值为( )
A .或﹣
B .
或3
C .
或5
D .3
或5
7. 已知f (x )=ax 3+bx+1(ab ≠0),若f (2016)=k ,则f (﹣2016)=( )
A .k
B .﹣k
C .1﹣k
D .2﹣k
8. 已知lga+lgb=0,函数f (x )=a x 与函数g (x )=﹣log b x 的图象可能是( )
A
. B
. C
. D
.
9. 已知球的半径和圆柱体的底面半径都为1且体积相同,则圆柱的高为( ) A .1
B
.
C .2
D .4
10.以下四个命题中,真命题的是( ) A .2
,2x R x x ∃∈≤-
B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<
C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数
D .已知m ,n 表示两条不同的直线,α,β表示不同的平面,并且m α⊥,n β⊂,则“αβ⊥”是 “//m n ”的必要不充分条件
【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.
11.已知空间四边形ABCD ,M 、N 分别是AB 、CD 的中点,且4AC =,6BD =,则( ) A .15MN << B .210MN << C .15MN ≤≤ D .25MN << 12.为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法........从该地区调查了500位老年人,结果如
由22
()()()()()
n ad bc K a b c d a c b d -=++++算得22
500(4027030160)9.96720030070430K ⨯⨯-⨯=
=⨯⨯⨯ 附表:
参照附表,则下列结论正确的是( )
①有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无.关”; ②有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有.关”; ③采用系统抽样方法比采用简单随机抽样方法更好;
3.841 6.635 10.828k 2() 0.050 0.010 0.001
P K k ≥
④采用分层抽样方法比采用简单随机抽样方法更好; A .①③ B .①④ C .②③ D .②④
二、填空题
13.如图,一船以每小时20km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60°方向,行驶4小时后,船到达C 处,看到这个灯塔在北偏东15°方向,这时船与灯塔间的距离为 km .
14.【启东中学2018届高三上学期第一次月考(10月)】已知函数()f x xlnx ax =-+在()0e ,上是增函
数,函数()22
x
a g x e a =-+,当[]03x ln ∈,时,函数g (x )的最大值M 与最小值m 的差为3
2,则a 的值
为______.
15.命题:“∀x ∈R ,都有x 3≥1”的否定形式为 .
16.若函数f (x )=log a x (其中a 为常数,且a >0,a ≠1)满足f (2)>f (3),则f (2x ﹣1)<f (2﹣x )的解集是 .
17.如图是某赛季甲乙两名篮球运动员每场比赛得分的茎叶图,则甲乙两人比赛得分的中位数之和是 .
18.定义在R 上的函数)(x f 满足:1)(')(>+x f x f ,4)0(=f ,则不等式3)(+>x x e x f e (其 中为自然对数的底数)的解集为 .
三、解答题
19.(本小题满分10分)选修4-4:坐标系与参数方程
已知曲线C 的极坐标方程是2cos ρθ=,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立 平面直角坐标系,直线的参数方程是243x t
y t
=-+⎧⎨
=⎩(为参数).
(1)写出曲线C 的参数方程,直线的普通方程; (2)求曲线C 上任意一点到直线的距离的最大值.
20.本小题满分12分如图,在边长为4的菱形ABCD 中,60BAD ∠=,点E 、F 分别在边CD 、CB 上.点
E 与点C 、D 不重合,E
F AC ⊥,EF
AC O =,沿EF 将CEF ∆翻折到PEF ∆的位置,使平面PEF ⊥
平面ABFED .
Ⅰ求证:BD ⊥平面P O A ;
Ⅱ记三棱锥P A B D -的体积为1V ,四棱
锥P BDEF -的体积为2V ,且
124
3
V V =,
求此时线段PO 的长.
21.如图,F 1,F 2是椭圆C : +y 2=1的左、右焦点,A ,B 是椭圆C 上的两个动点,且线段AB 的中点M
在直线l :x=﹣上.
(1)若B 的坐标为(0,1),求点M 的坐标; (2)求
•
的取值范围.
P
A
B
C
D
O
E
F F
E
O D
C
B
A
22.从某中学高三某个班级第一组的7名女生,8名男生中,随机一次挑选出4名去参加体育达标测试.(Ⅰ)若选出的4名同学是同一性别,求全为女生的概率;
(Ⅱ)若设选出男生的人数为X,求X的分布列和EX.
23.在△ABC中,内角A,B,C所对的边分别是a,b,c,已知tanA=,c=.
(Ⅰ)求;
(Ⅱ)若三角形△ABC的面积为,求角C.
24.请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm).
(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?
(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.
扶风县第一中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题
1.【答案】D
【解析】解:对于函数f(x)=tan(2x+),它的最小正周期为,
在(,)上,2x+∈(,),函数f(x)=tan(2x+)单调递增,
故选:D.
2.【答案】
A
【解析】
进行简单的合情推理.
【专题】规律型;探究型.
【分析】将M中的元素按从大到小排列,求第2013个数所对应的a i,首先要搞清楚,M集合中元素的特征,同样要分析求第2011个数所对应的十进制数,并根据十进制转换为八进行的方法,将它转换为八进制数,即得答案.
【解答】因为=(a1×103+a2×102+a3×10+a4),
括号内表示的10进制数,其最大值为9999;
从大到小排列,第2013个数为
9999﹣2013+1=7987
所以a1=7,a2=9,a3=8,a4=7
则第2013个数是
故选A.
【点评】对十进制的排序,关键是要找到对应的数是几,如果从大到小排序,要找到最大数(即第一个数),再找出第n个数对应的十进制的数即可.
3.【答案】C
【解析】解:由已知得f′(x)=4x3cosx﹣x4sinx+2mx+1,
令g(x)=4x3cosx﹣x4sinx+2mx是奇函数,
由f′(x)的最大值为10知:g(x)的最大值为9,最小值为﹣9,
从而f′(x)的最小值为﹣9+1=﹣8.
故选C.
【点评】本题考查了导数的计算、奇函数的最值的性质.属于常规题,难度不大.
4.【答案】B
【解析】解:由M中y=2x,x≤1,得到0<y≤2,即M=(0,2],
由N中不等式变形得:(x﹣1)(x+1)≤0,且x+1≠0,
解得:﹣1<x≤1,即N=(﹣1,1],
则M∩N=(0,1],
故选:B.
【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
5.【答案】C
【解析】解:∵命题∀x∈R,2x2+1>0是全称命题,
∴根据全称命题的否定是特称命题得命题的否定是:
“”,.
故选:C.
【点评】本题主要考查含有量词的命题的否定,要求掌握特称命题的否定是全称命题,全称命题的否定是特称命题,比较基础.
6.【答案】C
【解析】解:圆x2
+y2+2x﹣4y+7=0,可化为(x+)2+(y﹣2)2=8.
∵•=4,∴2•2cos∠ACB=4
∴cos∠ACB=,
∴∠ACB=60°
∴圆心到直线的距离为,
∴=,
∴a=或5.
故选:C.
7.【答案】D
【解析】解:∵f(x)=ax3+bx+1(ab≠0),f(2016)=k,
∴f(2016)=20163a+2016b+1=k,
∴20163a+2016b=k﹣1,
∴f(﹣2016)=﹣20163a﹣2016b+1=﹣(k﹣1)+1=2﹣k.
故选:D.
【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
8. 【答案】B
【解析】解:∵lga+lgb=0
∴ab=1则b=
从而g (x )=﹣log b x=log a x ,f (x )=a x
与
∴函数f (x )与函数g (x )的单调性是在定义域内同增同减 结合选项可知选B , 故答案为B
9. 【答案】B
【解析】解:设圆柱的高为h ,则
V 圆柱=π×12×h=h ,V 球==
,
∴h=
.
故选:B .
10.【答案】D
11.【答案】A 【解析】
试题分析:取BC 的中点E ,连接,ME NE ,2,3ME NE ==,根据三角形中两边之和大于第三边,两边之差小于第三边,所以15MN <<,故选A .
考点:点、线、面之间的距离的计算.1
【方法点晴】本题主要考查了点、线、面的位置关系及其应用,其中解答中涉及三角形的边与边之间的关系、三棱锥的结构特征、三角形的中位线定理等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,本题的解答中根据三角形的两边之和大于第三边和三角形的两边之差小于第三边是解答的关键,属于基础题.
12.【答案】D
【解析】解析:本题考查独立性检验与统计抽样调查方法.
,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关,②正确;该地区老年由于9.967 6.635
人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好,④正确,选D.
二、填空题
13.【答案】
【解析】解:根据题意,可得出∠B=75°﹣30°=45°,
在△ABC中,根据正弦定理得:BC==海里,
则这时船与灯塔的距离为海里.
故答案为.
14.【答案】
52
【解析】()1ln f x x a =--+',因为()f x 在()0e ,上是增函数,即()0f x '≥在()0e ,上恒成立,
ln 1a x ∴≥+,则()max ln 1a x ≥+,当x e =时,2a ≥,
又()22x
a g x e a =-+,令x
t e =,则()[]2,1,32
a g t t a t =-+
∈, (1)当23a ≤≤时,()()2max 112a g t g a ==-+,()()2
min 2
a g t g a ==,
则()()max min 312g t g t a -=-=,则5
2
a =,
(2)当3a >时,()()2max 112a g t g a ==-+,()()2
min 332
a g t g a ==-+,
则()()max min 2g t g t -=,舍。
52
a ∴=。
15.【答案】 ∃x 0∈R ,都有x 03<1 .
【解析】解:因为全称命题的否定是特称命题.所以,命题:“∀x ∈R ,都有x 3
≥1”的否定形式为:命题:“∃x 0∈R ,
都有x 03
<1”.
故答案为:∃x 0∈R ,都有x 03
<1.
【点评】本题考查全称命题与特称命题的否定关系,基本知识的考查.
16.【答案】 (1,2) .
【解析】解:∵f (x )=log a x (其中a 为常数且a >0,a ≠1)满足f (2)>f (3), ∴0<a <1,x >0,
若f (2x ﹣1)<f (2﹣x ),
则
,
解得:1<x <2, 故答案为:(1,2).
【点评】本题考查了对数函数的性质,考查函数的单调性问题,是一道基础题.
17.【答案】 64 .
【解析】解:由图可知甲的得分共有9个,中位数为28 ∴甲的中位数为28
乙的得分共有9个,中位数为36 ∴乙的中位数为36
则甲乙两人比赛得分的中位数之和是64 故答案为:64.
【点评】求中位数的关键是根据定义仔细分析.另外茎叶图的茎是高位,叶是低位,这一点一定要注意.
18.【答案】),0(+∞ 【
解
析
】
考点:利用导数研究函数的单调性.
【方法点晴】本题是一道利用导数判断单调性的题目,解答本题的关键是掌握导数的相关知识,首先对已知的不
等式进行变形,可得()()01>-'+x f x f ,结合要求的不等式可知在不等式两边同时乘以x
e ,即
()()0>-'+x x x e x f e x f e ,因此构造函数()()x x e x f e x g -=,求导利用函数的单调性解不等式.另外本题也可
以构造满足前提的特殊函数,比如令()4=x f 也可以求解.1
三、解答题
19.【答案】(1)参数方程为1cos sin x y θθ
=+⎧⎨=⎩,3460x y -+=;(2)14
5.
【解析】
试题分析:(1)先将曲线C 的极坐标方程转化为直角坐标系下的方程,可得22(1)1x y -+=,利用圆的参数方程写出结果,将直线的参数方程消去参数变为直线的普通方程;(2)利用参数方程写出曲线C 上任一点坐标,用点到直线的距离公式,将其转化为关于的式子,利用三角函数性质可得距离最值. 试题解析:
(1)曲线C 的普通方程为2
2cos ρρθ=,∴2
2
20x y x +-=,
∴2
2
(1)1x y -+=,所以参数方程为1cos sin x y θ
θ=+⎧⎨=⎩
,
直线的普通方程为3460x y -+=.
(2)曲线C 上任意一点(1cos ,sin )θθ+到直线的距离为
33cos 4sin 65sin()914555
d θθθϕ+-+++=
=≤,所以曲线C 上任意一点到直线的距离的最大值为14
5.
考点:1.极坐标方程;2.参数方程. 20.【答案】
【解析】Ⅰ证明:在菱形ABCD 中, ∵BD AC ⊥,∴BD AO ⊥. ∵EF AC ⊥,∴PO EF ⊥, ∵平面PEF ⊥平面ABFED ,平面PEF 平面ABFED EF =,且PO ⊂平面PEF ,
∴PO ⊥平面ABFED ,
∵BD ⊂平面ABFED ,∴PO BD ⊥.
∵AO PO O =,∴BD ⊥平面POA .
Ⅱ设AO
BD H =.由Ⅰ知,PO ⊥平面ABFED ,
∴PO 为三棱锥P A B D -及四棱锥P B D E F -的高,
∴1211
,33ABD BFED V S PO V S PO ∆=⋅=⋅梯形,∵1243
V V =,
∴3344ABD CBD BFED S S S ∆∆==梯形,∴1
4
CEF CBD S S ∆∆=,
∵,BD AC EF AC ⊥⊥,
∴//EF BD ,∴CEF ∆∽CBD ∆. ∴21
()4
CEF CBD S CO CH S ∆∆==,
∴111
222
CO CH AH ===⨯
∴PO OC ==
21.【答案】
【解析】解:(1)∵B 的坐标为(0,1),且线段AB 的中点M 在直线l :x=
﹣上, ∴A 点的横坐标为﹣1,
代入椭圆方程
+y 2=1,解得y=
±
,故点A (﹣1
,)或点A (﹣1
,﹣).
∴线段AB 的中点M
(﹣
,
+
)或(﹣
,
﹣
).
(2)由于F 1(﹣1,0),F 2(1,0),当AB 垂直于x 轴时,AB 的方程为x=
﹣,点A
(﹣
,﹣)、
B
(﹣
,
),
求得•=.
当AB 不垂直于x 轴时,设AB 的斜率为k ,M (﹣,m ),A (x 1,y 1 ),B (x 2,y 2),
由可得 (x 1+x 2)+2(y 1+y 2)•
=0,∴﹣1=﹣4mk ,即 k=,
故AB 的方程为 y ﹣m=(x+),即 y=x+ ①.
再把①代入椭圆方程+y 2=1,可得x 2+x+•
=0.
由判别式△=1﹣>0,可得0<m 2
<.
∴x 1+x 2=﹣1,x 1•x 2=,y 1•y 2=(
•x 1+
)(
x 2+
),
∴
•
=(x 1﹣1,y 1 )•(x 2﹣1,y 2)=x 1•x 2+y 1•y 2﹣(x 1+x 2)+1=
.
令t=1+8m 2
,则1<t <8,∴ •
=
= [3t+].
再根据 [3t+]在(1,
)上单调递减,在(
,8)上单调递增求得 [3t+]的范围为[,).
综上可得, [3t+]的范围为[
,
).
【点评】本题主要考查本题主要考查椭圆的定义、标准方程,以及简单性质的应用,两个向量的数量积公式的应用,直线和二次曲线的关系,考查计算能力,属于难题.
22.【答案】
【解析】解:(Ⅰ)若4人全是女生,共有C 74=35种情况;若4人全是男生,共有C 84
=70种情况;
故全为女生的概率为=.…
(Ⅱ)共15人,任意选出4名同学的方法总数是C 154
,选出男生的人数为X=0,1,2,3,4…
P (X=0)=
=
;P (X=1)=
=
;P (X=2)=
=
;
P (X=3)==;P (X=4)==.…
X
EX=0×+1×+2×+3×+4×=.…
【点评】本题考查离散型随机变量的分布列、期望及古典概型的概率加法公式,正确理解题意是解决问题的基础.
23.【答案】
【解析】解:(Ⅰ)由题意知,tanA=,
则=,即有sinA﹣sinAcosC=cosAsinC,
所以sinA=sinAcosC+cosAsinC=sin(A+C)=sinB,
由正弦定理,a=b,则=1;…
(Ⅱ)因为三角形△ABC的面积为,a=b、c=,
所以S=absinC=a2sinC=,则,①
由余弦定理得,=,②
由①②得,cosC+sinC=1,则2sin(C+)=1,sin(C+)=,
又0<C<π,则C+<,即C+=,
解得C=….
【点评】本题考查正弦定理,三角形的面积公式,以及商的关系、两角和的正弦公式等,注意内角的范围,属于中档题.
24.【答案】
【解析】解:设包装盒的高为h(cm),底面边长为a(cm),则a=x,h=(30﹣x),0<x<30.
(1)S=4ah=8x(30﹣x)=﹣8(x﹣15)2+1800,
∴当x=15时,S取最大值.
(2)V=a2
h=2(﹣x3+30x2),V′=6x(20﹣x),
由V′=0得x=20,
当x∈(0,20)时,V′>0;当x∈(20,30)时,V′<0;
∴当x=20时,包装盒容积V(cm3)最大,
此时,.
即此时包装盒的高与底面边长的比值是.。