人教备战中考数学综合题专题复习【一元二次方程】专题解析含详细答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、一元二次方程 真题与模拟题分类汇编(难题易错题)
1.随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2008年底全市汽车拥有量为14.4万辆.已知2006年底全市汽车拥有量为10万辆.
(1)求2006年底至2008年底我市汽车拥有量的年平均增长率;
(2)为保护城市环境,要求我市到2010年底汽车拥有量不超过15.464万辆,据估计从2008年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同)
【答案】详见解析
【解析】
试题分析:(1)主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率)解决问题;
(2)参照增长率问题的一般规律,表示出2010年的汽车拥有量,然后根据关键语列出不等式来判断正确的解.
试题解析:(1)设年平均增长率为x ,根据题意得:
10(1+x )2=14.4,
解得x=﹣2.2(不合题意舍去)x=0.2,
答:年平均增长率为20%;
(2)设每年新增汽车数量最多不超过y 万辆,根据题意得:
2009年底汽车数量为14.4×90%+y ,
2010年底汽车数量为(14.4×90%+y )×90%+y ,
∴(14.4×90%+y )×90%+y≤15.464,
∴y≤2.
答:每年新增汽车数量最多不超过2万辆.
考点:一元二次方程—增长率的问题
2.关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1、x 2.
(1)求k 的取值范围;
(2)若x 1+x 2=1﹣x 1x 2,求k 的值.
【答案】(1)12
k ≤
;(2)3k = 【解析】
试题分析:(1)方程有两个实数根,可得240b ac ∆=-≥,代入可解出k 的取值范围; (2)由韦达定理可知,()2121221,x x k x x k +=-=,列出等式,可得出k 的值. 试题解析:(1)∵Δ=4(k -1)2-4k 2≥0,∴-8k +4≥0,∴k ≤
12
; (2)∵x 1+x 2=2(k -1),x 1x 2=k 2,∴2(k -1)=1-k 2,
∴k 1=1,k 2=-3.
∵k ≤12
,∴k =-3.
3.解方程:(2x+1)2=2x+1.
【答案】x=0或x=12
-. 【解析】试题分析:根据因式分解法解一元二次方程的解法,直接先移项,再利用ab=0的关系求解方程即可.
试题解析:∵(2x+1)2﹣(2x+1)=0,
∴(2x+1)(2x+1﹣1)=0,即2x (2x+1)=0,
则x=0或2x+1=0,
解得:x=0或x=﹣12
. 4.已知关于x 的一元二次方程()222130x k x k --+-=有两个实数根.
()1求k 的取值范围;
()2设方程两实数根分别为1x ,2x ,且满足221223x x +=,求k 的值.
【答案】(1)134
k ≤
;(2)2k =-. 【解析】
【分析】 ()1根据方程有实数根得出()()
22[2k 1]41k 38k 50=---⨯⨯-=-+≥,解之可得. ()2利用根与系数的关系可用k 表示出12x x +和12x x 的值,根据条件可得到关于k 的方程,可求得k 的值,注意利用根的判别式进行取舍.
【详解】
解:()1关于x 的一元二次方程()22
2130x k x k --+-=有两个实数根, 0∴≥,即()()22[21]4134130k k k ---⨯⨯-=-+≥, 解得134
k ≤. ()2由根与系数的关系可得1221x x k +=-,2123x x k =-,
()
222222121212()2(21)23247x x x x x x k k k k ∴+=+-=---=-+,
221223x x +=, 224723k k ∴-+=,解得4k =,或2k =-,
134
k ≤, 4k ∴=舍去,
2k ∴=-.
【点睛】
本题考查了一元二次方程2
ax bx c 0(a 0,++=≠a ,b ,c 为常数)根的判别式.当0>,方程有两个不相等的实数根;当0=,方程有两个相等的实数根;当0<,方程没有实数根.以及根与系数的关系.
5.已知关于x 的一元二次方程x 2﹣x+a ﹣1=0.
(1)当a=﹣11时,解这个方程;
(2)若这个方程有两个实数根x 1,x 2,求a 的取值范围;
(3)若方程两个实数根x 1,x 2满足[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,求a 的值.
【答案】(1)123,4x x =-=(2)54a ≤(3)-4
【解析】
分析:(1)根据一元二次方程的解法即可求出答案;
(2)根据判别式即可求出a 的范围;
(3)根据根与系数的关系即可求出答案.
详解:(1)把a =﹣11代入方程,得x 2﹣x ﹣12=0,(x +3)(x ﹣4)=0,x +3=0或x ﹣4=0,∴x 1=﹣3,x 2=4;
(2)∵方程有两个实数根12x x ,,∴△≥0,即(﹣1)2﹣4×1×(a ﹣1)≥0,解得54
a ≤:; (3)∵12x x ,是方程的两个实数根,
222211221122101011x x a x x a x x a x x a -+-=-+-=∴-=--=-,,,.
∵[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,∴221122229x x x x ⎡⎤⎡⎤+-+-=⎣⎦⎣⎦,把
22112211x x a x x a -=--=-, 代入,得:[2+a ﹣1][2+a ﹣1]=9,即(1+a )2=9,解得:
a =﹣4,a =2(舍去),所以a 的值为﹣4.
点睛:本题考查了一元二次方程,解题的关键是熟练运用判别式以及根与系数的关系.
6.已知关于x 的一元二次方程()2
204
m mx m x -++=. (1)当m 取什么值时,方程有两个不相等的实数根; (2)当4m =时,求方程的解.
【答案】(1)当1m >-且0m ≠时,方程有两个不相等的实数根;(2)1x =,
234
x =
. 【解析】 【分析】
(1)方程有两个不相等的实数根,>0∆,代入求m 取值范围即可,注意二次项系数≠0;
(2)将4m =代入原方程,求解即可.
【详解】
(1)由题意得:24b ac ∆=- =()2
2404m m m +->,解得1m >-. 因为0m ≠,即当1m >-且0m ≠时,方程有两个不相等的实数根.
(2)把4m =带入得24610x x -+=,解得1x =
,2x =. 【点睛】 本题考查一元二次方程根的情况以及求解,熟练掌握根的判别式以及一元二次方程求解是加大本题的关键.
7.已知两条线段长分别是一元二次方程28120x x -+=的两根,
(1)解方程求两条线段的长。
(2)若把较长的线段剪成两段,使其与另一段围成等腰三角形,求等腰三角形的面积。
(3)若把较长的线段剪成两段,使其与另一段围成直角三角形,求直角三角形的面积。
【答案】(1)2和6;(2)3)83
【解析】
【分析】
(1)求解该一元二次方程即可;
(2)先确定等腰三角形的边,然后求面积即可;
(3)设分为两段分别是x 和6x -,然后用勾股定理求出x ,最后求面积即可.
【详解】
解:(1)由题意得()()260x x --=,
即:2x =或6x =,
∴两条线段长为2和6;
(2)由题意,可知分两段为分别为3、3,则等腰三角形三边长为2,3,3,
∴此等腰三角形面积为12
2⨯⨯= (3)设分为x 及6x -两段
()2
2226x x +=-
∴83
x =, ∴2823x S ∆=
=, ∴面积为83
. 【点睛】
本题考查了一元二次方程、等腰三角形、直角三角形等知识,考查知识点较多,灵活应用所学知识是解答本题的关键.
8.已知x=﹣1是关于x 的方程x 2+2ax+a 2=0的一个根,求a 的值.
【答案】1
【解析】试题分析:根据一元二次方程解的定义,把x=﹣1代入x 2+2ax+a 2=0得到关于a 的一元二次方程1﹣2a+a 2=0,然后解此一元二次方程即可.
试题解析:把x=﹣1代入x 2+2ax+a 2=0得
1﹣2a+a 2=0,
解得a 1=a 2=1,
所以a 的值为1.
9.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.
(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;
(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?
【答案】(1)两次下降的百分率为10%;
(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元.
【解析】
【分析】
(1)设每次降价的百分率为 x ,(1﹣x )2 为两次降价后的百分率,40元 降至 32.4元 就是方程的等量条件,列出方程求解即可;
(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由销售问题的数量关系建立方程求出其解即可
【详解】
解:(1)设每次降价的百分率为 x .
40×(1﹣x )2=32.4
x =10%或 190%(190%不符合题意,舍去)
答:该商品连续两次下调相同的百分率后售价降至每件 32.4元,两次下降的百分率为
10%;
(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元, 由题意,得
()4030y (448)5100.5
y --⨯+= 解得:1y =1.5,2y =2.5,
∵有利于减少库存,∴y =2.5.
答:要使商场每月销售这种商品的利润达到 510 元,且更有利于减少库存,则每件商品应降价 2.5 元.
【点睛】
此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.
10.为了让学生亲身感受合肥城市的变化,蜀山中学九(1)班组织学生进行“环巢湖一日研学游”活动,某旅行社推出了如下收费标准:(1)如果人数不超过30人,人均旅游费用为100元;(2)如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.该班实际共支付给旅行社3150元,问:共有多少名同学参加了研学游活动?
【答案】共有35名同学参加了研学游活动.
【解析】
试题分析:由该班实际共支付给旅行社3150元,可以判断出参加的人数在30人以上,等量关系为:(100﹣在30人基础上降低的人数×2)×参加人数=3150,得到相关解后根据人均活动费用不得低于80元作答即可.
试题解析:∵100×30=3000<3150,∴该班参加研学游活动的学生数超过30人. 设九(1)班共有x 人去旅游,则人均费用为[100﹣2(x ﹣30)]元,由题意得: x[100﹣2(x ﹣30)]=3150,
整理得x 2﹣80x+1575=0,解得x 1=35,x 2=45,
当x=35时,人均旅游费用为100﹣2(35﹣30)=90>80,符合题意.
当x=45时,人均旅游费用为100﹣2(45﹣30)=70<80,不符合题意,应舍去. 答:该班共有35名同学参加了研学旅游活动.
考点:一元二次方程的应用.。