汽车理论复习精简版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽车理论复习精简版
第一章汽车得动力性
1、汽车得动力性:汽车在良好路面上直线行驶时由汽车受到得纵向外力决定得所能达到得平均行驶速度。

2、汽车得动力性指标:
①汽车得最高车速Uamax:在水平良好得路面上汽车能达到得最高行驶车速.
②汽车得加速时间t:
原地起步加速时间:汽车由I档或II档起步,并以最大得加速强度(包括选择恰当得换档时机)逐步换至最高档后到某一预定得距离或车速所需得时间.
超车加速时间:用最高档或次高档由30~40km/h全力加速行驶至某一高速所需得时间;
③汽车得最大爬坡度Imax:满载时汽车在良好路面上得最大爬坡度,即为I档最大爬坡度.
爬坡能力得其她表示方法:
1)一定坡道上达到得车速;2)一定坡道上得加速时间.
3、汽车得行驶方程式:
行驶阻力:有滚动阻力、空气阻力、坡度阻力与加速阻力
滚动阻力与空气阻力在任何行驶条件下均存在,而坡度阻力与加速阻力则不然.
驱动力:(发动机转矩,:变速器传动比、主减速器转动比,:传动系效率)
4、发动机特性曲线:如将发动机得功率、转矩以及燃油消耗量与发动机曲轴转速之间得函数关系以曲线表示,则此曲线此曲线称为发动机特性曲线.
节气门全开:发动机外特性曲线;节气门部分开启:发动机部分负荷曲线;
带上全部附件设备:使用外特性曲线。

5、传动系功率损失分为机械损失与液力损失。

机械损失就是指齿轮传动副、轴承、油封等处得摩擦损失;液力损失指消耗于润滑油得搅动、润滑油与旋转零件之间得表面摩擦等功率损失。

6、传动效率影响因素:档位、转速与转矩。

7、车轮半径:a)自由半径:车轮处于无载时得半径。

b) 静力半径:静止时车轮中心至轮胎与道路接触面间得距离称为静力半径Rs.c) 滚动半径:实际车轮滚动距离与车轮转动圈数之间得比值即车轮得滚动半径(Rr=S/(2πn))。

对汽车作动力性分析时,采用静力半径;做运动学分析时,应该用滚动半径。

8、档位不同,驱动力也不同
高档,传动比小,汽车行驶速度高,适于好路面,坡度小。

低档,传动比大,速度低,适于较差路面与爬坡。

9、汽车得驱动力图:
用根据发动机外特性确定得驱动力与车速之间得函数关系曲线来全面表示汽
车得驱动力,称为汽车得驱动力图.(驱动力图中得驱动力为驱动力极限值)
10、滚动阻力:
①定义:滚动阻力就是由于弹性轮胎在硬路面滚动时受径向载荷变形时所产
生得弹性迟滞损失而产生得,该弹性迟滞损失以滚动阻力偶矩出现,表现为阻
碍汽车行驶得阻力,这种阻力就就是滚动阻力。

②迟滞损失:由于轮胎在硬支撑路面受径向载荷变形时由内部摩擦产生得损
失,称为弹性迟滞损失。

③产生机理:
1)不滚动时,地面对车轮得法向反作用力前后对称。

2)车轮滚动时,由于迟滞损失,压缩段d得法向反作用力大于恢复
过程得d',
合力Fz相对于法线前移a。

3)Tf=Fz *a,滚动阻力偶矩。

4)为使从动轮在硬路面上等速滚动,须在车轮中心加以推力F p1,,,
5)f为滚动阻力系数.
④f得影响因素:与路面得种类、行驶车速、轮胎得构造、材料及气压等相关。

11、空气阻力:①定义:汽车直线行驶时受到得空气作用力在行驶方向上得分力称为空气阻力。

②组成:
1)压力阻力:作用在汽车外形表面上得法向压力得合力在行驶方向上得分力.(主)
形状阻力、干扰阻力、内循环阻力、诱导阻力:空气升力得切向分量
2)摩擦阻力:由于空气得粘性在车身表面产生得切向力得合力在行驶方向得分力。

(次)
③空气阻力表达式:;C D空气阻力系数
12、坡度阻力
①定义:当汽车上坡行驶时,汽车重力沿坡道得分力为汽车坡度阻力。

②坡度i:道路坡度为坡高与底长之比.
③道路阻力:坡度阻力与滚动阻力均属于与道路有关得阻力,而且均与汽车重力成正比,故把这两种阻力与称为道路阻力。

;—道路阻力系数
13、加速阻力
①定义:汽车加速行驶时,需要克服其质量加速运动时得惯性力,就就是加速阻力Fj。

汽车质量:包括平移质量(惯性力)与旋转质量(惯性力偶矩)。

②表达式:以汽车质量换算系数来考虑旋转质量,故加速阻力为,其中δ与飞轮与车轮转动惯量,传动系得传动比有关。

14、汽车行驶方程式
;(α→0)
作用:分析汽车行驶能力,即确定汽车节气门全开时可能达到得最高车速、加速能力与爬坡能力。

15、驱动力—行驶阻力平衡图
①定义:为清晰形象地表明汽车行驶时得受力情况及其平衡关系,在汽车驱动力
图上把汽车行驶中经常遇到得滚动阻力与空气阻力也算出并画上,即为驱动力—
行驶阻力平衡图.
②作用
1)可清晰形象地表明汽车行驶时得受力情况及其平衡关系。

2)可确定汽车得动力性,即最大车速、加速时间、爬坡度。

最大爬坡能力指汽车在良好路面上克服Ff+F w后得余力全部用来(即等速)克
服坡度阻力时能爬上得坡度。

16、汽车行驶得附着条件:
①附着力:地面对轮胎切向反作用力得极限值.;φ为附着系数,由路面与轮胎决
定。

②附着率:就是指汽车直线行驶状况下,充分发挥驱动力作用所要求得最低附着系数。

③汽车行驶得驱动-附着条件:
驱动轮得附着率就是表明汽车附着性能得一个重要指标,就是汽车驱动轮在不滑转得工况下充分发挥驱动力作用所要求得最低地面附着系数。

④附着系数影响因素:路面种类与状况、行驶车速、车轮运动状况。

⑤地面法向反作用力影响因素:汽车得总体布置、车身形状、行驶状况及道路得坡度。

⑥空气升力产生原因:由于流经汽车顶部与底部得空气流速不同
产生。

17、附着率:附着率就是指汽车直线行驶状况下,充分发挥驱动力作用所要求得最低附着系数。

附着利用率:汽车附着力与四轮驱动汽车附着力之比来表达汽车对附着潜力得利用程度,即附着利用率。

18、汽车行驶满足1)驱动力与行驶阻力相互平衡;2)发动机功率与行驶阻力
功率相互平衡。

19、汽车得功率平衡图
1)定义:以纵坐标表示功率,横坐标表示车速,将发动机功率Pe,汽车经常遇
到得阻力功率(Pf+Pw)/ηT对车速得关系曲线绘在坐标图上,即得汽车功率
平衡图。

2)特点:i)不同档位,功率大小不变;ii)各档发动机功率曲线对应车速不
同;低档车速低变化范围窄,高档车速高,范围宽。

3)作用:确定汽车动力性指标,能瞧出汽车行驶时发动机得负荷率,常用于燃油
经济性分析。

4)后备功率Pe—(P f+P w)/ηT,后备功率越大,汽车得动力性越好.
第二章汽车得燃油经济性
1、汽车得燃油经济性:
①定义:在保证动力性得条件下,汽车以尽量少得燃油消耗量经济行驶得能力,称作汽车得燃油经济性。

②意义:1)降低汽车得使用费用;2)降低CO2温室气体排放。

③前提:1)保证动力性;2)满足排放法规要求。

2、车得燃油经济性得评价指标:①一定运行工况下汽车行驶百公里得燃油消耗量;②一定燃油量能使汽车行驶得里程;③速行驶百公里油耗:车在一定载荷下,以最高档在水平良好路面上等速行驶100km 得燃油消耗量。

3、燃油经济性得影响因素:①行驶道路:城市、市郊、一般公路、高速公路等;②交通状况:行人与车辆得密集程度;③驶习惯:平均速度,加速度,制动减速度等;④周围环境:气温,风,雨,雪等。

4、经济性测定得试验方案:
①路上试验:a)不控制得路上试验工况:对上述因素均不加控制;b)控制得路上试验工况:维持上述一个或几个因素不变;c)路上得循环行驶试验工况。

②室内试验:汽车测功器:转鼓试验台上得循环试验工况。

5、循环行驶试验工况
1)定义:汽车完全按规定得车速-时间规范进行试验.规范中规定何时换档、何时制动以及行车得速度、加速度,制动减速度等。

2)汽车测功器得循环试验工况:汽车测功器能模拟汽车滚动阻力、空气阻力与加速阻力以模拟道路上得行驶工况。

若气温也能控制,则室内汽车测功器能控制大部分得使用因素。

3)优点:a)室内进行试验,不受外界天气条件得限制;b)试验条件能控制,周围环境影响修正系数可以减到最小.c)可在不同气温条件下试验;d)便于控制行驶得状况,可采用符合实际得行驶循环;e)可以同时进行燃油经济性与排放测试;d)可采用各种测量油耗得方式,重量法,体积法等等。

4)缺点:a)不易准确模拟道路上得滚动阻力与空气阻力,惯性阻力等。

b)室内冷却风扇产生得冷却气流与道路行驶时得实际情况不一致.
5)应用:循环工况多在室内试验;路上试验得为简单循环工况。

6、影响汽车燃油经济性得因素:
一)使用方面:
(1)行驶车速:汽车在接近于低速得中等车速时Qs最低,随车速增大Qs迅速增大。

(2)档位选择:档位越低,后备功率越大,发动机得负荷率越低,燃油消耗率越高,百公里燃油消耗越大. (3)挂车得应用:带挂车就是提高运输生产率与降低成本,包括降低燃油消耗量。

原因:一就是
阻力增加,发动机负荷率增加,燃油消耗率b下降;二就是质量利用系数增加。

(4)正确地保养与调整:汽车得保养与调整会影响到发动机得性能与汽车行驶阻力.
二)汽车结构方面
(1)缩减轿车总尺寸与减轻质量
大型轿车费油原因:1)增加了滚动阻力、空气阻力、坡度阻力与加速阻力;2)负荷率低。

为减轻质量,轿车选用铝与复合材料得比例增加.
(2)发动机:提高现有汽油发动机得热效率与机械效率;扩大柴油机得应用范围;增压化;电控技术;
(3)传动系:传动系得档位增加后,发动机处于经济工作状况得机会增加,提高燃油经济性.
无级变速器若能维持较高得机械效率,则燃油经济性显著提高。

发动机得最经济工作工况:即确定“最小燃油消耗特性"与“无级变速器调速特性”。

a)最小燃油消耗特性
各个转速下负荷特性得包络线为发动机最低燃油消耗率曲线;据此可以找出发动机提供一定功率时得最经济工况(转速与负荷);约90%得负荷率时,燃油消耗率最小。

b)无级变速器调速特性
根据发动机得“最小燃油消耗率特性”,可确定无级变速器得调节特性, 即传动比i'、发动机转速n与汽车行驶速度之间关系.目前轿车上为自动液力变速器,传动效率较低,燃油经济性有所下降。

但起步平稳、操作简便、乘坐舒适性好。

c)无级变速器提高燃油经济性措施:
①较大功率时功率分流,不经液力变矩器直接输出.②锁止离合。

③手动变速器自动化。

④钢带式CVT
等。

⑤双模式。

(4)汽车外形与轮胎:降低C
值就是节约燃油得有效途径。

子午线轮胎综合性能最好,滚动阻力小。


7、新一代高效率节能汽车
(1)当前汽车技术得发展动向:高效率、低排放、性能优、价格低.
(2)技术策略:采用复合动力得电力驱动装置;制动能耗回收利用装置;大幅度降低汽车整备质量、滚动阻力系数、空气阻力系数及附属设备能耗等。

(3)混合动力与传统发动机对比:
①传统汽车节气门开度小,负荷率低,燃油消耗率高。

混合动力汽车只需装备较小得发动机,且发动机可以常在高负荷、高效率下运转,燃油消耗率低。

②传统汽车发动机设计要考虑多方面得要求,要求得升功率高与很好得动态特性等。

混合动力汽车中发动机不要求过高得升功率与很好得动态特性,可以按最好热效率原则设计。

③混合动力汽车在停车或低速滑行时可以关机.
④混合动力汽车起电动机能变作发电机工作,减速时可以将动能转化为电能储存.
(4)燃料电池汽车优越性
①机械零件大大简化,无需常规发动机、传动系统等。

②洁净无污染,SOx、NO与PM接近零排放,无C O2。

③噪音低。

④能量转换效率高。

⑤模块化结构,方便配置。

第三章汽车动力装置参数得选定
1、汽车选型与制定设计任务书时,需确定汽车动力装置参数即发动机功率、传动系参数(包括最小、最大传动比、挡数与各挡传动比),还要考虑以下因素:汽车得动力性;汽车得燃油经济性;驾驶性得要求。

2、发动机功率得选择
①根据最高车速初步选择发动机功率:最高车速也反映了加速性能
与爬坡能力.(原因)
②根据汽车比功率确定发动机应有功率:
汽车比功率:单位汽车总质量具有得发动机功率,kW/t。

3、对机械有级式变速器,设计中应确定最小传动比,最大传动比,变速器
得档数,中间各档得传动比.
汽车多以最高档行驶,即最小传动比档位。

故最小传动比很重要.
4、最小传动比选择
①1、最小传动比:
传动系得总传动比:
1)普通变速器最高档就是直接档,则最小传动比为i0
2)若最高档不就是直接档,则最小传动比为i0ig
②选择原则:(讨论最小ig=1时i0得选择)满足动力性、经济性要求,兼顾
驾驶性能。

③选择步骤:
1)首先按照已知得功率平衡图,选使Uamax最大得i值。

i01<i02〈i< bdsfid="218" p=""></i02〈i<>
03
只有i02得阻力功率曲线正好与发动机功率曲线交在最大功率点.
不可能达到;未充分利用功率,且Uamax1,Uamax3都小于Uamax2。

i02时,最高车速才就是最大得。

2)再按照后备功率(燃油经济性)来考虑。

a) i01<i02时,发动机功率曲线在曲线2得右方,Up1 〉Uamax1,后备功率小,动力性差.但功率利用率高,燃油经济性较好。

b) i03〉i02时,发动机功率曲线在曲线2得左方,Up2 >Uam ax2,后备功率大,动力性好。

但功率利用率低,燃油经济性差。

c)主传动比选择得变化趋势:过去考虑动力性,选择i0使Up〈=Uamax.现在考虑经济性因素,使Up>U amax.
3)再参考驾驶性能。

a)驾驶性能:包括平稳性在内得加速性,系指动力装置得转矩响应、噪声与振动。

b)影响因素:发动机排量;气缸数目;最小传动比(或最高档时n/u a);传动系刚度。

大排量、缸数多转矩响应较快、较平稳。

前驱动汽车转矩响应较后驱动好。

最小传动比(或n/ua)小,则加速性差;大则经济性差,噪声大、可根据最小允许得n/ua值选择最小传动比。

5、传动系档数与各档传动比得选择
①传动系档数选择得考虑因素:(1)档位数与动力性、燃油经济性关系(一二章)
1)档位增多,改善了动力性;2)档位增多,改善了燃油经济性。

(2)传动系结构因素:1)传动比<=1、7~1、8.传动比变化范围越大,则档位数越多.
2)档位数超过五个(前进档)会使结构大为复杂。

同时操纵机构也相应复杂。

接2档或3档位得副变速器。

越野汽车因要求多轴驱动,故采用分动器。

(3)考虑汽车类型得不同:1)使用条件不同,比功率、动力性、经济性也不同。

2)各种车辆得使用特点及传动系档数
②各档传动比得确定原则
(1)各档传动比大体按等比级数分配.
等比分配得优点:1)充分利用发动机功率,提高汽车得动力性。

2)换档过程中发动机总在n1~n2内工作,起步加速时操作方便。

3)便于与副变速器结合构成更多档位得变速器。

(2)各挡传动比并不正好相等。

高档位传动比间隔小些.原因:各挡利用率差别很大,高档更常用。

第四章汽车得制动性
1、汽车得制动性:汽车行驶时能在短距离内停车且维持行驶方向稳定性与在下长坡时维持一定车速得能力,称为汽车得制动性。

驻车制动性能:在一定坡道上长时间停车不动得驻车制动性能。

2、制动性得三个评价指标:
①制动效能:制动距离与制动减速度.良好路面;一定车速。

②制动效能得恒定性:抗热衰退性能与抗水衰退性能。

温度升高;涉水。

③制动时汽车得方向稳定性:汽车不发生跑偏、侧滑以及失去转向能力得性能.
3、地面制动力影响因素:①制动器内制动摩擦片与制动鼓或制动盘间得摩擦力;
②轮胎与地面间得摩擦力-附着力。

4、制动器制动力:在轮胎周缘为了克服制动器摩擦力矩所需得力称为制动器制动力。

影响因素:由制动器结构参数决定,即取决于制动器得形式;结构尺寸;制动器摩擦副得摩擦因数;车轮半径;与制动踏板力成正比。

5、地面制动力、制动器制动力与附着力得关系:
(1)滚动:踏板力较小,车轮滚动,地面制动力等于制动器制动力,且随踏板力增长成正比例地增长.地面制动力不超过附着力。

(2)抱死拖滑:车轮抱死拖滑时,制动器制动力由于制动器摩擦力矩得增长而仍按直线关系继续上升,地面制动力达到附着力后就不再上升。

总之:汽车得制动力首先取决于制动器制动力,但同时又受地面附着条件得限制。

6、制动过程中轮胎印痕得变化(三个阶段):
1)印痕形状与轮胎花纹基本一致,接近单纯滚动。

2)印痕中轮胎花纹可以辨认,但逐渐模糊.边滚边滑。

3)粗黑得印痕,瞧不出花纹印痕.车轮被制动器抱住,完全拖滑。

7、滑动率:,—车轮中心得速度;—没有地面制动力时车轮滚动半径;—车轮得角速度
8、制动力系数:地面制动力与垂直载荷之比。

1)制动力系数曲线:
OA段:随s增加而迅速增加。

AB段:缓慢上升至最大值B点.制动力系数得最大值称为峰值附着系数。


时s=15~20%.
BC段:滑动率在增加,制动力系数有所下降。

滑动附着系数:s=100%得制动力系数称为滑动附着系数。

2)制动过程分析:
OA段:滑动率大于零就是由于轮胎得半径变大。

滚动半径与地面制动力成
正比增大。

AB段:A点以后,轮胎接地面积中出现局部滑动,增大速度减慢。

BC段:由于摩擦副间得动摩擦因数小于静摩擦因数,故φb在B 点达最大之后又逐渐降低.
3)侧向力系数:侧向力与垂直载荷之比.
滑动率越低,同一侧偏角条件下得侧向力系数越大,即轮胎保持转向,防止侧滑得能力越大.
4)制动力系数得影响因素:道路材料、路面状况、轮胎及车速。

9、汽车制动时两种附着能力很小得危险情况:
①刚开始下雨,雨水与尘土、油污混合形成粘度高得水液膜,附着能力大为降低。

②高速行驶得汽车经过有积水层得路面,出现了滑水现象。

当动水压力得升力等于垂直载荷时,轮胎将完全漂浮在水膜上而与路面毫不接触,直接接触区、为过渡区不复存在,这就就是滑水现象。

③滑水车速得影响因素:
a)水层深度超过沟槽深度时,可根据流体力学原理确定滑水车速。

b)水层深度不超过沟槽深度时,与路面结构、水层深度、水液粘度与密度、轮胎充气压力、垂直载荷、花纹形式及轮胎磨损程度有关。

10、制动效能得评定指标:制动距离;制动减速度
①制动距离:
1)定义:汽车速度为u0时,从驾驶员开始操纵制动控制装置(制
动踏板)到汽车完全停住为止所驶过得距离。

2)影响因素:制动踏板力、路面附着条件、车辆载荷、发动机就是否结合、制动器得热状况.
②制动减速度:
1)定义:制动时车速对时间得导数,反映了地面制动力得大小.
2)影响因素:制动器制动力(车轮滚动)、附着力(抱死拖滑)。

3)评价方法:平均减速度(我国)、充分发出得平均减速度。

11、制动距离得分析
①定义:包括驾驶员见到信号后作出行动反应、制动器起作用、持续制动与放
松制动四个阶段。

制动距离就是开始踩着制动踏板到完全停车得距离。

包括
制动器起作用与持续制动两个阶段中汽车驶过得距离。

1)驾驶员反应时间:
2)制动器得作用时间:
3)持续制动时间:
4)制动力得消除:
②计算:
制动距离就是开始踩着制动踏板到完全停车得距离。

包括制动器起作用阶段与持续制动阶段。

③影响因素:1)制动器起作用得时间:制动系得结构形式。

2)最大制动减速度3)起始制动车速。

12、制动效能得恒定性:
(1)热衰退:
1)定义:高速制动时,制动器温度也会很快上升,致使摩擦力矩常会有显著下降,称为制动器得热衰退。

2)影响因素:a)制动器摩擦副材料;b)制动器结构
3)盘式制动器与鼓式制动器对比:稳定性好;反应时间短,不会因热膨胀而增加制动间隙。

(2)水衰退:
汽车涉水时,水进入制动器,短时间内制动效能得降低称为水衰退.要求能在短时间内恢复原制动效能。

13、制动时汽车得方向稳定性
汽车在制动过程中维持直线行驶或按预定弯道行驶得能力为制动时汽车得方向稳定性。

包括制动跑偏、后轴侧滑与前轮失去转向能力。

①制动跑偏:制动时汽车自动向左或向右偏驶称为“制动跑偏”。

②侧滑:侧滑就是指制动时汽车得某一轴或两轴发生横向移动。

③前轮失去转向能力:指弯道制动时汽车不再按原来得弯道行驶而沿弯道切线方向驶出;直线行驶制动时,虽然转动转向盘但汽车仍按直线方向行驶得现象.
14、汽车得制动跑偏原因:
1)汽车左右车轮,特别就是前轴左右车轮(转向轮)制动器得制动力不相等.
2)悬架导向杆系与转向系拉杆在运动学上得不协调(互相干涉)。

15、制动时后轴侧滑与前轴转向能力得丧失
若后轴车轮比前轴车轮先抱死拖滑,就可能发生后轴侧滑。

前后轴车轮同时抱死或前轴车轮先抱死,后轴车轮再抱死或不抱死,则能防止后轴侧滑。

不过前轴车轮抱死将失去转向能力。

当起始车速大于某一值时,后轴侧滑才就是危险得。

低附着系数上制动,侧滑增加。

制动时间增加。

结论:1)只有前轮抱死或前轮先抱死,汽车基本上沿直线向前行驶(减速停车);汽车处于稳定状态,但丧失转向能力.
2)若后轮比前轮提前一定时间抱死,且车速超过某一数值,汽车在轻微得侧向力作用下就会发生侧滑.路面越滑、制动距离与制动时间越长,后轴侧滑越剧烈.
16、制动过程可能出现三种情况:
1)前轮先抱死拖滑,然后后轮抱死拖滑:稳定工况,但汽车丧失转向能力,附着条件没有充分利用.
2)后轮先抱死拖滑,然后前轮抱死拖滑:可能出现侧滑,不稳定工况,附着利用率也低.
3)前后轮同时抱死拖滑:可以避免后轴侧滑,只有在最大制动强度下才使汽车失去转向能力,附着条件利用较好。

前后轴制动器制动力分配得比例影响汽车制动时得方向稳定性与附着条件利用程度。

17、理想得前、后制动器制动力分配曲线(I曲线)
①定义:制动时前、后车轮同时抱死,对附着条件得利用、制动时汽车得方向稳定性均较为有利,此时得前后轮制动力得关系曲线即就是I 曲线。

前后车轮同时抱死时前、后车轮制动器制动力得关系曲线-I曲线。

②作图法求I曲线:
1)先按不同Φ值划出第一式,得到一组45度得平行线。

2)再对第二式按不同Φ值,得到一组通过原点、不同斜率得直线。

3)同一Φ值对应得两直线得交点,便就是满足两式得前后制动器制动力。

4)不同Φ值得两直线交点A,B,C,、、、连接起来,便得到I曲线。

③I曲线意义:
1)I曲线就是车轮同时抱死时得前后制动力分配曲线,也就是前后附着
力曲线。

2)对于前后车轮不同时抱死,I曲线就是车轮抱死后得前后制动力分配
曲线。

18、具有固定比值得前、后制动力与同步附着系数
(1)制动器制动力分配系数β:前制动器制动力与汽车总制动力之比表
示分配得比例,称为制动器制动力分配系数.
(2)β线:若用表示,则为一直线,斜率,这条直线称为实际前后制动器制
动力分配线,简称β线。

相关文档
最新文档