24.3.4相似三角形的应用(1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

24.3.4相似三角形的应用(1)
例1、小军想出了一个测量建筑物高度的方法:在地面上C处平放一面镜子,并在镜子上做一个标记,然后向后退去,直至看到建筑物的顶端A在镜子中的象与镜子上的标记重合.如果小军的眼睛距地面1.65m,BC、CD的长分别为60m、3m,求这座建筑物的高度.
A
B
C
D
E
α
α
例2、如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的点处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为 米.
例3、如图,甲楼AB高18米,乙楼坐落在甲楼的正北面,已知当地冬至中午12时,物高与影长的比是1: 0.5 ,已知两楼相距21米,那么甲楼的影子落在乙楼上有多高?
例4、如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小明
在点D处测得自己的影长DF=3m,沿BD方向到达点F处再测得自己得影长FG=4m,如果小明得身高为1.6m,求路灯杆AB的高度。

A
D
F
B
C
E
G
例5、如图,两颗树的高度分别为AB=6m,CD=8m,两树的根部间的距离AC=4m,小强沿着正对这两棵树的方向从左向右前进,如果小强的眼睛与地面的距离为1.6m,当小强与树AB的距离小于多少时,就不
能看到树CD的树顶D?
A
C
H
D
B
G
F
E
P
Q
盲区
例6、(2011陕西)一天,某校数学课外活动小组的同学们,带着皮尺去测量某河道因挖沙形成的“圆锥形坑”的深度,来评估这些深坑对河道的影响.如图是同学们选择(确保测量过程中无安全隐患)的测量对象,测量方案如下:
①先测量出沙坑坑沿圆周的周长约为34.54米;
②甲同学直立于沙坑坑沿圆周所在平面上,经过适当调整自己所处的位置,当他位于点B时,恰好他的视线经过沙坑坑沿圆周上的一点A看到坑底S(甲同学的视线起点C与点A、点S三点共线).经测量:AB=1.2米,BC=1.6米.
根据以上测量数据,求“圆锥形坑”的深度(圆锥的高).(π取3.14,结果精确到0.1米)
例7.在中国地理图上,上海、香港、台湾所在的三个点构成一个三角形,大陆和台湾实现直航是两岸人民的共同愿望,但由于种种原因,过去从上海起飞的飞机必须绕道香港,再到台北。

现已知从上海到香港要途经温州,当连接台北和温州,正好测得∠1=∠2。

现已查得有关航线距离为:上海→温州550km,上海→香港1255km,求从上海到台北得直航距离约为多少千米?(结果保留整数)
例8、如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,设运动时间为t.
(1)当t为何值时,PQ∥BC;
(2)当t为何值时,∠AQP=∠CBQ。

相关文档
最新文档