“数学史概论”读后感

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“数学史后五章”读后感
数学史是数学专业的学生必须学习的一门课程。

但是数学史相对于数学的专业知识来说,这门课程全是一些历史和人物、及人物的著作介绍,相对来说枯燥乏味,但是认真的阅读还是发现有一些的趣味和能够了解很知识。

纯粹数学是19世纪的遗产,在20世纪得到巨大的发展。

在1990年8月,德国数学家希尔布特在巴黎国际数学大会上的演讲,对各类数学问题的意义、源泉及研究方法发表了许多精辟的见解,提出23个数学问题,激发着数学家们浓厚的研究兴趣。

这23个问题是:1连续统假设、2算术公理的相容性、3两等底等高四面体体积之相等、4直线为两点间的最短距离、5不要定义群的函数的可微性假设的李群概念、6物理公理的数学处理、7某些数的无理性与超越性、8素数问题、9任意数域中最一般的互反律之证明、10丢番图方程可解性的判别、11素数为任意代数数的二次型、12阿贝尔域上的克罗内克定理在任意代数有理域上的推广、13不可能用仅有两个变数的函数解一般的七次方程、14证明某类完全函数系的有限性、15舒伯特计数演算的严格基础、16代数曲线与曲面的拓扑、17正定形式的平方表示、18由全等多面体构造空间、19正则变分问题的解是否一定解析、20一般边值问题、21具有给定单值群的微分方程的存在性、22解析关系的单值化、23变分问题的进一步发展。

这23问题涉及到数学的大多分支领域,它的解决和研究大大的推动这些分支的发展,同时在未能包括拓扑学、微分几何等在20世纪也得到极大的发展,并
成为前沿学科的领域中的数学问题。

与19世纪相比,20世纪的纯粹数学在发展表现出的主要特征和趋势有:更高的抽象性、更高的统一性、更深入的基础探讨。

更高的抽象主要受到集合论观点和公理化方法两大因素的影响,包含有分支勒贝格积分与实变函数论、泛函分析、抽象代数、拓扑学、公理化概率论;更高的统一性涉及有微分拓扑与代数拓扑、整体微分几何、代数几何、多复变函数论、动力系统、偏微分方程与泛函数分析、随机分析;对基础的深入探讨有集合论悖论、三大学派(逻辑主义、直觉主义、形式主义),数理逻辑的发展(公理化集合论、证明论、模型论、递归论)。

数学的广泛参透与应用是数学的一大特点,但是在数学史上,数学的应用在不同时期的发展是不平衡的。

在20世纪,应用数学具有的特点是数学的应用突破了传统的范围而向人类几乎所有的知识领域渗透;纯粹数学几乎所有的分支都获得了应用,其中最抽象的一些分支也参与了渗透;现代数学对生产技术的应用变得越来越直接;现代数学在向外渗透的过程中,产生了一些相对独立的应用学科,这些学科以数学方法与数学理论为基础。

同时,和数学相互渗透相连的学科有数学物理、生物数学、数理经济学。

独立应用的学科有数理统计、运筹学、控制论。

同时计算机和数学联系,是20世纪数学区别以往任何时代的一大特点,计算机与数学科学之间的相互作用和相互影响充分表明,数学研究的这一新时代已经开始来临。

在20世纪数学的各个分支都有了大力的发展,形成了现代数学的一颗枝繁叶茂的大树。

在这颗大树下,20世纪的数学成果主要有
哥德尔不完全性定理(1931)、高斯—博内公式的推广(1941-1944)、米尔诺怪球(1956)、阿蒂亚-辛格指标定理(1963)、孤立子与非线性偏微分方程(1965)、四色问题(1976)、分形与混沌(1977)、有限单群分类(1980)、费马大定理的证明(1994)、若干著名未决猜想的进展。

20世纪在对四色问题、费马大定理等堡垒相继攻克下,这是人类智慧的凯歌。

同时,人类又将面临未来新的挑战,主要是这七个猜想庞加莱猜想、黎曼猜想、伯奇-斯温纳顿·代尔猜想、霍奇猜想、纳维-斯托克斯方程解的存在性与光滑性、量子杨-米尔斯理论、P对NP问题。

虽然这七个问题在20世纪之前就有提出来,不属于“提出新的挑战”,但七大问题已经引起公众的关注,事实上形成了对未来的巨大挑战。

以上是对20世纪数学概观的基本介绍,主要介绍了对20世纪数学的发展趋势、现在数学应用和数学未来的挑战。

我们都知道数学是来源于生活。

因此,在我们这个20世纪的社会里,数学与社会也有着共同的发展,下面是对20世纪数学与社会和中国现代数学开拓简单介绍。

数学的发展与社会的进化有着密切的联系,这样的联系是具有双向的,一方面数学发展依赖社会环境,受到社会政治、经济和文化等影响;另一方面,数学的发展又反过来对人类社会的进步起到推动作用。

如17、18世纪微积分作为一种强有力的新工具,在18世纪60、70年代,第一次产业革命的主体技术蒸汽机、纺织机等上起到对运动和变化的计算,而且只有微积分发明后才可能计算出这些变化;在
19世纪60年代,第二次产业革命,以发电机、电动机、电气通信为主的主体技术是依靠电磁理论的发展,而电磁理论的研究与数学分析的应用分不开的;20世纪40年代,第三次产业革命主要是电子计算机的发明使用、原子能的利用以及空间技术、生产自动化等,这些都记载着数学在其中不可磨灭的贡献。

同时数学发展中心的迁移同社会政治、经济重心的迁移基本上是相吻合的,它的迁移可以给人们一个数学发展与社会环境相依存的鲜明印象。

20世纪的数学已经社会化,主要表现在数学教育的社会化、数学专门期刊的创办、数学社团的成立、数学奖励的建立等等都大大的推动数学的社会化。

在数学的社会化的今天,我国现代数学的开拓和发展也有了一定的成果。

从17世纪初到19世纪末大约三百年时间,是中国传统数学滞缓发展和西方数学逐渐传入的过渡时期,这时期出现了两次西方数学传播高潮。

第一次是从17世纪初到18世纪初,标志性事件是欧几里得《原本》的首次翻译,第二次高潮是从19世纪中叶开始,除了初等数学,这一时期传入的数学知识还包括了解析几何、微积分、无穷级数论、概率论等近代数学。

自鸦片战争以后,部分有知之士认识到数学对富国强兵的意义,热血青年们怀着科学救国、教育救国的思想走出国门到欧、美、日各国学习现代数学。

其中,1917年胡明复以论文《具边界条件的线性积-微分方程论》获得美国哈佛大学博士学位,成为第一位获得博士学位的中国数学家;1927年清华学校大学部算学系正式成立;20世纪20年代,是我国现代数学发展道路上的关键时期,国内各个大学开始纷纷创办数学系,数学人才培养开始
着眼于国内。

伴随着中国现代数学教育的形成,现代数学研究也在中国悄然兴起,1920年代末和1930年代,我国已经出现一批符合国际水平的研究工作。

中国数学的今天,是整整一个世纪几代数学家共同拼搏奋斗的结果。

1986年,中国数学会已成为国际数学联盟的成员;2002年中国北京成功举办第24届国际数学家大会,这一切标志着中国数学发展水平与国际地位的提高,同时也吹响了新世纪中国数学赶超世界先进水平的进军号角。

通过对数学史的“20世界数学概观、数学和社会及中国现代数学的开拓”阅读和学习后,知道了20世界是数学繁荣的时代,从它发展趋势上讲,数学的分支越来越多,数学本身就像一颗大树,现在数学这颗大树上的分支和领域越来越广。

它的应用越来越被人们重视,同时在社会的发展中,在将来还将面临更多更大的挑战。

数学的来源是现实生活,也将运用与现实生活,即是数学和我们现在生活的社会密切联系,因此数学依赖我们生活社会,同时数学的发展也推动我们生活的社会。

从最后一章,“中国现代数学的开拓”,可知我国的数学发展在17世纪和19世纪滞缓发展,经过两次西方数学传入高潮。

一直到20世纪30年代,经过老一辈数学家们辛苦努力,中国现代数学从无到有地发展起来,不仅达到一定水平的队伍,而且有了全国性的学术型组织和发表成果的杂志。

因此,作为21世纪的青年,我们更要继承老一辈数学家们精神,继续为我国的数学发展做贡献。

凯里学院数学科学学院09级数本(1)班梁启清。

相关文档
最新文档