八年级上册全等三角形单元测试题(Word版 含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上册全等三角形单元测试题(Word版含解析)
一、八年级数学轴对称三角形填空题(难)
1.已知A、B两点的坐标分别为(0,3),(2,0),以线段AB为直角边,在第一象限
内作等腰直角三角形ABC,使∠BAC=90°,如果在第二象限内有一点P(a,1
2
),且
△ABP和△ABC的面积相等,则a=_____.
【答案】-8
3
.
【解析】
【分析】
先根据AB两点的坐标求出OA、OB的值,再由勾股定理求出AB的长度,根据三角形的面积公式即可得出△ABC的面积;连接OP,过点P作PE⊥x轴,由△ABP的面积与△ABC的
面积相等,可知S△ABP=S△POA+S△AOB﹣S△BOP=13
2
,故可得出a的值.
【详解】
∵A、B两点的坐标分别为(0,3),(2,0),∴OA=3,OB=2,
∴22
3+213
AB==,
∵△ABC是等腰直角三角形,∠BAC=90°,
∴
1113
•1313
222 ABC
S AB AC⨯⨯
===,
作PE⊥x轴于E,连接OP,
此时BE=2﹣a,
∵△ABP的面积与△ABC的面积相等,
∴
111
•••
222 ABP POA AOB BOP
S S S S OA OE OB OA OB PE ++
=﹣=﹣,
111113
3322
22222
a
⨯⨯+⨯⨯⨯⨯
=(﹣)﹣=,
解得a=﹣8
3
.
故答案为﹣8
3
.
【点睛】
本题考查等腰直角三角形的性质,坐标与图象性质,三角形的面积公式,解题的关键是根据S△ABP=S△POA+S△AOB-S△BOP列出关于a的方程.
2.如图,点P是∠AOB内任意一点,OP=5,M,N分别是射线OA和OB上的动点,若△PMN周长的最小值为5,则∠AOB的度数为_____.
【答案】30°.
【解析】
【分析】
如图:分别作点P关于OB、AO的对称点P'、P'',分别连OP'、O P''、P' P''交OB、OA于M、N,则可证明此时△PMN周长的最小,由轴对称性,可证明△P'O P''为等边三角形,
∠AOB=1
2
∠P'O P''=30°.
【详解】
解:如图:分别作点P关于OB、AO的对称点P'、P'',分别连OP'、O 、P' 交OB、OA于M、N,
由轴对称△PMN周长等于PN+NM+MP=P'N+NM+MP"=P'P"
∴由两点之间线段最短可知,此时△PMN周长的最小
∴P'P"=5
由对称OP=OP'=OP"=5
∴△P'OP"为等边三角形
∴∠P'OP"=60
∵∠P'OB=∠POB,∠P"OA=∠POA
∴∠AOB=1
2
∠P'O P''=30°.
故答案为30°.【点睛】
本题是动点问题的几何探究题,考查最短路径问题,应用了轴对称图形性质和等边三角形性质. 3.如图,将ABC ∆沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的1A 处,称为第1次操作,折痕DE 到BC 的距离记为1h ,还原纸片后,再将ADE ∆沿着过AD 中点1D 的直线折叠,使点A 落在DE 边上的2A 处,称为第2次操作,折痕11D E 到BC 的距离记为2h ,按上述方法不断操作下去…经过第2020次操作后得到的折痕20192019D E 到BC 的距离记为2020h ,若11h =,则2020h 的值为______.
【答案】2019122-
【解析】
【分析】
根据中点的性质及折叠的性质可得DA=DA ₁=DB,从而可得∠ADA ₁=2∠B,结合折叠的性质可得.,∠ADA ₁=2∠ADE,可得∠ADE=∠B,继而判断DE// BC,得出DE 是△ABC 的中位线,证得AA ₁⊥BC,AA ₁=2,由此发现规律:01
2122h =-=-₁同理21122h =-3211122222
h =-⨯=-…于是经过第n 次操作后得到的折痕Dn-1 En-1到BC 的距离1122n n h -=-
,据此求得2020h 的值. 【详解】
解:如图连接AA ₁,由折叠的性质可得:AA ₁⊥DE, DA= DA ₁ ,A ₂、A ₃…均在AA ₁上
又∵ D 是AB 中点,∴DA= DB ,
∵DB= DA ₁ ,
∴∠BA ₁D=∠B ,
∴∠ADA ₁=∠B +∠BA ₁D=2∠B,
又∵∠ADA ₁ =2∠ADE ,
∴∠ADE=∠B
∵DE//BC,
∴AA ₁⊥BC ,
∵h ₁=1 ∴AA ₁ =2,
∴01
2122h =-=-₁ 同理:21122
h =-; 3211122222
h =-⨯=-; …
∴经过n 次操作后得到的折痕D n-1E n-1到BC 的距离1122n n h -=-
∴20202019122h =-
【点睛】
本题考查了中点性质和折叠的性质,本题难度较大,要从每次折叠发现规律,求得规律的过程是难点.
4.如图,在四边形ABCD 中,AB AD =,BC DC =,60A ∠=︒,点E 为AD 边上一点,连接BD .CE ,CE 与BD 交于点F ,且CE AB ∥,若8AB =,6CE =,则BC 的长为_______________.
【答案】7
【解析】
【分析】
由AB AD =,BC DC =知点A,C 都在BD 的垂直平分线上,因此,可连接AC 交BD 于点O ,易证ABD △是等边三角形,EDF 是等边三角形,根据等边三角形的性质对三角
形中的线段进行等量转换即可求出OB,OC 的长度,应用勾股定理可求解.
【详解】
解:如图,连接AC 交BD 于点O
∵AB AD =,BC DC =,60A ∠=︒,
∴AC 垂直平分BD ,ABD △是等边三角形
∴30BAO DAO ∠=∠=︒,8AB AD BD ===,4BO OD ==
∵CE AB ∥
∴30BAO ACE ∠=∠=︒,60CED BAD ∠=∠=︒
∴30DAO ACE ∠=∠=︒
∴6AE CE ==
∴2DE AD AE =-=
∵60CED ADB ∠=∠=︒
∴EDF 是等边三角形
∴2DE EF DF ===
∴4CF CE EF =-=,2OF OD DF =-=
∴2223OC CF OF =-=
∴2227BC BO OC =
+=
【点睛】
本题主要考查了等边三角形的判定与性质、勾股定理,综合运用等边三角形的判定与性质进行线段间等量关系的转换是解题的关键.
5.如图,在Rt ABC △中,AC BC =,D 是线段AB 上一个动点,把ACD 沿直线CD 折叠,点A 落在同一平面内的A '处,当A D '平行于Rt ABC △的直角边时,ADC ∠的大小为________.
【答案】112.5︒或67.5︒
【解析】
【分析】 当A D '平行于Rt ABC △的直角边时,有两种情况,一是当A D BC '时,二是当A D AC '时,两种情况根据折叠的性质及等腰三角形的性质进行角度的计算即可.
【详解】 如图1,当点D 在线段AB 上,且A D
BC '时,45A DB B '∠=∠=︒, 45180ADC A DC '∴∠+∠-=︒︒
,解得112.5A DC ADC '∠=∠=︒.
图1
如图2,当A D AC '时,45A DB A '∠=∠=︒,
45180ADC A DC '∴∠+∠+=︒︒
,解得67.5A DC ADC '∠=∠=︒.
图2
【点睛】
本题考查了翻折变换的性质,等腰直角三角形的性质,掌握折叠的性质是解题关键.
6.如图,在等腰直角三角形ABC 中,90ACB ∠=︒,4AC BC ==,D 为BC 中点,E 为AC 边上一动点,连接DE ,以DE 为边并在DE 的右侧作等边DEF ∆,连接BF ,则BF 的最小值为______.
【答案】3
【解析】
【分析】
由60°联想旋转全等,转换动长为定点到定线的长,构建等边三角形BDG,利用△BDF≌△GDE,转换BF=GE,然后即可求得其最小值.
【详解】
以BD为边作等边三角形BDG,连接GE,如图所示:
∵等边三角形BDG,等边三角形DEF
∴∠BDG=∠EDF=60°,BD=GD=BG,DE=DF=EF
∴∠BDG+∠GFD=∠EDF+∠GFD,即∠BDF=∠GDE
∴△BDF≌△GDE(SAS)
∴BF=GE
当GE⊥AC时,GE有最小值,如图所示GE′,作DH⊥GE′
∴BF=GE=CD+1
2
DG=2+1=3
故答案为:3.
【点睛】
此题主要考查等边三角形的性质以及全等三角形的判定与性质,解题关键是由60°联想旋转全等,转换动长为定点到定线的长.
7.如图,△ABC中,AB=AC=12厘米,BC=9厘米,点D为AB的中点,如果点P在线段BC 上以v厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动。
若点
Q的运动速度为3厘米/秒,则当△BPD与△CQP全等时,v的值为_____________
【答案】2.25或3
【解析】
【分析】
分两种情况讨论:①若△BPD≌△CPQ,根据全等三角形的性质,则BD=CQ=6厘米,
BP=CP=1
2
BC=
1
2
×9=4.5(厘米),根据速度、路程、时间的关系即可求得;②若
△BPD≌△CQP,则CP=BD=6厘米,BP=CQ,得出
96
3
vt
vt t
⎨
⎩
-
⎧=
=
,解得:v=3.
【详解】
解:∵△ABC中,AB=AC=12厘米,点D为AB的中点,∴BD=6厘米,
若△BPD≌△CPQ,则需BD=CQ=6厘米,BP=CP=1
2
BC=
1
2
×9=4.5(厘米),
∵点Q的运动速度为3厘米/秒,
∴点Q的运动时间为:6÷3=2(s),
∴v=4.5÷2=2.25(厘米/秒);
若△BPD≌△CQP,则需CP=BD=6厘米,BP=CQ,
则有
96
3
vt
vt t
⎨
⎩
-
⎧=
=
,
解得:v=3
∴v的值为:2.25或3厘米/秒
故答案为:2.25或3.
【点睛】
本题考查了全等三角形的判定和线段垂直平分线的性质.注意垂直平分线上任意一点,到线段两端点的距离相等.
8.如图,△ABC 中, AB=11 , AC= 5 ,∠ BAC 的平分线 AD 与边 BC 的垂直平分线 CD 相交于点 D ,过点 D 分别作 DE⊥AB ,DF⊥AC ,垂足分别为 E 、F ,则 BE 的长为_____.
【答案】3
【解析】
【分析】
连接CD ,BD ,由∠BAC 的平分线与BC 的垂直平分线相交于点D ,DE ⊥AB ,DF ⊥AC ,根据角平分线的性质与线段垂直平分线的性质,易得CD=BD ,DF=DE ,继而可得AF=AE ,易证得Rt △CDF ≌Rt △BDE ,则可得BE=CF ,继而求得答案.
【详解】
如图,连接CD ,
BD ,
∵AD 是∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,
∴DF=DE ,∠F=∠DEB=90°,∠ADF=∠ADE ,
∴AE=AF ,
∵DG 是BC 的垂直平分线,
∴CD=BD ,
在Rt △CDF 和Rt △BDE 中,
CD BD DF DE ⎧⎨⎩==
,
∴Rt △CDF ≌Rt △BDE (HL ),
∴BE=CF ,
∴AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE ,
∵AB=11,AC=5, ∴BE=
12
(11-5)=3. 故答案为:3.
【点睛】 此题考查了线段垂直平分线的性质、角平分线的性质以及全等三角形的判定与性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
9.已知等边△ABC中,点D为射线BA上一点,作DE=DC,交直线BC于点E,∠ABC的平分线BF交CD于点F,过点A作AH⊥CD于H,当EDC=30︒,CF=
4
3
,则DH=______.
【答案】
2
3
【解析】
连接AF.
∵△ABC是等边三角形,
∴AB=BC,∠ABC=∠ACB=∠BAC=60°.
∵DE=DC,∠EDC=30°,
∴∠DEC=∠DCE=75°,
∴∠ACF=75°-60°=15°.
∵BF平分∠ABC,
∴∠ABF=∠CBF.
在△ABF和△CBF中,
AB BC
ABF CBF
BF BF
⎧
⎪
∠∠
⎨
⎪
⎩
=
=
=
,
∴△ABF≌△CBF,
∴AF=CF,
∴∠FAC=∠ACF=15°,
∴∠AFH=15°+15°=30°.
∵AH⊥CD,
∴AH=
1
2
AF=
1
2
CF=
2
3
.
∵∠DEC=∠ABC+∠BDE,
∴∠BDE=75°-60°=15°,
∴∠ADH=15°+30°=45°,
∴∠DAH=∠ADH=45°,
∴DH=AH=2 3 .
故答案为2 3 .
点睛:本题考查了全等三角形的判定与性质;证明三角形全等是解决问题的关键,注意辅助线的作法.
10.如图,在第1个△A1BC中,∠B=20°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,按此做法继续下去,第2019个等腰三角形的底角度数是
______________.
【答案】
2018
1
80 2
⎛⎫
⨯ ⎪
⎝⎭
【解析】
【分析】
根据等腰三角形的性质求出∠BA1C的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律即可得出第2019个三角形中以A2019为顶点的内角度数.
【详解】
解:∵在△CBA1中,∠B=20°,A1B=CB,
∴∠BA1C=
°
180-
2
B
∠
=80°,
∵A1A2=A1D,∠BA1C是△A1A2D的外角,
∴∠DA2A1=1
2
∠BA1C=
1
2
×80°;
同理可得∠EA3A2=(1
2
)2×80°,∠FA4A3=(
1
2
)3×80°,
∴第n个三角形中以A n为顶点的底角度数是(1
2
)n-1×80°.
∴第
2017个三角形中以A 2019为顶点的底角度数是(
12)2018×80°, 故答案为:(
12
) 2018×80°. 【点睛】 本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠DA 2A 1,∠EA 3A 2及∠FA 4A 3的度数,找出规律是解答此题的关键.
二、八年级数学轴对称三角形选择题(难)
11.如图,在等边△ABC 中,AD 是BC 边上的高,∠BDE=∠CDF=30°,在下列结论中:①△ABD ≌△ACD ;②2DE=2DF=AD ;③△ADE ≌△ADF ;④4BE=4CF=AB .正确的个数是( )
A .1
B .2
C .3
D .4
【答案】D
【解析】
【分析】 由等边三角形的性质可得BD=DC ,AB=AC ,∠B=∠C=60°,利用SAS 可证明△ABD ≌△ACD ,从而可判断①正确;利用ASA 可证明△ADE ≌△ADF ,从而可判断③正确;在Rt △ADE 与Rt △ADF 中,∠EAD=∠FAD=30°,根据30度角所对的直角边等于斜边的一半可得
2DE=2DF=AD ,从而可判断②正确;同理可得2BE=2CF=BD ,继而可得4BE=4CF=AB ,从而可判断④正确,由此即可得答案.
【详解】
∵等边△ABC 中,AD 是BC 边上的高,
∴BD=DC ,AB=AC ,∠B=∠C=60°,
在△ABD 与△ACD 中
90AD AD ADB ADC DB DC =⎧⎪∠=∠=︒⎨⎪=⎩
, ∴△ABD ≌△ACD ,故①正确;
在△ADE 与△ADF 中
60EAD FAD AD AD
EDA FDA ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩
,
∴△ADE ≌△ADF ,故③正确;
∵在Rt △ADE 与Rt △ADF 中,
∠EAD=∠FAD=30°,
∴2DE=2DF=AD ,故②正确;
同理2BE=2CF=BD ,
∵AB=2BD ,
∴4BE=4CF=AB ,故④正确,
故选D .
【点睛】
本题考查了等边三角形的性质、含30度的直角三角形的性质、全等三角形的判定等,熟练掌握相关性质与定理是解题的关键.
12.如图,120AOB ∠=︒,OP 平分AOB ∠,且2OP =,若点M N 、分别在OA OB 、上,且PMN ∆为等边三角形,则满足上述条件的PMN ∆有( )
A .1个
B .2个
C .3个
D .无数个
【答案】D
【解析】
【分析】 根据题意在OA 、OB 上截取OE=OF=OP ,作∠MPN=60°,只要证明△PEM ≌△PON 即可反推出△PMN 是等边三角形满足条件,以此进行分析即可得出结论.
【详解】
解:如图在OA 、OB 上截取OE=OF=OP ,作∠MPN=60°.
∵OP 平分∠AOB ,120AOB ∠=︒,
∴∠EOP=∠POF=60°,
∵OE=OF=OP ,
∴△OPE ,△OPF 是等边三角形,
∴EP=OP ,∠EPO=∠OEP=∠PON=∠MPN=60°,
∴∠EPM=∠OPN,
在△PEM和△PON中,
PEM PON
PE PO
EPM OPN
∠
⎪∠
⎧
⎩
∠
⎪
∠
⎨
=
=
=
∴△PEM≌△PON(ASA).
∴PM=PN,
∵∠MPN=60°,
∴△PNM是等边三角形,
∴只要∠MPN=60°,△PMN就是等边三角形,
故这样的三角形有无数个.
故选:D.
【点睛】
本题考查等边三角形的判定和性质、全等三角形的判定和性质、角平分线的定义等知识,解题的关键是正确添加辅助线并构造全等三角形.
13.如图,△ABC中,AB=AC,且∠ABC=60°,D为△ABC内一点,且DA=DB,E为△ABC 外一点,BE=AB,且∠EBD=∠CBD,连DE,CE. 下列结论:①∠DAC=∠DBC;
②BE⊥AC ;③∠DEB=30°. 其中正确的是()
A.①... B.①③... C.② ... D.①②③
【答案】B
【解析】
【分析】
连接DC,证ACD BCD DAC DBC
∠∠
≅=
得出①,再证BED BCD
≅,得出BED BCD30
∠∠
==︒;其它两个条件运用假设成立推出答案即可.
【详解】
解:证明:连接DC,
∵△ABC是等边三角形,
∴AB=BC=AC,∠ACB=60°,
∵DB=DA,DC=DC,
在△ACD与△BCD中,
AB BC DB DA DC DC
=
⎧
⎪
=
⎨
⎪=
⎩
,
∴△ACD≌△BCD (SSS),由此得出结论①正确;
∴∠BCD=∠ACD=1
30 2
ACB
∠=︒
∵BE=AB,
∴BE=BC,
∵∠DBE=∠DBC,BD=BD,
在△BED与△BCD中,
BE BC
DBE DBC
BD BD
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△BED≌△BCD (SAS),
∴∠DEB=∠BCD=30°.
由此得出结论③正确;
∵EC∥AD,
∴∠DAC=∠ECA,
∵∠DBE=∠DBC,∠DAC=∠DBC,
∴设∠ECA=∠DBC=∠DBE=∠1,
∵BE=BA,
∴BE=BC,
∴∠BCE=∠BEC=60°+∠1,
在△BCE中三角和为180°,
∴2∠1+2(60°+∠1)=180°
∴∠1=15°,
∴∠CBE=30,这时BE是AC边上的中垂线,结论②才正确.
因此若要结论②正确,需要添加条件EC∥AD.
故答案为:B.
【点睛】
本题考查的知识点主要是全等三角形的判定与性质以及等边三角形的性质,通过已知条件作出恰当的辅助线是解题的关键点.
14.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为()
A .130°
B .120°
C .110°
D .100°
【答案】B
【解析】 根据要使△AMN 的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A 关于BC 和ED 的对称点A′,A″,即可得出∠AA′M +∠A″=∠HAA′=60°,进而得出∠AMN +∠ANM =2(∠AA′M +∠A″)即可得出答案:
如图,作A 关于BC 和ED 的对称点A′,A″,连接A′A″,交BC 于M ,交CD 于N ,
则A′A″即为△AMN 的周长最小值.作DA 延长线AH .
∵∠BAD =120°,∴∠HAA′=60°.
∴∠AA′M +∠A″=∠HAA′=60°.
∵∠MA′A =∠MAA′,∠NAD =∠A″,
且∠MA′A +∠M AA′=∠AMN ,
∠NAD +∠A″=∠ANM ,
∴∠AMN +∠ANM =∠MA′A +∠MAA′+∠NAD +∠A″=2(∠AA′M +∠A″)=2×60°=120°. 故选B .
15.如图,ABC ∆中,AB 的垂直平分线DG 交ACB ∠的平分线CD 于点D ,过D 作DE AC ⊥于点E ,若10AC =,4CB =,则AE =( )
A .7
B .6
C .3
D .2
【答案】C
【解析】
【分析】
连接BD、AD,过点D作DF⊥CB于点F,利用角平分线及线段垂直平分线的性质可求出BD=AD,DE=DF,依据HL定理可判断出Rt△AED≌Rt△BFD,根据全等三角形的性质即可得出BF=AE,再运用AAS定理可证得Rt△CED≌Rt△CFD,证出CE=CF,设AE的长度为x,根据CE=CF列方程求解即可.
【详解】
如图,连接BD、AD,过点D作DF⊥CB于点F.
的平分线CD于点D,DE⊥AC,DF⊥BC,
∵AB的垂直平分线DG交ACB
∴BD=AD,DE=DF.∴Rt△AED≌Rt△BFD.
∴BF=AE.
又∵∠ECD=∠FCD,∠CED=∠CFD,CA=CA,∴Rt△CED≌Rt△CFD,
∴CE=CF,
设AE的长度为x,则CE=10-x,CF=CB+BF= CB+AE= 4+x,
∴可列方程10-x=4+x,x=3,∴AE=3;
故选C.
【点睛】
本题涉及到线段垂直平分线及角平分线的性质,直角三角形全等的判定定理及性质,解答此题的关键是作出辅助线,构造出直角三角形解答.
16.如图,P为∠AOB内一定点,M、N分别是射线OA、OB上一点,当△PMN周长最小时,∠MPN=110°,则∠AOB=()
A.35°B.40°C.45°D.50°
【答案】A
【解析】
【分析】
作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,根据对称的性质可以证得:∠OP1M=∠OPM=50°,OP1=OP2=OP,
根据等腰三角形的性质求解.
【详解】
作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,连接P1O、P2O,
∵PP1关于OA对称,∠MPN=110°
∴∠P1OP=2∠MOP,OP1=OP,P1M=PM,∠OP1M=∠OPM,
同理可得:∠P2OP=2∠NOP,OP=OP2,
∴∠P1OP2=∠P1OP+∠P2OP=2(∠MOP+∠NOP)=2∠AOB,OP1=OP2=OP,
∴△P1OP2是等腰三角形.
∴∠OP2N=∠OP1M,
∴∠P1OP2=180°-110°=70°,
∴∠AOB=35°,
故选A.
【点睛】
考查了对称的性质,解题关键是正确作出图形和证明△P1OP2是等腰三角形是.
17.如图,已知△ABC与△CDE均是等边三角形,点B、C、E在同一条直线上,AE与BD 交于点O,AE与CD交于点G,AC与BD交于点F,连接OC、FG,则下列结论:
①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC.其中正确结论的个数为( )
A.1 B.2 C.3 D.4
【答案】D
【解析】
【分析】
根据题意,结合图形,对选项一一求证,即可得出正确选项.
【详解】
(1)△ABC和△DCE均是等边三角形,点B,C,E在同一条直线
上,∴AC=BC,EC=DC,∠ACB=∠DCE=60°,∴∠ACE=∠BCD=120°.
在△BCD和△ACE中,∵
AC BC
BCD ACE
CD CE
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
,∴△BCD≌△ACE,∴AE=BD,故结论①正
确;
(2)∵△BCD≌△ECA,∴∠GAC=∠
FBC.
又∵∠ACG=∠BCF=60°,AC=BC,∴△ACG≌△BCF,∴AG=BF,故结论②正确;
(3)∵△ACG≌△BCF,∴CG=CF.
∵∠ACB=∠DCE=60°,∴∠ACD=60°,∴△FCG为等边三角
形,∴∠FGC=60°,∴∠FGC=∠DCE,∴FG∥BE,故结论③正确;
(4)过C作CN⊥AE于N,CZ⊥BD于Z,则∠CNE=∠CZD=90°.
∵△ACE≌△BCD,∴∠CDZ=∠CEN.
在△CDZ和△CEN中,
CZD CNE
CDZ CEN
CD CE
∠=∠
⎧
⎪
∠=∠
⎨
⎪=
⎩
,∴△CDZ≌△CEN,∴CZ=CN.
∵CN⊥AE,CZ⊥BD,∴∠BOC=∠EOC,故结论④正确.
综上所述:四个结论均正确.
故选D.
【点睛】
本题综合考查了等边三角形的判定与性质,全等三角形的判定与性质,角平分线的判定定理等重要几何知识点,有一定难度,需要学生将相关知识点融会贯通,综合运用.
18.如图,在△ABC中,BI,CI分别平分∠ABC,∠ACB,过I点作DE∥BC,交AB于D,交AC于E,给出下列结论:①△DBI是等腰三角形;②△ACI是等腰三角形;③AI平分
∠BAC;④△ADE周长等于AB+AC.其中正确的是( )
A.①②③B.②③④C.①③④D.①②④
【答案】C
【解析】
【分析】
根据角平分线的性质、平行线的性质、等腰三角形的判定与性质分别对各选项分析判断后利用排除法求解.
【详解】
①∵IB平分∠ABC,∴∠DBI=∠CBI.
∵DE∥BC,∴∠DIB=∠CBI,∴∠DBI=∠DIB,∴BD=DI,∴△DBI是等腰三角形.
故本选项正确;
②∵∠BAC不一定等于∠ACB,∴∠IAC不一定等于∠ICA,∴△ACI不一定是等腰三角形.故本选项错误;
③∵三角形角平分线相交于一点,BI,CI分别是∠ABC和∠ACB的平分线,∴AI平分
∠BAC.故本选项正确;
④∵BD=DI,同理可得EI=EC,∴△ADE的周长=AD+DI+EI+AE=AD+BD+EC+AE=AB+AC.
故本选项正确;
其中正确的是①③④.
故选C.
【点睛】
本题考查了等腰三角形的判定与性质,熟记三角形的角平分线相交于一点是解题的关键.
19.已知等边△ABC中,在射线BA上有一点D,连接CD,并以CD为边向上作等边△CDE,连接BE和AE,试判断下列结论:①AE=BD;②AE与AB所夹锐夹角为60°;③当D在线段AB或BA延长线上时,总有∠BDE-∠AED=2∠BDC;④∠BCD=90°时,CE2+AD2=AC2+DE2,正确的序号有()
A.①②B.①②③C.①②④D.①②③④
【答案】C
【解析】
【分析】
由∠BCD=∠ACD+60°,∠ACE=∠ACD+60°可得∠BCD=∠ACE,利用SAS可证明
△BCD≌△ACE,可得AE=BD,①正确;∠CBD=∠CAE=60°,进而可得∠EAD=60°,②正确,当∠BCD=90°时,可得∠ACD=∠ADC=30°,可得AD=AC,即可得CE2+AD2=AC2+DE2,④正确;当D点在BA延长线上时,∠BDE-∠BDC=60°,根据△BCD≌△ACE可得∠AEC=∠BDC,进而可得∠BDC+∠AED=∠AEC+∠AED=∠CED=60°,即可证明∠BDE-∠BDC=∠BDC+∠AED,即∠BDE-∠AED=2∠BDC,当点D在AB上时可证明∠BDE-∠AED=120°,③错误,综上即可得答案.
【详解】
∵∠BCA=∠DCE=60°,
∴∠BCA+∠ACD=∠DCE+∠ACD,
∴∠BCD=∠ACE,
又∵AC=BC,CE=CD,
∴△BCD≌△ACE,
∴AE=BD,∠CBA=∠CAE=60°,∠AEC=∠BDC,①正确,
∴∠BAE=120°,
∴∠EAD=60°,②正确,
∵∠BCD=90°,∠BCA=60°,
∴∠ACD=∠ADC=30°,
∴AC=AD,
∵CE=DE,
∴CE2+AD2=AC2+DE2,④正确,
当D点在BA延长线上时,∠BDE-∠BDC=60°,
∵∠AEC=∠BDC,
∴∠BDC+∠AED=∠AEC+∠AED=∠CED=60°,
∴∠BDE-∠BDC=∠BDC+∠AED
∴∠BDE-∠AED=2∠BDC,
如图,当点D在AB上时,
∵△BCD≌△∠ACE,
∴∠CAE=∠CBD=60°,
∴∠DAE=∠BAC+∠CAE=120°,
∴∠BDE-∠AED=∠DAE=120°,③错误
故正确的结论有①②④,
故选C.
【点睛】
此题主要考查等边三角形的性质和全等三角形的判定与性质等知识点的理解和掌握
20.如图,在平面直角坐标系中,O为坐标原点,四边形OABC是长方形,点A、C的坐标分别为A(10,0 ),C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为()
A.(3,4),(2,4)B.(3,4),(2,4),(8,4)C.(2,4),(8,4)
D.(3,4),(2,4),(8,4),(2.5,4)
【答案】B
【解析】
试题解析:有两种情况:①以O为圆心,以5为半径画弧交BC于P点,此时OP=OD=5,在Rt△OPC中,OC=4,OP=5,
由勾股定理得PC=3,
则P的坐标是(3,4);
②以D为圆心,以5为半径画弧交BC于P′和P″点,此时DP′=DP″=OD=5,
过P′作P′N⊥OA于N,
在Rt△OP′N中,设CP′=x,
则DN=5-x,P′N=4,OP=5,由勾股定理得:42+(5-x)2=52,
x=2,
则P′的坐标是(2,4);
过P″作P″M⊥OA于M,
设BP″=a,
则DM=5-a,P″M=4,DP″=5,
在Rt△DP″M中,由勾股定理得:(5-a)2+42=52,
解得:a=2,
∴BP″=2,CP″=10-2=8,
即P″的坐标是(8,4);
假设0P=PD,则由P点向0D边作垂线,交点为Q则有PQ2十QD2=PD2,
∵0P=PD=5=0D,
∴此时的△0PD为正三角形,于是PQ=4,QD=1
2
0D=2.5,PD=5,代入①式,等式不成
立.所以排除此种可能.故选B.。