雅安中学2011-2012年高一数学上册期中试卷及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
雅安中学2011-2012年高一数学上册期中试卷及答案
雅安中学2011—2012学年高一(上)期中试题
数学试题
本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷第3至4页。
满分150分,考试时间120分钟。
考试结束后,将答题卷和机读卡一并收回。
第Ⅰ卷(选择题,共60分)
一、选择题(本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的)
1.若集合A={1,2,3},则集合A的真子集共有()
A.个
B.个
C.个
D.个
2.()
3.在下列图象中,函数的图象可能是()
ABCD
4.判断下列各组中的两个函数是同一函数的为()
A.B.
C.D.
5.若,那么等式成立的条件是()
A.B.C.D.
6.设a=0.92,b=20.9,c=log20.9,则()
A.b>a>c
B.b>c>a
C.a>b>c
D.a>c>b
7.设a>0,将表示成分数指数幂,其结果是()
A.B.C.D.
8.已知是一次函数,,()
A.B.C.D.
9.若函数f()=x+1,则f(x)=()
A.+1
B.x+1
C.ln(x+1)
D.lnx+1
10.设f(x)=则不等式f(x)>2的解集为()
A.(1,2)(3,+∞)
B.(,+∞)
C.(1,2)(,+∞)
D.(1,2)
11.方程x+log2x=6的根为α,方程x+log3x=6的根为β,则()。
A.α>β
B.α=β
C.α12.已知2a=3b=t(t≠1),且2a+b=ab,则实数t的值为()A.6B.9C.12
D.18
第Ⅱ卷(非选择题,共90分)
二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)
13.若函数,在上是减函数,则的取值范围是
14.函数的图象必经过定点.
15.已知偶函数f(x)满足f(x+2)=xf(x)(x∈R),则f(1)=.
16.函数的定义域为A,若则称为单函数.例如,函数是单函数.下列命题:新课标第一网
①函数是单函数;
②若为单函数,;
③若为单函数,则对于任意bB,它至多有一个原象;
④函数在某区间上具有单调性,则一定是单函数.其中的真命题是(写出所有真命题的编号).
三、解答题(本大题共6小题,74分.解答应写出必要的文字说明、证明过程或演算步骤)
17.计算下列各题(本小题满分12分):
(1)-lg25-2lg2
18.(本小题满分12)已知集合,,,R.
(1)求A∪B,(2)求(CuA)∩B;(3)如果A∩C≠Φ,求a的取值范围19.(本小题满分12分)
某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当居民用水超过4吨时,超过部分每吨3.00元。
若某月某用户用水量为x吨,交水费为y元。
(1)求y关于x的函数关系
(2)若某用户某月交水费为31.2元,求该用户该月的用水量。
20.(本小题满分12分)
已知函数f(x)=2x的定义域是0,3],设g(x)=f(2x)-f(x+2).
(1)求g(x)的解析式及定义域;
(2)求函数g(x)的最大值和最小值.
21.(3-11班完成)(本小题满分12分)
已知函数对任意实数都有,且,当
(1)判断的奇偶性(2)判断在的单调性
(3)若
21.(1,2班完成)(本小题满分12分)
已知函数对任意实数恒有且当x>0,
(1)判断的奇偶性;
(2)求在区间-3,3]上的最大值;
(3)解关于的不等式
22.(3-11班完成)(本小题满分14分)
已知二次函数f(x)=ax2+bx+c(a,b,c均为实数),满足a-b+c=0,对于任意实数x都有f(x)-x≥0,并且当x∈(0,2)时,有f(x)≤.(1)求f(1)的值;
(2)证明:ac≥;
(3)当x∈-2,2]且a=c时,函数F(x)=f(x)-mx(m为实数)是单调的,求m的取值范围
22.(1,2班完成)(本小题满分14分)
已知函数f(x)=log2.
(1)判断并证明f(x)的奇偶性;
(2)若关于x的方程f(x)=log2(x-k)有实根,求实数k的取值范围; (3)问:方程f(x)=x+1是否有实根?如果有,设为x0,请求出一个长度
为的区间(a,b),使x0∈(a,b);如果没有,请说明理由.
(注:区间(a,b)的长度为b-a)
雅安中学2011—2012学年高一(上)期中试题
数学参考答案
一、选择题(本大题共12小题,每小题5分,共60分)
题号123456789101112
选项CADBCAABDCCD
二、填空题(本大题共4小题,每小题4分,共16分)
13、;14、(1,2);15、0;16、2,3。
三、解答题(本大题共6小题,74分.解答应写出必要的文字说明、证明过程或演算步骤)
17、(1)10.(2)0
18、(1)
(2)
(3)a19、解:(1)由题意得,水费f(x)关于用水量x的函数为:
(2)易知
20.解:(1)∵f(x)=2x,∴g(x)=f(2x)-f(x+2)=22x-2x+2。
因为f(x)的定义域是0,3],所以,解之得0≤x≤1。
于是g(x)的定义域为{x|0≤x≤1}
(2)设g(x)=(2x)2-4×2x=(2x-2)2-4。
∵x∈0,1],即2x∈1,2],∴当2x=2即x=1时,g(x)取得最小值-4;
当2x=1即x=0时,g(x)取得最大值-3。
21.解:(1)令y=-1,则f(-x)=f(x)f(-1),可得f(-x)=f(x),所以f(x)为偶函数(2)设
故
(3)
即
,又
21、解(1)取
则
取
对任意恒成立
∴为奇函数.
(2)任取,则
又为奇函数
∴在(-∞,+∞)上是减函数.
对任意,恒有
而
∴在-3,3]上的最大值为6
(3)∵为奇函数,
∴整理原式得
进一步可得
而在(-∞,+∞)上是减函数,
当时,
当时,
当时,
当时,
当
22.(1)∵对于任意x∈R,都有f(x)-x≥0,且当x∈(0,2)时, 有f(x)≤.令x=1
∴1≤f(1)≤.
即f(1)=1.
(2)由a-b+c=0及f(1)=1.
有,可得b=a+c=.
又对任意x,f(x)-x≥0,即ax2-x+c≥0.
∴a>0且△≤0.
即-4ac≤0,解得ac≥.
(3)a=c=.
∴f(x)=x2+x+,
F(x)=f(x)-mx=x2+(2-4m)x+1].
当x∈-2,2]时,f(x)是单调的,
所以F(x)的顶点一定在-2,2]的外边.
∴≥2.
解得m≤-或m≥.
22、解:(1)由得-1因为f(-x)+f(x)=log2+log2=log2=log21=0,
所以f(-x)=-f(x),即f(x)是奇函数。
(2)方程f(x)=log2(x-k)有实根,也就是方程=x-k即k=x-在(-1,1)内有解,所以实数k属于函数y=x-=x+1-在(-1,1)内的值域。
令x+1=t,则t∈(0,2),因为y=t-在(0,2)内单调递增,所以t-∈(-∞,1)。
故实数k的取值范围是(-∞,1)。
(3)设g(x)=f(x)-x-1=log2-x-1(-1因为,且y=log2x在区间(0,+∞)内单调递增,所以log2又∵g(-)=log2->1->0。
②
由①②可知,g(-)•g(-)即方程f(x)=x+1在(-,-)内有实根x0。
又该区间长度为,因此,所求的一个区间可以是(-,-)。