2020年数学中考一模试题含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年数学中考一模试题含答案
一、选择题
1.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是230000000人一年的口粮,将230000000用科学记数法表示为( ) A .2.3×109 B .0.23×109 C .2.3×108 D .23×107
2.如图,矩形ABCD 的顶点A 和对称中心均在反比例函数y =k x (k≠0,x >0)上,若矩形ABCD 的面积为12,则k 的值为( )
A .12
B .4
C .3
D .6
3.若直线1l 经过点()0,4,直线2l 经过点()3,2,且1l 与2l 关于x 轴对称,则1l 与2l 的交点坐标为( )
A .()6,0-
B .()6,0
C .()2,0-
D .()2,0
4.如图,若一次函数y =﹣2x +b 的图象与两坐标轴分别交于A ,B 两点,点A 的坐标为(0,3),则不等式﹣2x +b >0的解集为( )
A .x >32
B .x <32
C .x >3
D .x <3
5.下列命题正确的是( )
A .有一个角是直角的平行四边形是矩形
B .四条边相等的四边形是矩形
C .有一组邻边相等的平行四边形是矩形
D .对角线相等的四边形是矩形 6.如图,在菱形ABCD 中,
E 是AC 的中点,E
F ∥CB ,交AB 于点F ,如果EF=3,那么
菱形ABCD 的周长为( )
A .24
B .18
C .12
D .9
7.已知二次函数y =ax 2+bx +c ,且a>b>c ,a +b +c =0,有以下四个命题,则一定正确
命题的序号是( )
①x=1是二次方程ax 2+bx +c=0的一个实数根;
②二次函数y =ax 2+bx +c 的开口向下;
③二次函数y =ax 2+bx +c 的对称轴在y 轴的左侧;
④不等式4a+2b+c>0一定成立.
A .①②
B .①③
C .①④
D .③④
8.某排球队6名场上队员的身高(单位:cm )是:180,184,188,190,192,194.现用一名身高为186cm 的队员换下场上身高为192cm 的队员,与换人前相比,场上队员的身高( )
A .平均数变小,方差变小
B .平均数变小,方差变大
C .平均数变大,方差变小
D .平均数变大,方差变大 9.已知直线y =kx ﹣2经过点(3,1),则这条直线还经过下面哪个点( )
A .(2,0)
B .(0,2)
C .(1,3)
D .(3,﹣1) 10.某服装加工厂加工校服960套的订单,原计划每天做48套.正好按时完成.后因学校要求提前5天交货,为按时完成订单,设每天就多做x 套,则x 应满足的方程为( ) A .96096054848x -=+ B .96096054848x +=+ C .960960548x
-= D .96096054848x -=+ 11.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函
数a b c y x
++=在同一坐标系内的图象大致为( )
A .
B .
C .
D .
12.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元.
A .140
B .120
C .160
D .100
二、填空题
13.不等式组0125x a x x ->⎧⎨->-⎩
有3个整数解,则a 的取值范围是_____. 14.计算:2cos45°﹣(π+1)0111()42
-=______. 15.如图,⊙O 的半径为6cm ,直线AB 是⊙O 的切线,切点为点B ,弦BC ∥AO ,若∠
A=30°,则劣弧»BC的长为 cm.
16.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是.
17.已知反比例函数的图象经过点(m,6)和(﹣2,3),则m的值为________.18.在Rt△ABC中,∠C=90°,AC=6,BC=8,点E是BC边上的动点,连接AE,过点E作AE的垂线交AB边于点F,则AF的最小值为_______
19.正六边形的边长为8cm,则它的面积为____cm2.
20.分解因式:2x2﹣18=_____.
三、解答题
21.如图,某地修建高速公路,要从A地向B地修一座隧道(A、B在同一水平面上),为了测量A、B两地之间的距离,某工程师乘坐热气球从B地出发,垂直上升100米到达C处,在C处观察A地的俯角为39°,求A、B两地之间的距离.(结果精确到1米)(参考数据:sin39°=0.63,cos39°=0.78,tan39°=0.81)
22.已知关于x的方程220
x ax a
++-=.
(1)当该方程的一个根为1时,求a的值及该方程的另一根;
(2)求证:不论a取何实数,该方程都有两个不相等的实数根.
23.已知抛物线y=ax2﹣1
3
x+c经过A(﹣2,0),B(0,2)两点,动点P,Q同时从原点出发
均以1个单位/秒的速度运动,动点P沿x轴正方向运动,动点Q沿y轴正方向运动,连接PQ,设运动时间为t秒
(1)求抛物线的解析式;
(2)当BQ=1
3
AP时,求t的值;
(3)随着点P,Q的运动,抛物线上是否存在点M,使△MPQ为等边三角形?若存在,请求出t的值及相应点M的坐标;若不存在,请说明理由.
24.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元,调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元
(1)若生产第五档次的蛋糕,该档次蛋糕每件利润为多少元?
(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1024元,该烘焙店生产的是第几档次的产品?
25.某市某中学积极响应创建全国文明城市活动,举办了以“校园文明”为主题的手抄报比赛.所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如右两幅统计图.请你根据图中所给信息解答意)
(1)等奖所占的百分比是________;三等奖的人数是________人;
(2)据统计,在获得一等奖的学生中,男生与女生的人数比为11:,学校计划选派1名男生和1名女生参加市手抄报比赛,请求出所选2位同学恰是1名男生和1名女生的概率;(3)学校计划从获得二等奖的同学中选取一部分人进行集训使其提升为一等奖,要使获得一等奖的人数不少于二等奖人数的2倍,那么至少选取多少人进行集训?
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【解析】230000000=2.3×108 ,故选C.
2.D 解析:D 【解析】
分析:设点A的坐标为(m,k
m
),则根据矩形的面积与性质得出矩形中心的纵坐标为
2
k
m
,
求出中心的横坐标为m+6m
k
,根据中心在反比例函数y=
k
x
上,可得出结果.
详解:设点A的坐标为(m,k
m
),
∵矩形ABCD的面积为12,
∴
121212m BC
k
AB k
m
===
,
∴矩形ABCD的对称中心的坐标为(m+6m
k
,
2
k
m
),
∵对称中心在反比例函数上,
∴(m+6m
k
)×
2
k
m
=k,
解方程得k=6,故选D.
点睛:本题考查了反比例函数图象上点的坐标特点,熟知反比例函数中k=xy位定值是解答本题的关键.
3.D
解析:D
【解析】
【分析】
根据1l与2l关于x轴对称,可知2l必经过(0,-4),1l必经过点(3,-2),然后根据待定系数法分别求出1l、2l的解析式后,再联立解方程组即可求得1l与2l的交点坐标.
【详解】
∵直线1l经过点(0,4),2l经过点(3,2),且1l与2l关于x轴对称,
∴直线1l经过点(3,﹣2),2l经过点(0,﹣4),
设直线1l的解析式y=kx+b,
把(0,4)和(3,﹣2)代入直线1l的解析式y=kx+b,
则
4
342 b
k
=
⎧
⎨
+=-
⎩
,
解得:
2
4
k
b
=-
⎧
⎨
=
⎩
,
故直线1l的解析式为:y=﹣2x+4,
设l2的解析式为y=mx+n,
把(0,﹣4)和(3,2)代入直线2l的解析式y=mx+n,
则
32
4
m n
n
+=
⎧
⎨
=-
⎩
,解得
m2
n4
=
⎧
⎨
=-
⎩
,
∴直线2l的解析式为:y=2x﹣4,
联立
24
24
y x
y x
=-+
⎧
⎨
=-
⎩
,解得:
2
x
y
=
⎧
⎨
=
⎩
即1l与2l的交点坐标为(2,0).
故选D.
【点睛】
本题考查了关于x轴对称的点的坐标特征、待定系数法求一次函数的解析式即两直线的交点坐标问题,熟练应用相关知识解题是关键.
4.B
解析:B
【解析】
【分析】
根据点A的坐标找出b值,令一次函数解析式中y=0求出x值,从而找出点B的坐标,观察函数图象,找出在x轴上方的函数图象,由此即可得出结论.
【详解】
解:∵一次函数y=﹣2x+b的图象交y轴于点A(0,3),
∴b=3,
令y=﹣2x+3中y=0,则﹣2x+3=0,解得:x=3
2
,
∴点B(3
2
,0).
观察函数图象,发现:
当x<3
2
时,一次函数图象在x轴上方,
∴不等式﹣2x+b>0的解集为x<3
2
.
故选:B.
【点睛】
本题考查了一次函数与一元一次不等式,解题的关键是找出交点B的坐标.本题属于基础
题,难度不大,解决该题型题目时,根据函数图象的上下位置关系解不等式是关键.
5.A
解析:A
【解析】
【分析】
运用矩形的判定定理,即可快速确定答案.
【详解】
解:A.有一个角为直角的平行四边形是矩形满足判定条件;B 四条边都相等的四边形是菱形,故B 错误;C 有一组邻边相等的平行四边形是菱形,故C 错误;对角线相等且相互平分的四边形是矩形,则D 错误;因此答案为A.
【点睛】
本题考查了矩形的判定,矩形的判定方法有:1.有三个角是直角的四边形是矩形;2.对角线互相平分且相等的四边形是矩形;3.有一个角为直角的平行四边形是矩形;4.对角线相等的平行四边形是矩形.
6.A
解析:A
【解析】
【分析】易得BC 长为EF 长的2倍,那么菱形ABCD 的周长=4BC 问题得解.
【详解】∵E 是AC 中点,
∵EF ∥BC ,交AB 于点F ,
∴EF 是△ABC 的中位线,
∴BC=2EF=2×
3=6, ∴菱形ABCD 的周长是4×
6=24, 故选A .
【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.
7.C
解析:C
【解析】
试题分析:当x=1时,a+b+c=0,因此可知二次方程ax 2+bx +c=0的一个实数根,故①正确;根据a >b >c ,且a+b+c =0,可知a >0,函数的开口向上,故②不正确;
根据二次函数的对称轴为x =-2b a
,可知无法判断对称轴的位置,故③不正确; 根据其图像开口向上,且当x =2时,4a+2b+c >a+b+c=0,故不等式4a+2b+c>0一定成立,故④正确.
故选:C.
8.A
解析:A
【解析】
分析:根据平均数的计算公式进行计算即可,根据方差公式先分别计算出甲和乙的方差,再根据方差的意义即可得出答案.
详解:换人前6名队员身高的平均数为x =
1801841881901921946
+++++=188, 方差为
S 2=()()()()()()22222211801881841881881881901881921881941886⎡⎤-+-+-+-+-+-⎣
⎦=683
; 换人后6名队员身高的平均数为x =
1801841881901861946
+++++=187, 方差为
S 2=()()()()()()22222211801871841871881871901871861871941876⎡⎤-+-+-+-+-+-⎣
⎦=593
∵188>187,683>593
, ∴平均数变小,方差变小,
故选:A.
点睛:本题考查了平均数与方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,
则方差S 2=
1n
[(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 9.A
解析:A
【解析】
【分析】
把点(3,1)代入直线y =kx ﹣2,得出k 值,然后逐个点代入,找出满足条件的答案.
【详解】
把点(3,1)代入直线y =kx ﹣2,得1=3k ﹣2,
解得k =1,
∴y =x ﹣2,
把(2,0),(0,2),(1,3),(3,﹣1)代入y =x ﹣2中,只有(2,0)满足条件.
故选A .
【点睛】
本题考查了一次函数图象上点的坐标特点,熟悉一次函数图象上点的特点是解此题的关
10.D
解析:D
【解析】 解:原来所用的时间为:96048,实际所用的时间为:96048
x +,所列方程为:96096054848
x -=+.故选D . 点睛:本题考查了由实际问题抽象出分式方程,关键是时间作为等量关系,根据每天多做x 套,结果提前5天加工完成,可列出方程求解.
11.D
解析:D
【解析】
【分析】
根据二次函数图象开口向上得到a>0,再根据对称轴确定出b ,根据二次函数图形与x 轴的交点个数,判断24b ac -的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.
【详解】
∵二次函数图象开口方向向上,
∴a >0, ∵对称轴为直线02b x a
=-
>, ∴b <0,
二次函数图形与x 轴有两个交点,则24b ac ->0,
∵当x =1时y =a +b +c <0,
∴24y bx b ac =+-的图象经过第二四象限,且与y 轴的正半轴相交, 反比例函数a b c y x
++=
图象在第二、四象限, 只有D 选项图象符合.
故选:D.
【点睛】 考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.
12.B
解析:B
【解析】
【分析】
设商品进价为x 元,则售价为每件0.8×
200元,由利润=售价-进价建立方程求出其解即
【详解】
解:设商品的进价为x元,售价为每件0.8×200元,由题意得
二、填空题
13.﹣2≤a<﹣1【解析】【分析】先解不等式组确定不等式组的解集(利用含a的式子表示)根据整数解的个数就可以确定有哪些整数解根据解的情况可以得到关于a的不等式从而求出a的范围【详解】解不等式x﹣a>0得
解析:﹣2≤a<﹣1.
【解析】
【分析】
先解不等式组确定不等式组的解集(利用含a的式子表示),根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.
【详解】
解不等式x﹣a>0,得:x>a,
解不等式1﹣x>2x﹣5,得:x<2,
∵不等式组有3个整数解,
∴不等式组的整数解为﹣1、 0、1,
则﹣2≤a<﹣1,
故答案为:﹣2≤a<﹣1.
【点睛】
本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
14.【解析】解:原式==故答案为:
3
2
.
【解析】
解:原式=
1
212
22
⨯-++
3
2
3
2
.
15.【解析】根据切线的性质可得出OB⊥AB从而求出∠BOA的度数利用弦BC∥AO及OB=OC可得出∠BOC的度数代入弧长公式即可得出∵直线AB是⊙O的切线∴OB⊥AB(切线的性质)又∵∠A=30°∴∠B
解析:2π.
【解析】
根据切线的性质可得出OB⊥AB,从而求出∠BOA的度数,利用弦BC∥AO,及OB=OC可得出∠BOC的度数,代入弧长公式即可得出
∵直线AB是⊙O的切线,∴OB⊥AB(切线的性质).
又∵∠A=30°,∴∠BOA=60°(直角三角形两锐角互余).
∵弦BC∥AO,∴∠CBO=∠BOA=60°(两直线平行,内错角相等).又∵OB=OC,∴△OBC是等边三角形(等边三角形的判定).
∴∠BOC=60°(等边三角形的每个内角等于60°).
又∵⊙O的半径为6cm,∴劣弧»BC的长=606
=2
180
π
π
⋅⋅
(cm).
16.3【解析】试题解析:根据概率公式摸出黑球的概率是1-02-05=03考点:概率公式
解析:3.
【解析】
试题解析:根据概率公式摸出黑球的概率是1-0.2-0.5=0.3.
考点:概率公式.
17.-1【解析】试题分析:根据待定系数法可由(-23)代入y=可得k=-6然后可得反比例函数的解析式为y=-代入点(m6)可得m=-1故答案为:-1
解析:-1
【解析】
试题分析:根据待定系数法可由(-2,3)代入y=k
x
,可得k=-6,然后可得反比例函数的
解析式为y=-6
x
,代入点(m,6)可得m=-1.
故答案为:-1.
18.【解析】试题分析:如图设AF的中点为D那么DA=DE=DF所以AF的最小值取决于DE的最小值如图当DE⊥BC时DE最小设DA=DE=m此时DB=m由AB=DA+DB得m +m=10解得m=此时AF=2
解析:15 2
【解析】
试题分析:如图,设AF的中点为D,那么DA=DE=DF.所以AF的最小值取决于DE的最小值.
如图,当DE⊥BC时,DE最小,设DA=DE=m,此时DB=5
3
m,由AB=DA+DB,得m+
5
3
m=10,解
得m=15
4
,此时AF=2m=
15
2
.
故答案为15 2
.
19.【解析】【分析】【详解】如图所示正六边形ABCD中连接OCOD过O作OE⊥CD;∵此多边形是正六边形∴∠COD=60°;∵OC=OD∴△COD是等边三角形∴OE=CE•tan60°=cm∴S△OCD
解析:3
【解析】
【分析】
【详解】
如图所示,正六边形ABCD中,连接OC、OD,过O作OE⊥CD;
∵此多边形是正六边形,
∴∠COD=60°;
∵OC=OD,
∴△COD是等边三角形,
∴OE=CE•tan60°=8
343
2
⨯=cm,
∴S△OCD=1
2
CD•OE=
1
2
×8×43=163cm2.
∴S正六边形=6S△OCD=6×163=963cm2.
考点:正多边形和圆
20.2(x+3)(x﹣3)【解析】【分析】原式提取2再利用平方差公式分解即可【详解】原式=2(x2﹣9)=2(x+3)(x﹣3)故答案为:2(x+3)(x﹣3)【点睛】此题考查了提公因式法与公式法的综合
解析:2(x+3)(x﹣3)
【解析】
【分析】
原式提取2,再利用平方差公式分解即可.
【详解】
原式=2(x 2﹣9)=2(x +3)(x ﹣3),
故答案为:2(x +3)(x ﹣3)
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
三、解答题
21.123米.
【解析】
【分析】
在Rt △ABC 中,利用tan BC CAB AB
∠=
即可求解. 【详解】
解:∵CD ∥AB ,
∴∠CAB=∠DCA=39°.
在Rt △ABC 中,∠ABC=90°, tan BC CAB AB ∠=
. ∴100123tan 0.81
BC AB CAB ==≈∠. 答:A 、B 两地之间的距离约为123米.
【点睛】
本题考查解直角三角形,选择合适的锐角三角函数是解题的关键.
22.(1)
12,32-;(2)证明见解析. 【解析】
试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.
(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.
试题解析:(1)设方程的另一根为x 1, ∵该方程的一个根为1,∴1111{211
a x a x +=--⋅=.解得132{12x a =-=. ∴a 的值为12,该方程的另一根为32-. (2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>,
∴不论a 取何实数,该方程都有两个不相等的实数根.
考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用.
23.(1)y =-23
x 2-13x +2;(2)当BQ =13AP 时,t =1或t =4;(3)存在.当t =
1-+M(1,1),或当t
=3+M(﹣3,﹣3),使得△MPQ为等边三角形.
【解析】
【分析】
(1)把A(﹣2,0),B(0,2)代入y=ax2-1
3
x+c,求出解析式即可;
(2)BQ=1
3
AP,要考虑P在OC上及P在OC的延长线上两种情况,有此易得BQ,AP
关于t的表示,代入BQ=1
3
AP可求t值.
(3)考虑等边三角形,我们通常只需明确一边的情况,进而即可描述出整个三角形.考虑△MPQ,发现PQ为一有规律的线段,易得OPQ为等腰直角三角形,但仅因此无法确定PQ运动至何种情形时△MPQ为等边三角形.若退一步考虑等腰,发现,MO应为PQ的垂直平分线,即使△MPQ为等边三角形的M点必属于PQ的垂直平分线与抛物线的交点,但要明确这些交点仅仅满足△MPQ为等腰三角形,不一定为等边三角形.确定是否为等边,我们可以直接由等边性质列出关于t的方程,考虑t的存在性.
【详解】
(1)∵抛物线经过A(﹣2,0),B(0,2)两点,
∴
2
40,
3
2.
a c
c
⎧
++=
⎪
⎨
⎪=
⎩
,解得
2
,
3
2.
a
c
⎧
=-
⎪
⎨
⎪=
⎩
∴抛物线的解析式为y=-2
3
x2-
1
3
x+2.
(2)由题意可知,OQ=OP=t,AP=2+t.
①当t≤2时,点Q在点B下方,此时BQ=2-t.
∵BQ=1
3
AP,∴2﹣t=
1
3
(2+t),∴t=1.
②当t>2时,点Q在点B上方,此时BQ=t﹣2.
∵BQ=1
3
AP,∴t﹣2=
1
3
(2+t),∴t=4.
∴当BQ=1
3
AP时,t=1或t=4.
(3)存在.
作MC⊥x轴于点C,连接OM.
设点M 的横坐标为m ,则点M 的纵坐标为-23m 2-13m +2. 当△MPQ 为等边三角形时,MQ =MP ,
又∵OP =OQ ,
∴点M 点必在PQ 的垂直平分线上,
∴∠POM =12
∠POQ =45°, ∴△MCO 为等腰直角三角形,CM =CO ,
∴m =-
23
m 2-13m +2, 解得m 1=1,m 2=﹣3. ∴M 点可能为(1,1)或(﹣3,﹣3).
①如图,
当M 的坐标为(1,1)时,
则有PC =1﹣t ,MP 2=1+(1﹣t )2=t 2﹣2t +2,
PQ 2=2t 2,
∵△MPQ 为等边三角形,
∴MP =PQ ,
∴t 2﹣2t +2=2t 2,
解得t 1=3-t 2=13-(负值舍去).
②如图,
当M 的坐标为(﹣3,﹣3)时,
则有PC =3+t ,MC =3,
∴MP 2=32+(3+t )2=t 2+6t +18,PQ 2=2t 2,
∵△MPQ 为等边三角形,
∴MP =PQ ,
∴t 2+6t +18=2t 2,
解得t 1=333+t 2=333-
∴当t =3-M (1,1),或当t =333+M (﹣3,﹣3),使得△MPQ 为等边三角形.
【点睛】
本题是二次函数、一次函数及三角形相关知识的综合题目,其中涉及的知识点有待定系数法求抛物线,三角形全等,等腰、等边三角形性质及一次函数等基础知识,在讨论动点问题是一定要注意考虑全面分情形讨论分析.
24.(1该档次蛋糕每件利润为18元;(2)该烘焙店生产的是四档次的产品.
【解析】
【分析】
(1)依题意可求出产品质量在第五档次的每件的利润.
(2)设烘焙店生产的是第x 档次的产品,根据单件利润×销售数量=总利润,即可得出关于x 的一元二次方程,解之即可得出结论.
【详解】
(1)10+2×(5-1)=18(元).
答:该档次蛋糕每件利润为18元.
(2)设烘焙店生产的是第x 档次的产品,
根据题意得:[10+2(x -1)]×
[76-4(x -1)]=1024, 整理得:x 2﹣16x +48=0,
解得:x 1=4,x 2=12(不合题意,舍去).
答:该烘焙店生产的是四档次的产品.
【点睛】
本题考查了一元二次方程的应用,解题的关键是:(1)根据数量关系,列式计算;(2)根据单件利润×销售数量=总利润,列出关于x 的一元二次方程.
25.(1)8%,16;(2)P (1名男生和1名女生)23=
;(3)至少需要选取6人进行集训. 【解析】
【分析】 (1)一等奖所占的百分比=1减去其它奖项的百分比即可求解;根据优秀奖比例和人数可计算总数,进而计算出三等奖人数.
(2)求出一等奖男女各有多少人,然后列表或画树形图即可解;
(3)设需要选取x 人进行集训,依据使获得一等奖的人数不少于二等奖人数的2倍,列不等式解答即可.
【详解】
(1)一等奖所占的百分比=1-40%-30%-32=8%; 总人数=20÷
40%=50(人), 三等奖的人数是=50×
32%=16(人); (2)一等奖的人数=508%4⨯=,男女都有的人数14211
⨯
=+, 列表得:
∴一等奖有两位男生两位女生,一共有12种等可能结果,其中恰是一男一女的结果数是8,
∴P (1名男生和1名女生)82123
==. (3)设需要选取x 人进行集训,根据题意得:()4210x x +≥-,
解得 163
x ≥, 因为x 是整数,所以x 取6.
答:至少需要选取6人进行集训.
【点睛】
本题主要考查了条形统计图及扇形统计图以及求随机事件的概率,不等式的应用,解题的关键是能从条形统计图及扇形统计图得出相关数据.列表或画出树形图解答.。