同安区第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同安区第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. ()()
2
2f x a x a =-+ 在区间[]0,1上恒正,则的取值范围为( )
A .0a >
B .0a <<
C .02a <<
D .以上都不对
2. 已知正方体的不在同一表面的两个顶点A (﹣1,2,﹣1),B (3,﹣2,3),则正方体的棱长等于( )
A .4
B .2
C .
D .2 3. 四面体ABCD 中,截面 PQMN 是正方形, 则在下列结论中,下列说法错误的是( )
A .AC BD ⊥
B .A
C B
D =
C.AC PQMN D .异面直线PM 与BD 所成的角为45
4. 设α、β是两个不同的平面,l 、m 为两条不同的直线,命题p :若平面α∥β,l ⊂α,m ⊂β,则l ∥m ;命题q :l ∥α,m ⊥l ,m ⊂β,则β⊥α,则下列命题为真命题的是( )
A .p 或q
B .p 且q
C .¬p 或q
D .p 且¬q
5. 已知直线x+ay ﹣1=0是圆C :x 2+y 2﹣4x ﹣2y+1=0的对称轴,过点A (﹣4,a )作圆C 的一条切线,切点为B ,则|AB|=( )
A .2
B .6
C .4
D .2
6. 如图,圆O 与x 轴的正半轴的交点为A ,点C 、B 在圆O 上,且点C 位于第一象限,点B 的坐标为(,

),∠AOC=α,若|BC|=1,则
cos 2
﹣sin
cos

的值为( )
A .
B .
C .﹣
D .﹣
7. 已知函数f (x )=,则f (0)=( )
A .﹣1
B .0
C .1
D .3
8. 已知抛物线C :y x 82=的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若2=,则=QF ( ) A .6
B .3
C .
3
8
D .
3
4 第Ⅱ卷(非选择题,共100分)
9. 偶函数f (x )的定义域为R ,若f (x+2)为奇函数,且f (1)=1,则f (89)+f (90)为( ) A .﹣2 B .﹣1 C .0 D .1
10.已知函数f (x )=x (1+a|x|).设关于x 的不等式f (x+a )<f (x )的解集为A ,若,则
实数a 的取值范围是( )
A .
B .
C .
D .
11.一个几何体的三个视图如下,每个小格表示一个单位, 则该几何体的侧面积为( )
A.4π
B.
C. 5π
D. 2π+
【命题意图】本题考查空间几何体的三视图,几何体的侧面积等基础知识,意在考查学生空间想象能力和计算
能力.
12.四棱锥P ABCD -的底面ABCD 为正方形,PA ⊥底面ABCD ,2AB =,若该四棱锥的所有顶点都在
体积为
24316
π
同一球面上,则PA =( )
A .3
B .72
C .
D .9
2
【命题意图】本题考查空间直线与平面间的垂直和平行关系、球的体积,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.
二、填空题
13()23k x =-+有两个不等实根,则的取值范围是 .
14.若双曲线的方程为4x 2﹣9y 2=36,则其实轴长为 .
15.考察正三角形三边中点及3个顶点,从中任意选4个点,则这4个点顺次连成平行四边形的概率等
于 .
16.已知过双曲线22
221(0,0)x y a b a b
-=>>的右焦点2F 的直线交双曲线于,A B 两点,连结11,AF BF ,若
1||||AB BF =,且190ABF ∠=︒,则双曲线的离心率为( )
A .5-
B
C .6- D
【命题意图】本题考查双曲线定义与几何性质,意要考查逻辑思维能力、运算求解能力,以及考查数形结合思想、方程思想、转化思想.
17.无论m 为何值时,直线(2m+1)x+(m+1)y ﹣7m ﹣4=0恒过定点 .
18.设曲线y=x n+1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lgx n ,则a 1+a 2+…+a 99的值为 .
三、解答题
19.已知f (x )=log 3(1+x )﹣log 3(1﹣x ). (1)判断函数f (x )的奇偶性,并加以证明;
(2)已知函数g (x )=log ,当x ∈[,
]时,不等式 f (x )≥g (x )有解,求k 的取值范围.
20.(本小题满分14分)
设函数2()1cos f x ax bx x =++-,0,2
x π⎡⎤∈⎢⎥⎣⎦
(其中a ,b R ∈).
(1)若0a =,1
2
b =-
,求()f x 的单调区间; (2)若0b =,讨论函数()f x 在0,2π⎡⎤
⎢⎥⎣⎦
上零点的个数.
【命题意图】本题主要考查利用导数研究函数的单调性,最值、通过研究函数图象与性质,讨论函数的零点个数,考查考生运算求解能力、转化能力和综合应用能力,是难题.
21.已知矩阵M 所对应的线性变换把点A (x ,y )变成点A ′(13,5),试求M 的逆矩阵及点A 的
坐标.
22.设函数f (x )=lnx ﹣ax 2﹣bx .
(1)当a=2,b=1时,求函数f (x )的单调区间;
(2)令F (x )=f (x )+ax 2
+bx+(2≤x ≤3)其图象上任意一点P (x 0,y 0)处切线的斜率k ≤恒成立,求
实数a 的取值范围;
(3)当a=0,b=﹣1时,方程f(x)=mx在区间[1,e2]内有唯一实数解,求实数m的取值范围.
23.已知斜率为1的直线l经过抛物线y2=2px(p>0)的焦点F,且与抛物线相交于A,B两点,|AB|=4.
(I)求p的值;
(II)若经过点D(﹣2,﹣1),斜率为k的直线m与抛物线有两个不同的公共点,求k的取值范围.
24.函数f(x)是R上的奇函数,且当x>0时,函数的解析式为f(x)=﹣1.
(1)用定义证明f(x)在(0,+∞)上是减函数;
(2)求函数f(x)的解析式.
同安区第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题
1. 【答案】C 【解析】
试题分析:由题意得,根据一次函数的单调性可知,函数()()
2
2f x a x a =-+在区间[]0,1上恒正,则
(0)0
(1)0f f >⎧⎨>⎩,即2
020
a a a >⎧⎨-+>⎩,解得02a <<,故选C. 考点:函数的单调性的应用. 2. 【答案】A
【解析】解:∵正方体中不在同一表面上两顶点A (﹣1,2,﹣1),B (3,﹣2,3),
∴AB 是正方体的体对角线,AB=,
设正方体的棱长为x ,
则,解得x=4.
∴正方体的棱长为4,
故选:A .
【点评】本题主要考查了空间两点的距离公式,以及正方体的体积的有关知识,属于基础题.
3. 【答案】B 【解析】
试题分析:因为截面PQMN 是正方形,所以//,//PQ MN QM PN ,则//PQ 平面,//ACD QM 平面BDA ,所以//,//PQ AC QM BD ,由PQ QM ⊥可得AC BD ⊥,所以A 正确;由于//PQ AC 可得//AC 截面
PQMN ,所以C 正确;因为PN PQ ⊥,所以AC BD ⊥,由//BD PN ,所以MPN ∠是异面直线PM 与BD
所成的角,且为0
45,所以D 正确;由上面可知//,//BD PN PQ AC ,所以,PN AN MN DN BD AD AC AD
==,而,AN DN PN MN ≠=,所以BD AC ≠,所以B 是错误的,故选B. 1
考点:空间直线与平面的位置关系的判定与证明.
【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与平面平行的判定定理和性质定理、正方形的性质、异面直线所成的角等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于中档试题,此类问题的解答中熟记点、线、面的位置关系的判定定理和性质定理是解答的关键. 4. 【答案】 C
【解析】解:在长方体ABCD ﹣A 1B 1C 1D 1中
命题p :平面AC 为平面α,平面A 1C 1为平面β,直线A 1D 1,和直线AB 分别是直线m ,l ,
显然满足α∥β,l⊂α,m⊂β,而m与l异面,故命题p不正确;﹣p正确;
命题q:平面AC为平面α,平面A1C1为平面β,
直线A1D1,和直线AB分别是直线m,l,
显然满足l∥α,m⊥l,m⊂β,而α∥β,故命题q不正确;﹣q正确;
故选C.
【点评】此题是个基础题.考查面面平行的判定和性质定理,要说明一个命题不正确,只需举一个反例即可,否则给出证明;考查学生灵活应用知识分析解决问题的能力.
5.【答案】B
【解析】解:∵圆C:x2+y2﹣4x﹣2y+1=0,即(x﹣2)2+(y﹣1)2 =4,
表示以C(2,1)为圆心、半径等于2的圆.
由题意可得,直线l:x+ay﹣1=0经过圆C的圆心(2,1),
故有2+a﹣1=0,∴a=﹣1,点A(﹣4,﹣1).
∵AC==2,CB=R=2,
∴切线的长|AB|===6.
故选:B.
【点评】本题主要考查圆的切线长的求法,解题时要注意圆的标准方程,直线和圆相切的性质的合理运用,属于基础题.
6.【答案】A
【解析】解:∵|BC|=1,点B的坐标为(,﹣),故|OB|=1,∴△BOC为等边三角形,∴∠BOC=,
又∠AOC=α,∴∠AOB=﹣α,∴cos(﹣α)=,﹣sin(﹣α)=﹣,
∴sin(﹣α)=.
∴cosα=cos[﹣(﹣α)]=cos cos(﹣α)+sin sin(﹣α)
=+
=,
∴sin α=sin[﹣(﹣α)]=sin
cos (
﹣α)﹣cos sin (
﹣α)
=﹣=.
∴cos 2
﹣sin cos
﹣=(2cos
2
﹣1)﹣sin α=cos α﹣sin α
=

=,
故选:A .
【点评】本题主要考查任意角的三角函数的定义,三角恒等变换,属于中档题.
7. 【答案】B
【解析】解:函数f (x )=

则f (0)=f (2)=log 22﹣1=1﹣1=0. 故选B .
【点评】本题考查分段函数的运用:求函数值,注意运用各段的范围是解题的关键,属于基础题.
8. 【答案】A
解析:抛物线C :y x 82
的焦点为F (0,2),准线为l :y=﹣2,
设P (a ,﹣2),B (m ,),则=(﹣a ,4),=(m ,﹣2),

,∴2m=﹣a ,4=
﹣4,∴m 2=32,由抛物线的定义可得|QF|=
+2=4+2=6.故选A .
9. 【答案】D
【解析】解:∵f (x+2)为奇函数, ∴f (﹣x+2)=﹣f (x+2),
∵f (x )是偶函数,
∴f (﹣x+2)=﹣f (x+2)=f (x ﹣2), 即﹣f (x+4)=f (x ),
则f (x+4)=﹣f (x ),f (x+8)=﹣f (x+4)=f (x ),
即函数f (x )是周期为8的周期函数, 则f (89)=f (88+1)=f (1)=1, f (90)=f (88+2)=f (2), 由﹣f (x+4)=f (x ),
得当x=﹣2时,﹣f(2)=f(﹣2)=f(2),
则f(2)=0,
故f(89)+f(90)=0+1=1,
故选:D.
【点评】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴是解决本题的关键.10.【答案】A
【解析】解:取a=﹣时,f(x)=﹣x|x|+x,
∵f(x+a)<f(x),
∴(x﹣)|x﹣|+1>x|x|,
(1)x<0时,解得﹣<x<0;
(2)0≤x≤时,解得0;
(3)x>时,解得,
综上知,a=﹣时,A=(﹣,),符合题意,排除B、D;
取a=1时,f(x)=x|x|+x,
∵f(x+a)<f(x),∴(x+1)|x+1|+1<x|x|,
(1)x<﹣1时,解得x>0,矛盾;
(2)﹣1≤x≤0,解得x<0,矛盾;
(3)x>0时,解得x<﹣1,矛盾;
综上,a=1,A=∅,不合题意,排除C,
故选A.
【点评】本题考查函数的单调性、二次函数的性质、不等式等知识,考查数形结合思想、分类讨论思想,考查学生分析解决问题的能力,注意排除法在解决选择题中的应用.
11.【答案】B
12.【答案】B
【解析】连结,AC BD 交于点E ,取PC 的中点O ,连结OE ,则O E P A ,所以OE ⊥底面ABCD ,则O 到四棱锥的所有顶点的距离相等,即O
球心,均为12PC ==
可得
34243316ππ=,解得7
2
PA =,故选B .
二、填空题
13.【答案】53,124⎛⎤
⎥⎝
⎦ 【解析】
试题分析:
作出函数y =
()23y k x =-+的图象,
如图所示,
函数y =的图象是一个半圆,直线()23y k x =-+的图象恒过定点()2,3,结合图象,可知,当过点()2,0-时,303
224
k -=
=+,当直线()23y k x =-+
2=,解得512k =,所以实数的取值范围是53,124⎛⎤
⎥⎝⎦
.111]
考点:直线与圆的位置关系的应用.
【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、两点间的斜率公式,以及函数的图像的应用等知识点的综合考查,着重考查了转化与化归思想和学生的分析问题和解答问题的能力,属于中档试题,本题的解答中把方程的根转化为直线与半圆的交点是解答的关键. 14.【答案】 6 .
【解析】解:双曲线的方程为4x 2﹣9y 2
=36,即为:
﹣=1,
可得a=3,
则双曲线的实轴长为2a=6.
故答案为:6.
【点评】本题考查双曲线的实轴长,注意将双曲线方程化为标准方程,考查运算能力,属于基础题.
15.【答案】.
【解析】解:从等边三角形的三个顶点及三边中点中随机的选择4个,共有=15种选法,
其中4个点构成平行四边形的选法有3个,
∴4个点构成平行四边形的概率P==.
故答案为:.
【点评】本题考查古典概型及其概率计算公式的应用,是基础题.确定基本事件的个数是关键.
16.【答案】B
【解析】
17.【答案】(3,1).
【解析】解:由(2m+1)x+(m+1)y﹣7m﹣4=0,得
即(2x+y﹣7)m+(x+y﹣4)=0,
∴2x+y﹣7=0,①
且x+y﹣4=0,②
∴一次函数(2m+1)x+(m+1)y﹣7m﹣4=0的图象就和m无关,恒过一定点.
由①②,解得解之得:x=3 y=1 所以过定点(3,1);
故答案为:(3,1)
18.【答案】﹣2.
【解析】解:∵曲线y=x n+1(n∈N*),
∴y′=(n+1)x n,∴f′(1)=n+1,
∴曲线y=x n+1(n∈N*)在(1,1)处的切线方程为y﹣1=(n+1)(x﹣1),
该切线与x轴的交点的横坐标为x n=,
∵a n=lgx n,
∴a n=lgn﹣lg(n+1),
∴a1+a2+…+a99
=(lg1﹣lg2)+(lg2﹣lg3)+(lg3﹣lg4)+(lg4﹣lg5)+(lg5﹣lg6)+…+(lg99﹣lg100)=lg1﹣lg100=﹣2.
故答案为:﹣2.
三、解答题
19.【答案】
【解析】解:(1)f(x)=log3(1+x)﹣log3(1﹣x)为奇函数.
理由:1+x>0且1﹣x>0,得定义域为(﹣1,1),(2分)
又f(﹣x)=log3(1﹣x)﹣log3(1+x)=﹣f(x),
则f(x)是奇函数.
(2)g(x)=log=2log3,(5分)
又﹣1<x<1,k>0,(6分)
由f(x)≥g(x)得log3≥log3,
即≥,(8分)
即k2≥1﹣x2,(9分)
x∈[,]时,1﹣x2最小值为,(10分)
则k2≥,(11分)
又k>0,则k≥,
即k 的取值范围是(﹣∞,].
【点评】本题考查函数的奇偶性的判断和证明,考查不等式有解的条件,注意运用对数函数的单调性,考查运算化简能力,属于中档题.
20.【答案】
【解析】(1)∵0a =,12
b =-, ∴1()1cos 2f x x x =-
+-,1()sin 2f x x '=-+,0,2x π⎡⎤∈⎢⎥⎣⎦
. (2分) 令()0f x '=,得6
x π
=.
当06x π<<时,()0f x '<,当62
x ππ
<<时,()0f x '>,
所以()f x 的单调增区间是,62ππ⎡⎤⎢⎥⎣⎦,单调减区间是0,6π⎡⎤
⎢⎥⎣⎦
. (5分)

112a -
<<-π,则()102f a π'=π+<,又()(0)0f f θ''>=,由零点存在定理,00,2θπ⎛⎫∃∈ ⎪⎝⎭
,使0()0f θ'=,所以()f x 在0(0,)θ上单调增,在0,2θπ⎛⎫
⎪⎝⎭上单调减.
又(0)0f =,2
()124
f a ππ=
+. 故当2142a -<≤-π时,2()1024f a ππ=
+≤,此时()f x 在0,2π⎡⎤
⎢⎥⎣⎦上有两个零点; 当241a -<<-ππ时,2()1024f a ππ=
+>,此时()f x 在0,2π⎡⎤
⎢⎥⎣⎦
上只有一个零点.
21.【答案】
【解析】解:依题意,由M=得|M|=1,故M﹣1=
从而由=得═=
故A(2,﹣3)为所求.
【点评】此题考查学生会求矩阵的逆矩阵及掌握矩阵的线性变换,考查学生的计算能力,比较基础.
22.【答案】
【解析】解:(1)依题意,知f(x)的定义域为(0,+∞).…
当a=2,b=1时,f(x)=lnx﹣x2﹣x,
f′(x)=﹣2x﹣1=﹣.
令f′(x)=0,解得x=.…
当0<x<时,f′(x)>0,此时f(x)单调递增;
当x>时,f′(x)<0,此时f(x)单调递减.
所以函数f(x)的单调增区间(0,),函数f(x)的单调减区间(,+∞).…
(2)F(x)=lnx+,x∈[2,3],
所以k=F′(x0)=≤,在x0∈[2,3]上恒成立,…
所以a≥(﹣x02+x0)max,x0∈[2,3]…
当x0=2时,﹣x02+x0取得最大值0.所以a≥0.…
(3)当a=0,b=﹣1时,f(x)=lnx+x,
因为方程f(x)=mx在区间[1,e2]内有唯一实数解,
所以lnx+x=mx有唯一实数解.
∴m=1+,…
设g(x)=1+,则g′(x)=.…
令g′(x)>0,得0<x<e;g′(x)<0,得x>e,
∴g(x)在区间[1,e]上是增函数,在区间[e,e2]上是减函数,…1 0分
∴g(1)=1,g(e2)=1+=1+,g(e)=1+,…
所以m=1+,或1≤m<1+.…
23.【答案】
【解析】解:(I)由题意可知,抛物线y2=2px(p>0)的焦点坐标为,准线方程为.
所以,直线l的方程为…
由消y并整理,得…
设A(x1,y1),B(x2,y2)
则x1+x2=3p,
又|AB|=|AF|+|BF|=x1+x2+p=4,
所以,3p+p=4,所以p=1…
(II)由(I)可知,抛物线的方程为y2=2x.
由题意,直线m的方程为y=kx+(2k﹣1).…
由方程组(1)
可得ky2﹣2y+4k﹣2=0(2)…
当k=0时,由方程(2),得y=﹣1.
把y=﹣1代入y2=2x,得.
这时.直线m与抛物线只有一个公共点.…
当k≠0时,方程(2)得判别式为△=4﹣4k(4k﹣2).
由△>0,即4﹣4k(4k﹣2)>0,亦即4k2﹣2k﹣1<0.
解得.
于是,当且k≠0时,方程(2)有两个不同的实根,从而方程组(1)有两组不同的解,这时,直线m与抛物线有两个不同的公共点,…
因此,所求m的取值范围是.…
【点评】本题考查抛物线的方程与性质,考查直线与抛物线的位置关系,考查学生分析解决问题的能力,属于中档题.
24.【答案】
【解析】(1)证明:设x2>x1>0,∵f(x1)﹣f(x2)=(﹣1)﹣(﹣1)=,
由题设可得x2﹣x1>0,且x2•x1>0,∴f(x1)﹣f(x2)>0,即f(x1)>f(x2),
故f(x)在(0,+∞)上是减函数.
(2)当x<0时,﹣x>0,f(﹣x)=﹣1=﹣f(x),∴f(x)=+1.
又f(0)=0,故函数f(x)的解析式为f(x)=.。

相关文档
最新文档