高中数学 第一章 集合 1.2.1 集合之间的关系练习 新人教B版必修1

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2.1 集合之间的关系
课时过关·能力提升
1集合{x∈N|x=5-2n,n∈N}的子集的个数是()
A.9
B.8
C.7
D.6
解析因为x∈N,n∈N,
所以x=5-2n的值为5,3或1.
所以集合{x∈N|x=5-2n,n∈N}={1,3,5}.
所以其子集的个数是23=8.
答案B
2若集合P={x|x<4},Q={x|-2<x<2,x∈Z},则()
A.Q∈P
B.Q⫋P
C.P⫋Q
D.P=Q
解析因为Q={x|-2<x<2,x∈Z}={-1,0,1},P={x|x<4},所以Q⫋P.
答案B
3已知集合M={x|x>3},N={x|x>2},则M与N的关系可用Venn图表示为()
解析由已知得M⫋N,故D选项正确.
答案D
4已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是()
A.1
B.3
C.5
D.9
解析当x,y取相同的数时,x-y=0;当x=0,y=1时,x-y=-1;当x=0,y=2时,x-y=-2;当x=1,y=0时,x-y=1;当x=2,y=0时,x-y=2;其他则重复.故集合B中有0,-1,-2,1,2,共5个元素,应选C.
答案C
5已知集合M=,N=,则集合M,N的关系是()
A.M⊆N
B.M⫋N
C.N⊆M
D.N⫋M
解析设n=2m或n=2m+1,m∈Z,则有
N=
=或x=m+.
又因为M=,所以M⫋N.
答案B
6若非空数集A={x|2a+1≤x≤3a-5},B={x|3≤x≤22},则能使A⊆B成立的所有实数a的取值集合是()
A.{a|1≤a≤9}
B.{a|6≤a≤9}
C.{a|a≤9}
D.⌀
解析∵A为非空数集,∴2a+1≤3a-5,即a≥6.
又∵A⊆B,∴∴1≤a≤9.
综上可知,实数a的取值集合是{a|6≤a≤9}.
答案B
7已知集合A={1,3,6},集合B={3,a-2},若B⊆A,则实数a的值为.
解析依题意,得a-2=1或a-2=6,解得a=3或a=8.
答案3或8
8已知A={a, 0,-1},B=,若A=B,则a=,b=,c=. 解析由A=B,可知b+c=0,a=1,=-1,
解得a=1,b=-2,c=2.
答案1-2 2
9已知集合P={1,2,3,4},Q={0,2,4,5},则满足A⊆P,且A⊆Q的集合A为.
解析若A=⌀,则满足A⊆P且A⊆Q;
若A≠⌀,由A⊆P且A⊆Q知集合A是由属于P且属于Q的元素构成,此时A可以为
{2},{4},{2,4},故满足条件的集合A为⌀,{2},{4},{2,4}.
答案⌀,{2},{4},{2,4}
10已知集合A={x|x2-5x+6=0},B={x|(m-1)·x-1=0},且B⊆A,则以实数m为元素所构成的集合M 为.
解析A={x|x2-5x+6=0}={2,3}.
因为B⊆A,所以B=⌀或{2}或{3}.
当B=⌀时,⌀⊆A,满足题意,则m-1=0,即m=1;
当B={2}时,=2,得m=;
当B={3}时,=3,得m=.
所以M=.
答案
★11已知集合A={x|0<x<3},集合B={x|m<x<4-m},且B⊆A,求实数m应满足的条件.
分析集合B是关于x的不等式m<x<4-m的解集,需要对集合B是否为空集分类讨论.
解因为B⊆A,所以B=⌀或B≠⌀.
当B=⌀时,⌀⊆A,满足题意,
则有m≥4-m,此时m≥2;
当B≠⌀时,则有解得1≤m<2.
综上可知,实数m满足的条件是1≤m<2或m≥2,即m≥1.。

相关文档
最新文档