Algebraic K-theory of mapping class groups
BAG a graph theoretic sequence clustering algorithm
1 BAG:A Graph Theoretic Sequence Clustering Algorithm(An Extended Abstract)Sun KimSchool of InformaticsCenter for Genomics and BioinformaticsIndiana University–Bloomingtonsunkim@AbstractRecently developed sequence clustering algorithms based on graph theory have been successful in clustering a large number of sequences into families of sequences of specific categories.In this paper,we present a new sequence clustering algorithm BAG based on graph theory.Our algorithm clusterssequences using two properties of graph,biconnected component and articulation point.As computationof biconnected components and articulation points is efficient,linear in relation to the number of verticesand edges,our algorithms are well suited for comparing a large number of proteins from multiple genomes.Our experiments with protein sequences from multiple genomes show that our algorithms generatefamilies of high quality.For example,our algorithm correctly classified3,306predicted proteins from E.coli and H.influenzae into1,427families without human intervention.We also dicuss the importanceof large scale sequence comparisons from our experience in clustering many different genomes,includingArabidopsis thaliana.1IntroductionAs more and more complete genome sequences become available,we can understand better the content of genomes by comparing multiple genomes.By comparing multiple genomes,potential protein-protein interaction[6],regulatory regions[14],or sytenic regions[17,11]can be predicted.In addition,more accurate sequence relationship can be established through the comparative analysis of genomes.However, comparing multiple genomes is a lot more complicated than standard sequence database searches.Well developed computational tools can facilitate multiple genome comparisons and also help us to deduce more reliable conclusions.One of the most important class of computational tools for genome comparison is the sequence clustering algorithm.Recently developed clustering algorithms[7,21,12,13]were successful in clustering a large number of sequences simultaneously,e.g.,whole sets of proteins from multiple organisms.In this paper we present our sequence clustering algorithm BAG based on graph theory.2Pairwise Sequence Comparison to Genome ComparisonMost sequence clustering algorithms are based on the pairwise sequence comparison.There are many pairwise sequence alignment algorithms[1,19,20].These pairwise alignment algorithms are effective in detecting homology among sequences especially when similarity between sequences are relatively high.The most challenging task is to detect remotely related–distant in terms of sequence similarity–sequences. One effective method to detect remote homology is to use intermediate sequences[18].For example,a relationship between two sequences,s i and s j,may be detected via another sequence s k even when the sequence similarity between s i and s j cannot be detected by the pairwise alignment method.This can be seen as building a transitive relationship among the three sequences,i.e.,s i→s k→s j.Building the transitive relationships raises two important issues:what should be intermediate sequences?and how far can we build the trasitive relationships?Clustering algorithms use structures of sequence relationships to classify a set of sequences into families of sequences,F={F1,F2,...,F n}.While generating F,the remote homology detection issue and the transitivity bounding issue are systematically addressed with the structures of sequence relationships used by the clustering algorithm.Any two sequence,s i and s j in the same family F l={...,s i,s j,s k,..}are related by intermediate sequences,say s k,even when there is no observable relationship between s i and s j,thus remote homology detection issue is addressed.The sequences s i and s m in two different familiescould be related through intermediate sequences s m1,...,s mlbut such chaining of sequence relationshipsare blocked if the structure of sequence relationships used in the clustering algorithm classify s i and s m into two different families.Thus the transitivity issue is addressed.Recently developed sequence clustering algorithms were successful in clustering a large number of sequences into sequence families of highly specific categories[7,21,12,13].These clustering algorithms used graph theory explicitly or implicitly.In the following sections,we present our graph theoretic clustering sequence algorithm.3A New Graph Theoretic Sequence Clustering Algorithm3.1PreliminariesThe connected component of a graph is a subgraph where any two vertices in the subgraph are reachable from each other.An articulation point of G is a vertex whose removal disconnects G.For example,in Figure1the removal of a vertex s5disconnects G.A biconnected graph is a graph where there are at lest two disjoint paths for any pair of vertices.A biconnected component of G is a maximal biconnected subgraph.In Figure1,a subraph G1induced by vertices{s2,s3,s4}is a biconnected graph but it is not maximal since another subgraph G2induced by vertices{s1,s2,s3,s4,s5}is biconnected and G1is a subgraph of G2.There are two biconnected components,{s1,s2,s3,s4,s5}and{s5,s6,s7,s8,s9}of G in Figure1.3.2The basic algorithmWe present a new graph theoretic sequence clustering algorithm that explicitly uses two graph properties: biconnected components and articulation points(see Figure1).A biconnected component(BCC in short) corresponds to a family of sequences and an articulation point corresponds to a multidomian protein.As an articulation point is the only vertex that connects multiple biconnected components,i.e.,multiple families, it is intuitive to consider each articulation point as a candidate for multidomain sequence.Figure1:Biconnected components and articulation points.The vertex s5is an articulation point since removing the vertex results in separating the graph.A simple version of our algorithm works as follows.Given a set of sequences S={s1,s2,...,s n},pute similarities(s i,s j)for all1≤i,j≤n and i=j.2.Build a sequence graph G from the pairwise matches above a preset cutoffthreshold.3.Generate a set of subgraphs,{G1,G2,...,G m},each of which G i is a biconnected component.4.Then a set of vertices in each subgraph G i forms a family of sequences and each articulation pointbecomes a candidate for multidomain sequence.To reduce computation time in Step1,we can use well accepted approximation algorithms such as FASTA[19]or BLAST[1,2].We simply choose FASTA for the pairwise computation,and the computation is FASTA(s i,S)for all1≤i≤n.All pairwise comparisons can be computed once and saved for later use,especially for completely sequenced genomes.Indeed,there are several databases for precomputed all pairwise comparisons,e.g.,[16,5].From the precomputed pairwise comparison databases,we can retrieve pairwise comparisons for selected genomes for clustering analysis.Our algorithm is well suited for this type of comparative clustering analysis for an arbitrary set of genomes due to the computational efficiency,i.e,linear time complexity in relation to the number of edges.3.3Result from application of the basic algorithmWe performed a clustering analysis of all5,998predicted protein sequences from E.coli(GenBank ac-cession number U00096,4289proteins)and H.influenzae(GenBank accession number L42023,1709 proteins)with Zscore cutoffof400.1426families of3431sequences were clustered excluding families ofa single sequence(these families are uninformative).Most of the resulting families are clustered correctly with high precision according to the current annotation.However,there are cases where we cannot easily verify the correctness of the clustering result from the annotation.For example,it was not obvious that Family285is clustered correctly from the annotations in the heading as shown below.>gi|1573256|gb|AAC21953.1|L-serine deaminase(sdaA)[Haemophilus influenzae Rd]>gi|1788116|gb|AAC74884.1|L-serine deaminase[Escherichia coli K12]>gi|1789161|gb|AAC75839.1|L-serine dehydratase(deaminase),L-SD2[Escherichia coli K12] >gi|1789498|gb|AAC76146.1|putative L-serine dehydratase[Escherichia coli K12]>gi|1789500|gb|AAC76147.1|putative L-serine dehydratase[Escherichia coli K12](Hinf, SDH_A & B)1573256(Ecoli, SDH_B)1789500(Ecoli, SDH_A)1789498(Ecoli, SDH_A & B)(Ecoli, SDH_A & B)2552153857223752401166416275886101788116 1789161Figure 2:Sequence graphs with the Zscore cutoffthreshold of 400.The numbers on the edges denote the Zscores between two sequences.SDH αand SDH βand were detected by Pfam search.To verify the clustering result,we performed protein domain search using Pfam [3]7.0and found that there are two different domains,SDH αand SDH βin the family as shown in Figure 2.The family begin to separate into two families at a stricter cutoffvalue of 600as shown in Figure 3,i.e.,two BCCs,{1788116,1789161,1789498,1573256}and {1788116,1789500}1,and an articulation point,1788116.However,the question is how do we know the cutoffthreshold value 600apriori?.In addition,different families are characterized at different cutoffvalues in general.This fundamental issue will be effectively addressed in the extended version of our algorithm in the following section.4Bag :The Extended Clustering AlgorithmThe basic algorithm in Section 3.2is extended and called Biconnected components and Articulation points based Grouping of Sequences (Bag ).4.1Issues with the basic algorithmSeveral features of the basic algorithm presented in the previous section need attention:1.The cutoffthreshold setting issue :as shown with the example of SDH αand SDH βdomain proteins,we do not know the cutoffthreshold apriori ,Zscore 600for the example.2.Merging families :given a cutoffthreshold,several families may need to be tested for merging since the cutoffvalue may be too stringent so that sequences with the same domains are separated into multiple families.3.Spitting a family ;given a cutoffthreshold,a family may need to be tested for splitting into several ones.For example,sequences with SDH αand SDH βdomains in Figure 2.1The family {1788116,1789500}will be extended to include the two sequences,1573256and 1789161,that have the SDH βdomain,while the family is considered for merging through an articulation point,1788116(See the next section).(Hinf, SDH_A & B)1573256(Ecoli, SDH_A & B)(Ecoli, SDH_A & B)1788116 17891611789498(Ecoli, SDH_A)(Ecoli, SDH_B)1789500Figure 3:Sequence graphs with the Zscore cutoffthreshold of 600.The graph has two BCCs,{1788116,1789161,1789498,1573256}and {1788116,1789500},and an articulation point,1788116.4.Multidomain protein :how do we know an articulation point truly corresponds to a multidomain protein?Each of these features will be explored in the following subsections.4.2Setting the cutoffthresholdWe performed a series of clustering analyses with Zscore cutoffthresholds ranging from 100to 1000at 50increment intervals for the pairwise comparisons from E.coli and H.influenzae .The plot on the left side in Figure 4is the distribution of the number of biconnected components vs.the Zscore cutoffthreshold.We will call this plot the BCC plot .As we can observe in the figure,the number of biconnected components increases up to a certain value,150for Zscore,and then continue to decrease.The increase in the number of biconnected components is intuitive as a higher cutoffvalue will remove more false positives,thereby families of large size due to false positives being separated into several families.The decrease in the number of biconnected components is also intuitive as a higher cutoffvalue will remove more true positives,thereby more vertices become singletons,i.e.,vertices without incident edges;note that singletons are not counted.We would expect that there exists a peak in the BCC plot if the scoring method like Zscore effectively models the pairwise sequence relationship.This observation is consistent with non-statistical scores like Smith-Waterman score [10].Note that the basic clustering algorithm runs linear time in relation to the number of pairwise matches above a preset cutoffthreshold after computing pairwise matches from a set of sequences.The series of clustering analysis with Zscore in Figure 4took less than 6seconds on a Pentium IV 1.7GHz processor machine running Linux.This computational efficiency makes it possible to efficiently conduct the series of clustering analyses with varying cutoffthresholds to find the cutoffthreshold,C maxbiconn ,that generates the maximum number of biconnected components.However,we need to consider the number of articulation points since articulation points are candidates for multidomain proteins.The right plot in Figure 4shows the number of articulation points with respect to varying Zscore cutoffthresholds.The articulation points become candidates for multidomain proteins and need to be tested for having multidomain proteins:the0500100015002000020*******8001000N o o f b i c o n n e c t e d c o m p o n e n t s Zscore cutoff value E.coli + Hinf 05010015020025030035040002004006008001000N o o f a r t i c u l a t i o n p o i n t s Zscore cutoff value E.coli + Hinf Figure 4:The distribution of the number of biconnected components vs.the Zscore cutoffthreshold (left plot)and the distribution of the number of articulation points vs.the Zscore cutoffthreshold (right).test method will be briefly described in the following sections.We would avoid selecting the cutoffthreshold with too many articulation points.Let NAP C the number of articulation points at score C .One way to select the cutoffvalue is to use a ratio r =NAP C +I NAP C where I is the interval of the score for the series of clustering analysis.4.3The overview of the extended algorithmWe will describe the overview of the extended algorithm due to the space limitation of the paper.Details of the algorithm can be found in [10].Our algorithm BAG works as follows:1.Build a graph G from all pairwise comparisons result.2.Run the basic algorithm with cutoffscores ranging from C 1to C 2at each interval I and select a score,C maxbiconn ,where the number of biconnected components is the largest,and another score,C arti ,where the number of articulation points begin to decrease at a ratio r ≥∆.3.Select a cutoffscore C arti and generate biconnected components,G 1,G 2,...,G n with a set of articu-lation points {A 1,A 2,...,A m }.4.Iteratively split a biconnected components into several ones with more stringent cutoffscores until there is no candidate component for splitting.5.Iteratively merge a set of biconnected components into one with relaxing the cutoffscore to C maxbiconn until there is no candidate component for merging.When merging two biconnected components fails,consider a partial merging by relaxing cutoffscore to C maxbiconn (see the case in Figure 3).The overall procedure can be summarized in two steps:(1)generation of candidate families and (2)refinement of the families by merging and splitting.The fundamental question is which biconnected components need to be refined,i.e.,splitting (Step 3)and merging (Step 4).For this purpose,we propose two tests as below.: TonB_boxC domainFigure5:The region shared among gi1573631,gi1573714,gi3212198,and gi3212230can be computedby chaining pairwise overlaps.All four sequences share domains,that are not present in the Pfam database,and they are annotated to share the hemoglobin binding domain.The three sequences,gi1573631,gi1573714,and gi3212198,share the TonB boxC domain in the Pfam database.This clustering result demonstrates that our algorithm correctly cluster sequences even when multiple domains are involved.1.AP-TEST tests an articulation point for having potential multidomains.2.RANGE-TEST tests each biconnected component for being a single family.These two tests are to see if there are common shared regions among the sequences.For example,Figure5shows that four sequences share common subsequence regions.Depending on the test result,splitting and merging operations are performed in a greedy fashion,i.e.,a resulting subgraph from a splitting or merging operation is not considered for further splitting or merging.5Clustering Two Bacterial GenomesIn this section,we will discuss the application of our clustering algorithm to clustering entire protein se-quences from complete genomes.With the current prototype implemented in C++with the LEDA[15] package,we were able to compare many different sets of genomes.An analysis of B.burgdorferi and T. pallidum can be found in[10].In this section,we describe a complete analysis of two bacterial genomes,E.coli and H.influenzae.Due to the space limitation,we cannot present a complete description.The more de-tailed clustering result will be available at /sunkim/BAG/ecoli.hinf/.As shown in Figure4,we picked150for C maxbiconn and400for C arti(see Section4.2)and the clustering analysis starts with Zscore400,i.e.,C arti,which clusters1,391families with103articulation points. Among103articulation points,18failed for AP-TEST,which implies families around these articulation points does share some domains in common,thus the families connected through the18articulation pointsare not considered for merging.Among1,391families,9failed for RANGE-TEST,which implies that each subgraph have multiple families and need to be split.We used I split=50for splitting families andI merge=50for merging families.Family Zscore Split families Sequences Common domains6145061.11573631157371432121983212230no domain detected61.215740243212230no domain detected181800181.1157308017892511790097Sulfate transp17901501790499xan ur permease181.217892501790499no domain detected 285600285.115732561788116SDH alpha17891611789498285.217891611789500SDH beta 11666001166.117863241788577178864317898161790796no domain detected1166.217886431790795no domain detected 11674501167.1178633217867441786937Usher17871721787782178842717886791789533179077223671881167.217896101788678no domain detectedTable1:The families failed for RANGE-TEST were separated into subfamilies of the same functional domains.Note that domains not common in the subfamilies are not shown.Thus,“no domain detected”means that there is no domain shared among all family members and each family member may have domains detected by Pfam search.Splitting families The list of5families among9families failed for RANGE-TEST is shown in Table??. These families are expected to have multiple domains that lead to the failure for RANGE-TEST.This can be verified either by Pfam search or by sequnece alignment with respect to the multidomain candidate(for example,aligning6sequences of the family61with repect to3212230in Table1).After splitting,there were1,427families.Among them,227families did not have any domains detected by the Pfam search. Merging families A hypergraph was formed for merging families:families from the previous step(Split-ting step)become nodes and two nodes(families)are connected if there is a sequence present in both families.All families in each biconnected component in the hypergraph are considered for merging.There were165cluster merging events.Table2shows examples of merging events.6The Importance of Large Scale Sequence ComparisonsWe performed another clustering analysis from25,545predicted protein sequences from Arabidopsis thaliana genome.4,614families with106articulation points were computed with C biconn=400and C arti=500. We are still in the process of verifying the clustering result.However,from the Pfam search result,we verified most of families with domains,that can be detected in the Pfam database,are clustered correctly.We found an interesting observation in the BCC plot of the Arabidopsis thaliana genome as shown in Figure6.Intuitively,the number of biconnected components increases as more proteins from genomes are compared since more genes(proteins)can be matched.However,what was really interesting was thatNew family Families Sequences Common domains 47-484717888541573186GATase(2),GMP synt C(2),tRNA Me trans4815731863212188GATase(2),GMP synt C,IMPDH C 77-78-797717862681790194lacI(2),Peripla BP like(2)7815744811789456lacI(2),Peripla BP like(2)79157348715738341574481lacI(2)17865401787580178790617879481788474178906817892021789846179019417903691790715111-112-113111178881117892531789606Amino oxidase,FAD binding3fer4pyr redox(2) 112178881117890672367245fer4(2)113157295015740801574621fer411317871221787749178787211317879601789370179032611323672452367345176-177-178176178651817907202-Hacid DH C,adh zinc(2) 17717877531790720adh zinc(2)178157300017877531787863adh zinc178807317884071788895179004517907181790819220-22122017892501790499xan ur permease 221157308017892511790097Sulfate transp,xan ur permease(2)17901501790499425-426-42742517893011790027no domain detected 42617884941790027PTS EIIA2(2)42715734241788494PTS EIIA2(2),PTS-HPr(2) 783-784-7857831787661178868217902813HCDH(2),3HCDH N(2),ECH 78417862201788682ECH(2)78517862201787659ECH(2)17876601789286Table2:Examples for merging events.The number in the parantheses at the end of a domain name denotes the number of occurrences of the domain.Even though several families can be merged into one, each family were initially grouped into ones of specific category.For example,families111,112,and113 can be merged into one that shares a single occurrence of the fer4domain.However,the three families were grouped correctly according to domains in the families;all members in the family111have Amino oxidase, FAD binding3,fer4,and pyr redox(2),and all members in the family112have two occurrences of the fer4 domain while all memerbs in the family113have only one occurrence of the fer4domain.The merging event also detects multidomain proteins.For example,1790027in the merging of425-426-427shares unknown domains with1789301,in addition to the PTS EIIA2domain.050010001500200025003000350040004500500001002003004005006007008009001000N o o f b i c o n n e c t e d c o m p o n e n t s Zscore cutoff value Arabidopsis 050010001500200002004006008001000N o o f b i c o n n e c t e d c o m p o n e n t s Zscore cutoff value E.coli + Hinf E.coli Hinf Figure 6:The plots of the number of biconnected components vs.Zscore cutoffthresholds:the left plot for Arabidopsis thaliana and the right plot for the bacterial genomes (E.coli and H.influenzae ).The number of BCCs does not decrease much as the cutoffincreases up to 1000in the clustering analysis of Arabidopsis thaliana ;the decreasing ratio can be measured in relation to the maximum number of BCCs.We call this the plataeu in the BCC plot,which begins to appear as a larger set of sequences are compared.the number of biconnected components did not decrease as fast as in the analysis of the two bacterial genomes.For example,the number of biconnected components at the Zscore cutoffof 1000was 3,587.What was happening was that many sequences in the same family have two or more separate paths –thus biconnected –through strong sequence similarities when many sequences are compared.In the Arabidopsis thaliana analysis,the numbers of BCCs vary less than 4%from the maximum BCC number at 400in the range of the cutoffvalues from 350to 650,which is almost flat.We call the observation the plateau in the BCC plot.The plataeu can be observed in the articulation plot as well.This observation provides more confidence in the clustering results since the numbers of candidates for families and multidomain proteins do not change much.The plataeu appears as larger sets of sequences are compared as shown in Figure 6:four BCC plots for two bacterial genomes (E.coli and H.influenzae )separately,two bacterial genomes combined,and Arabidopsis thaliana .The plataeu can be measured in terms of the decreasing ratio in relation to the maximum number of BCCs.This result supports the importance of large scale genome comparisons:the more genomes are compared the stronger sequence relationship,i.e.,similarity,can be used for clustering sequences,thus we can be more confident of the clustering result.More rigorous and detailed result will be reported in the forthcoming paper.7ConclusionAs more sequences become available in an exponential rate,sequence analysis on a large number of se-quences will be increasingly important.Sequence clustering algorithms are computational tools for that purpose.In this paper,we presented our clustering algorithm,BAG ,that used two graph properties,biconnected components and articulation points.Our algorithm were successful in clustering sequences into families of specific categories using the pairwise sequence comparison information only.For example,families in Figure5were clustered correctly to shares hemoglobin binding domains even when multiple domains are involved(a subset of the family share the TonB boxC domain),and families in Section3.3were separated into two families of SDHαand SDHβ.Note that these two family classifications cannot be achieved by either Pfam search(for families in Figure5)or by looking at annotations(for families in Section3.3).In addition,our algorithm can help to detect previously uncharacterized domains.For example,in the clustering analysis of E.coli and H. influenzae,227families did not have any domains detected by the Pfam search.Our algorithm utilizes the computational efficiency,i.e.,linear time complexity,to achieve clustering of families of very specific categories.In particular,our algorithm was successful in classifying families where the relationships among member sequences were defined at different scores;for example,Family181.1and 181.2can be separated at Zscore800but not at Zscore400where most of families were classified(see Table 1).As a result,families were clustered with highly specific precision.For example,families in Table2were separated even at the level of the number of domain occurrences;families111-112-113and176-177-178.Why can our algorithm cluster sequences into families of very specific categories?This can be explained in terms of previous work in the literature.First of all,use of intermediate sequences can detect remote homology[18].Grundy2demonstrated that a simple family pairwise search technique can classify sequences with high accuracy[9].Clustering from all pairwise comparisons incorporates these two techniques in a systematic way with structures of a graph.Thus,we would expect that clustering algorithms based on graph theory can cluster sequences into famlies of very specific categories.The future work for our algorithm includes applications of our algorithm to different types of sequences such as DNA and EST sequences.It would also be interesting to retain the hierarchical structure of the merging procedure so that sequence relationships can be seen at different levels.In addition,refining further each family in the context of genome,i.e.,orthologs as used in COG,is an interesting topic for further research.References[1]Altschul,S.F.,Gish,W.,Miller,W.,Myers,E.W.and Lipman,D.J.(1990)“Basic local alignmentsearch tool,”Journal of Molecular Biology215403-410.[2]Altschul,S.F.,Madden,T.L.,Schffer,A.A.,Zhang,J.,Zhang,Z.,Miller,W.and Lipman,D.J.(1997)“Gapped BLAST and PSI-BLAST:a new generation of protein database search programs,”Nucleic Acids Research,253389-3402.[3]Bateman,A.,Birney,E.,Durbin,R.,Eddy,S.R.,Howe,K.L.,and Sonnhammer,E.L.L.,(2000)“The Pfam Protein Families Database,”Nucleic Acids Research,28263-266.[4]G.Cannarozzi,M.T.Hallett,J.Norberg,and X.Zhou(2000)“A cross-comparison of a large datasetof genes,”Bioinformatics16654-655[5]Gilbert,D.G.(2002)“euGenes:a eukaryote genome information system,”Nucleic Acids Research,30,145-148[6]Enright A.J.,Iliopoulos I.,Krypides N.,Ouzounis C.A.,(1999)’Protein interaction maps for completegenomes based on gene fusion events’Nature402,86-902The author’s name changed to William Stafford Noble from William Noble Grundy.。
数学专业常用英语词汇
Aa priori distribution 先验分布a priori probability 先验概率a summable a可和的abacus 算盘abbreviate 略abbreviation 简化abridge 略abridged notation 简算记号abscissa 横坐标abscissa of absolute convergence 绝对收敛坐标abscissa of summability可和性坐标abscissa of uniform convergence 一致收敛横坐标absolute 绝对形absolute address 绝对地址absolute class field 绝对类域absolute coding 绝对编码absolute cohomology 绝对上同调absolute conic 绝对二次曲线absolute convergence 绝对收敛absolute curvature vector绝对曲率向量absolute deviation 绝对偏差absolute differential calculus绝对微分学absolute error 绝对误差absolute extremes /extremum绝对极值absolute frequency/ geometry绝对频率/几何absolute inequality 绝对不等式absolute instability 绝对不稳定性absolute maximum /minimum绝对极大/小值absolute moment /neighborhood 绝对矩/邻域absolute neighborhood retract绝对邻域收缩核absolute norm 绝对范数absolute number 不名数absolute parallelism 绝对平行性absolute quadric 绝对二次曲面absolute ramification index绝对分歧指数absolute rotation 绝对旋转absolute space 绝对空间absolute space time 绝对时空absolute term 常数项absolute unit 绝对单位absolute value 绝对值absolute value sign 绝对值符号absolute velocity 绝对速度absolutely continuous 绝对连续的absolutely continuous distribution 、function /measure/part绝对连续分布/函数/测度/部分absolutely continuous transformation绝对连续变换absolutely convergent 绝对收敛的absolutely convergent integral series绝对收敛积分/级数absolutely convex hull 绝对凸包absolutely discontinuous function 绝对不连续函数absolutely integrable 绝对可积的absolutely irreducible character/representation /variety绝对不可约特征/表示/簇absolutely normal number绝对范数absolutely prime ideal 绝对素理想absolutely unbiased estimator绝对无偏估计量absolutely unramified extension绝对非分歧扩张absorbing barrier/ set/ state吸收障碍/集/态absorption 吸收absorption coefficient/curve /factor/index/law/probability吸收系数/曲线/因数/指数/律/概率abstract 抽象的abstract algebra /mathematics抽象代数/数学abstract algebraic geometry抽象代数几何abstract category 抽象范畴abstract complex 抽象复形abstract group 抽象群abstract interval function抽象区间函数abstract number 不名数abstract ordered simplicial complex 抽象有序单纯复形abstract simplex 抽象单形abstract space 抽象空间abstraction 抽象abstraction operator 抽象算子absurd 谬论的absurdity 谬论accelerated motion 加速运动acceleration 加速度acceleration of convergence收敛性的加速acceleration of gravity 重力加速度acceptable quality level合格质量水平acceptance 肯定acceptance inspection 接受检查acceptance limit /line/ number接受界限/线/数acceptance probability/ region /zone 接受概率/区域/带access 存取accessibility 可达性accessible boundary point /point /set 可达边界点/点/集accessible ordinal number可达序数accessible vertex 可达顶点accessory extremal 配连极值accidental 偶然的accidental coincidence 偶然符合accidental error 随机误差accommodationaccumulated error 累积误差accumulating point 聚点accumulation 累积accumulation point 聚点accumulator 累加器存储器accuracy 准确性accuracy grade/rating准确度accuracy of measurement测量精确度acnod 孤点acount 计算action integral 酌积分action variable 酌变量active restriction 有效限制actual 真实的actual infinity 实无穷acute 尖锐的acute angle 锐角acute angled triangle; acute triangle 锐角三角形acuteness 锐度acyclic 非循环的acyclic complex 非循环复形ad infinitum 无穷地adams circle 阿达姆斯圆adams extrapolation method阿达姆斯外插法adaptability 适应性adaptation 适应adapted basis 适应基add,plus 加added circuit 加法电路addend 加数adder 加法器addition 加法addition formulas 加法公式addition sign 加号addition system 加法系addition table 加法表addition theorem 加法定理addition theorem of probability概率的加法定理additional /additive加法的additional code 附加代码additional condition 附加条件additive category 加性范畴additive class 加性类additive functional 加性泛函数additive operator/process /relation 加性算子/过程/关系additive separable 加法可分的additive theory of numbers 堆垒数论additivity 加法性address 地address part 地址部分address register 地址寄存器addressing 指定箱位adele 阿代尔adele group 阿代尔群adequate 适合的adherent point 触点adhesion 附着adjacency 邻接adjacency matrix 邻接矩阵adjacent angles/edge/side/ vertex邻角/棱/边/顶adjacent supplementary angles 邻角adjoint boundary value problem 伴随边值问题adjoint determinant 伴随行列式adjoint difference equation伴随差分方程(differential 微分)adjoint differential expression伴随微分式adjoint form/ function/ functor/group伴随形式/函数/函子/群adjoint graph 导出图adjoint linear map 伴随线性映射adjoint matrix 伴随阵(operator算子process过程representation表示space空间surface曲面system系)adjoint system of differential equations 微分方程的伴随系adjoint transformation 伴随算子adjoint vector 伴随向量adjunct 代数余子式adjunction 附加adjunction of an identity element 单位元的附加admissibility limit 容许界限admissible 容许的admissible category /chart容许范畴/容许图admissible control 可行控制admissible decision function/ rule容许判决函数admissible deformation容许形变(domain区域function函数homomorphism 同态,hypothesis假设lifting提升map 映射sequence序列space空间strategy策略subgroup 子群test检定value值)affine algebraic set 仿射代数集(collineation直射变换connection联络curvature曲率)affine coordinates 平行坐标affine differential geometry仿射微分几何学affine distance 仿射距离affine group scheme 仿射群概型affine isothermal net 仿射等温网affine length /line /normal parameter仿射长度/直线/法线/参数affine principal curvature 仿射助率affinity 仿射变换affirmation 肯定affirmative proposition 肯定命题affix 附标after effect 后效酌aggregate 集aggregation 聚合agreement 一致air coordinates 空间坐标algebra 代数学algebra of events 事件场algebra of logic 逻辑代数algebra of tensors 张量代数algebra over k 环k上的代数algebraic 代数的algebraic adjunction 代数的附加algebraic branch point 代数分歧点algebraic calculus 代数计算algebraic closure 代数闭包algebraic closure operator代数闭包算子algebraic complement/cone代数余子式/锥algebraic correspondence 代数对应algebraic curve 代数曲线algebraic expression 代数式algebraic hull 代数包algebraic integer/irrational number 代数整数/无理数algebraic lie algebra 代数的李代数algebraic logic of pocket calculator 袖珍计算机的代数逻辑algebraic multiplicity 代数重度algebraic number 代数数algebraic operation 代数运算algebraic polynomial 代数多项式algebraic singularity 代数奇点algebraic space 代数空间algebraic spiral 代数螺线algebraic structure 代数结构algebraic sum /system 代数和/系algebraically closed field 代数闭域algebraically equivalent 代数等价的algebraically dependent elements代数相关元(independent无关) algebraization 代数化algebro geometric 代数几何的algebroid function 代数体函数algebroidal function 代数体函数algorithm 算法algorithm of division 辗转相除法algorithm of euclid 欧几里得算法algorithm theory 算法论algorithmic language 算法语言algorithmization 算法化alignment chart 列线图aliquot part 整除部分alligation 混合法allocation problem 配置问题allowable 容许的allowable defects 容许靠allowable error 容许误差allowance 允许almost all 几乎处处almost certain convergence几乎必然收敛almost everywhere 几乎处处almost impossible event 殆不可能事件almost invariant set 殆不变集almost periodic function 殆周期函数alpha capacity 容量alpha limit set 极限集alphabetical 字母的alphanumeric 字母数字式alphanumeric representation ofinformation 信息的字母数字表示alternate angles 错角alternating chain 交错链alternating differential form外微分形式alternating differential of differential form 微分形式的交错微分alternating direction method交替方向法alternating form 交错形式alternating function 反对称函数alternating group 交错群alternating harmonic series莱布尼兹级数alternating matrix 交错矩阵alternating method 交错法alternating product 外积alternating sequence 交错序列alternating series 交错级数alternating series test交错级数检验alternating sum 交错和alternation 交错alternative 交错;择一alternative algebra /field交错代数/域alternative hypothesis 择一假设alternative normal form 析取范式alternative proposition 选言命题altitude 高度altitude theorem 高度定理amalgamated product 融合积amalgamation 合并ambiguous point 歧点amicable numbers 亲和数amount 量amplitude 振幅;角amplitude of a complex number复数角analog computer 模拟计算机analogous 类似的analogue display 相似表示analogue method 相似法analogy 类似analysis 数学分析analysis of time series时间序列分析analysis of variance 方差分析analytic 分析的analytic arc 解析弧analytic completion /continuation解析开拓analytic curve 解析曲线dynamics 分析动力学analytic expression 解析式analytic function 分析函数analytic function of several variables 多元解析函数analytic geometry 分析几何学analytic index 解析指数analytic manifold 解析廖analytic method 解析法analytic proposition 解析命题analytic set 解析集analytic space 解析空间analytical differential 解析微分analytical geometry 分析几何学analytical hierarchy 解析分层analytical mappinganalytical transformation全纯映射analytically representable function 解析可表示的函数ancillary statistic 辅助统计量angle 角angle at center 圆心角angle between chord and tangent弦和切线的角angle function 角函数angle of contingence 切线角angle of declination 俯角angle of inclination 斜角angle of intersection 相交角angle of reflection 反射角angle of refraction 折射角angle of rotation 旋转角angular 角的angular acceleration 角加速度angular coefficient 角系数angular coordinates 角坐标angular displacement 角位移angular distance 角距angular distribution 角分布angular domain 角域angular frequency 角频率angular magnification 角放大率angular measure 角测度angular metric 角度量angular momentum 角动量angular velocity 角速度anharmonic ratio 交比annihilator /annulator 零化子annular 环annulus 圆环anomalous propagation 反常传播anomalous scattering 反常散射antecedent 前项anti reflexiveness 反自反性antianalytic function 反解析函数anticlockwise 逆时针的anticlockwise revolution/rotation 逆时针回转antiderivative 不定积分的antiisomorphy 反同构antilinear 反线性的antilinear mapping 反线性映射antiparallel 逆平行的antiplane 反平面antipodal map 对映映射antipodal point 对映点antipodal set 对映集antipode 对映点antisymmetric 反对称的antisymmetric function 反对称函数antisymmetrical state 反对称态antitone mapping 反序映射antitonicity 反序性antitony 反序性antitrigonometric function反三角函数apex 顶点apex angle 顶角apical angle 顶角apolar 非极性的apolarity 从配极性apothem 边心距apparent error 貌似误差application 应用applied mathematics 应用数学applied mechanics 应用力学approach 接近approach infinity 接近无穷大approximability 可逼近性approximable 可逼近的approximate 近似的;使近似approximate calculation 近似计算approximate continuity 近似连续性approximate differentiability近似可微性approximate integration 近似积分approximate limit 近似极限approximate number 近似数approximate partial derivative近似偏导函数(近似导数)approximate partial derived function approximate partial /total differential 近似偏/全微分approximate solution 近似解approximate total differentiability 近似全可微性approximate value 近似值approximately equal 近似等于approximation 逼近approximation calculus 近似计算approximation error 近似误差approximation function 逼近函数approximation theory 逼近理论arbitrarily small 任意小arbitrary 任意的arbitrary constant/element /parameter 任意常数/元素/参数arbitrary small number 任意小数arc 弧arc component 弧分量arc cosecant 反余割arc hyperbolic function 反双曲函数arc length 弧长arc of a circle 圆弧arc set 弧集arc sine 逆正弦arc sine law 反正弦定律arc sine transformation 反正弦变换arc tangent 反正切arch 拱形archimedean 阿基米德性的archimedean group 阿基米德群archimedean semigroup阿基米德半群archimedean space 阿基米德空间archimedean total order ~ ~ 全序archimedean valuation ~ ~ 赋值archimedes axiom 阿基米德公理archimedes spiral 阿基米德螺线arcwise connected set 弧连通集arcwise connected space弧连通空间arcwise connectedness 弧连通性are 公亩area 面积area function 面积函数area of a circle 圆面积areal coordinates 重心坐标areal derivative 面积导数areal element 面积元素areal integral 面积分areal velocity 面积速度argand plane 复数平面argument 自变数;辐角argument function 辐角函数argument of a function函数的自变数argument principle 辐角原理argumentation 论证aristotelian logic亚里斯多德逻辑学arithmetic 算术arithmetic difference 算术差arithmetic division 算术除法arithmetic element 运算元素arithmetic expression 算术表达式arithmetic function 数论函数arithmetic genus 算术狂arithmetic geometric mean/ series算术几何平均/级数arithmetic mean 算术平均arithmetic number 正实数arithmetic of algebraic number fields 代数数域的数论arithmetic of algebras 代数的数论arithmetic of local fields局部域的数沦arithmetic operation算术操作算术运算arithmetic progression 算术级数arithmetic subgroup 算术子群arithmetic unit 运算元素arithmetics 算术arithmetization 算术化arithmometer 四则计算机arrangement 排列array 排列arrow 射artificial variable 人工变量artificial variable method 人工变量法ascending difference 后向差分ascending power series 升幂级数ascending powers 升幂ascending sequence 递升序列aspherical space 非球面空间asphericity 非球面牲assemblage 集assembler 汇编assertion sign 断定号assignable cause 可指定的原因assignment problem 配置问题associate equation 相伴方程associated equation 相伴方程associated radius of convergence相伴收敛半径associated space 相伴空间association 结合associative algebra 结合代数associative law 结合律associative law for series级数的结合律associativity 结合性assume 假定assumption 假定assumption formula 假定公式asterisk 星号asteroid 星形线asymmetric 非对称的asymmetric relation 非对称关系asymmetrical 非对称的asymmetrical graph 恒等图asymmetry 非对称性asymptote 渐近线asymptote of curve 曲线的渐近线asymptotic 浙近的asymptotic behavior 渐近状态asymptotic circle 渐近圆asymptotic line 渐近线asymptotic point 渐近点asymptotic value 渐近值asymptotically equal 渐近相等asymptotically equal sequence渐近相等序列asymptotically equivalent function 渐近等价函数asymptotically normal distribution 渐近正态分布asymptotically normally distributed 渐近正规分布的asynchronous computer异步计算机atlas 坐标邻域系atom 原子atomic element 原子元素atomic formula 原子公式atomic lattice 原子格atomic proposition 原子命题atomicity 原子性attaching map 接着映射attenuation 衰减attenuation constant 衰减常数attraction 引力attractive force 引力attractor 吸引区attribute 属性augend 被加数augmentation 扩张augmentation preserving map增广保存映射augmented complex 扩张复形augmented matrix 增广矩阵austausch 交换autocorrelation 自相关autocorrelation coefficient/function 自相关系数/函数automatic testing 自动检验automation 自动化automaton graph 自动机图auxiliary 辅助的auxiliary angle 辅助角auxiliary circle 辅助圆auxiliary equation 相伴齐次方程auxiliary function 辅助函数auxiliary line 辅助线auxiliary variable 辅助变数average 平均值average deviation 平均偏差average error 平均误差average life 平均寿命average sample number平均样本数average speed 平均速度average term 普通项average time /value平均时间/值averaging 取平均数averaging method 平均法averaging operator 平均算子axes of coordinates 座标轴axial 轴的axial symmetry 轴对称axiom 公理axiom of accessibility 可达性公理axiom of addition 加法公理axiom of choice 选择公理axiom of completeness 完备性公理axiom of the empty set 空集公理axiom of union 并集公理axiom scheme 公理格式axiomatic 公理的axiomatic method 公理法axis 轴axis of a cone 锥轴axis of abscissas 横坐标轴axis of absolute convergence绝对收敛轴axis of affinity 仿射轴axis of convergence 收敛轴axis of coordinate 坐标轴axis of ordinates 纵坐标轴axis of projection 射影轴axis of reals 实轴axis of symmetry 对称轴axisymmetric 轴对称的axonometry 轴测法azimuth 方位角azimuthal 方位角的Bb measurability b可测性back substitution 逆计算backward difference 后向差分backward difference operator 后向差分算子backward difference quotient后向差商baire function 贝利函数baire measure 贝利测度balance 平衡balanced category 平衡范畴balanced hypergraph 平衡超图balayage 扫除ball 球ballistic curve 弹道banach algebra 巴拿赫代数banach space 巴拿赫空间band 带band chart 带状图band matrix 带状矩阵bar diagram 条线图(bar graph) barrel 桶集barrel shape 桶型barrelled space 桶型空间barrier 闸barycenter 重心barycentric 重心的barycentric complex 重心复形base 底base angle 底角base line 底线base number 底数base of logarithms 对数的底base point 基点base register基址寄存器变址寄存器base space 底空间base vector 基向量basic 基础的basic block /field/ form基本块/形式/基域basic point 基础点basic representation 基本表示basic ring 基环basic solution 基本解basic symbol 基本符号basic variable 基本变量basis 基basis of linear space 线性空间的基basis of vector space 向量空间的基basis replacement procedure基替换过程basis theorem of hilbert希耳伯特基定理basis vector 基本向量batch processing 成批处理bayes decision function贝叶斯判定函数bayes formula 贝叶斯公式bayes postulate 贝叶斯公假设bayes solution 贝叶斯解behavior 行为behavior strategy 行为策略bellman principle 贝尔曼原理beltrami equation 贝尔特拉米方程bending point 转向点bergman metric 伯格曼度量bernoulli equation 伯努利方程bernoulli inequality 伯努利不等式bernoulli method 伯努利法bernoulli number/polynomial伯努利数/多项式bernstein polynomial伯思斯坦多项式bessel inequality 贝塞耳不等式bessel integral 贝塞耳积分best approximation 最佳逼近best estimator 最佳估计量best test 最佳检验best uniform approximation最佳一致逼近beta distribution 分布beta function 函数betti group 贝蒂群betti number 贝蒂数between group variance 群间方差biadditive 双加法的biangular 双角的bias 偏倚biased estimator 有偏估计量biased sample 有偏样本biased statistics 有偏统计量biased test 有偏检验biaxial 双轴的bicartesian square 双笛卡儿方bicompact set 紧集bicompact space 列紧空间biconditional 等价bicontinuous function 双连续函数bicylinder 双圆柱bidimensional 二维的bidimensionality 二维性bifurcation point 歧点bifurcation theory 分歧理论bigraded group 双重分次群bihomomorphism 双同态bijection (bijective mapping)双射bijectivity 双射性bilateral 两面的bilinear 双线性的bilinear form 双线性形式bilinear functional 双线性泛函bilinearity 双线性binary 二元的binary arithmetic 二进制算术binary code 二进制码binary coding 二进制编码binary digit 二进制数字binary digital computer二进制数字计算机binary element 双态元件binary number 二进制数binary number system 二进制数系binary operation 二元运算binary point 二进制小数点binary relation 二元关系binary system 二进制的binary translation 二进制变换bind 连结binomial 二项式binomial coefficient 二项式系数binomial differential 二项式微分binomial differential equation二项微分方程binomial distribution 二项分布binomial equation 二项方程binomial expansion 二项展开式binomial integral 二项式积分binomial series 二项级数binomial theorem 二项式定理biomathematic 生物数学的biomathematics 生物数学biomechanics 生物力学biometrics 生物统计学biometrika 生物统计学biophysics 生物物理学biorthogonal system 双正交系biorthonormal expansion双标准正交展开Biorthonormalization双标准正交化birth rate 出生率bisect 平分bisecting point 平分点bisection 平分bisector 平分线bisector of angle 角的平分线biunique 一对一的bivalent 二价的bivariate distribution 二维分布bivariate distribution function二元分布函数bivariate frequency function二元频率函数bivariate normal distribution二元正态分布bivariate population 二元总体bivector 二重向量block 块block design 区组设计block relaxation 块松弛block tridiagonal matrix块三对角阵blockdiagram 立体图body 体body of revolution 旋转体boole function 布尔函数boolean algebra 布尔代数boolean optimization 布尔最优化boolean ring/vector布尔环/向量border 边缘border element 边缘元素border of the domain 域的边缘border set 边缘集bordered matrix 加边矩阵bornological set 有界型集bornological space 有界型空间bornology 有界型性bound 界bound decision variable约束决策变量bound term 约束项boundary 边界;边缘boundary collocation 边界配置boundary condition 边界条件boundary correspondence 边界对应boundary curve 边界曲线boundary element method边界元法boundary interval 边界区间boundary layer 边界层boundary line 界线boundary point 边界点boundary simplex 边界单形boundary strip 边界带boundary surface 带边界曲面boundary value 边界值boundary value problem 边值问题bounded 有界的bounded above/ below 上/下有界的bounded above/ below sequence上/下有界序列bounded chain 有界链bounded closed set 有界闭集bounded domain 有界域bounded sequence 有界序列bounded set 有界集合bounded to the downwards/ upwards 下/上有界的boundedness 有界性bounding manifold 边界廖bounding surface 边界曲面boundless 无限的box 框brace 大括号bracket 括号brachistochrone 最速降线brachistochrone problem最速降线问题bracket operation 括号运算bragg curve 布喇格曲线braid 辫braid group 辫群branch 分支branch line 分枝线branch of a curve 曲线的分枝branch of function 函数的分枝branch point 分枝点branching 分枝branching process 分枝过程breadth 幅break point 断点;分割点briggs' logarithm 常用对数briggsian logarithm 常用对数broken line 折线broken number 分数brownian motion 布朗运动brownian movement 布朗运动buckling 弯曲budget 顸算buffer 缓冲器bundle 束bundle of planes 平面把bundle of rays 线把bundle of spheres 球把bundle space 丛空间bus 母线byte 字节c function c类函数c mapping c类映射ca set 上解析集calculability 可计算性calculable mapping 可计算映射calculable relation 可计算关系calculate 计算calculation 计算calculating automaton 计算自动机calculating circuit 计算电路calculating element 计算单元calculating machine 计算机calculating punch 穿孔计算机calculating register 计算寄存器calculating unit 计算装置calculation of areas 面积计算calculator 计算机calculus 演算calculus of approximations近似计算calculus of errors 误差论calculus of finite differences差分法calculus of probability 概率calibration 校准canal 管道canal surface 管道曲面cancel 消去cancellation 消去cancellation law 消去律cancelling of significant figures 有效数字消去canonical basis 典范基canonical coordinates 标准坐标canonical decomposition 标准分解canonical equation 典型方程canonical form 标准型canonical function 标准函数canonical homomorphism标准同态canonical image 标准象canonical mapping 标准映射canonical solution 标准解canonical system of differential equations 标准微分方程组canonical variable 典型变量cap 交cap product 卡积capacity 容量card 卡片card reader 卡片读数器cardinal 知的cardinal number 基数cardinal product 基数积cardioid 心脏线carrier 支柱carry 进位carry signal 进位信号cartesian coordinate system笛卡儿坐标系cartesian coordinates 笛卡尔座标cartesian equation 笛卡儿方程cartesian folium 笛卡儿叶形线cartesian product 笛卡儿积cartesian space 笛卡儿空间catastrophe theory 突变理论categorical judgment 范畴判断categorical proposition 范畴判断categorical theory 范畴论categoricity 范畴性category 范畴category of modules 模的范畴category of sets 集的范畴category of topological spaces拓扑空间的范畴causal relation 因果关系causality 因果律cause 原因ccr algebra ccr代数celestial body 天体celestial coordinates 天体坐标celestial mechanics 天体力学cell 胞腔center 中心cell complex 多面复形center of a circle 圆心center of curvature 曲率中心center of expansion 展开中心center of force 力心center of gravity 重心center of gyration 旋转中心center of mass 质心center of pressure 压力中心center of symmetry 对称中心centered process 中心化过程centi 厘centigram 厘克centimetre 厘米central angle 圆心角central confidence interval中心置信区间central line 中线central point 中心点centre of a circle 圆心centre of gyration 旋转中心centrifugal force 离心力centripetal acceleration 向心加速度centroid 形心certain event 必然事件certainty 必然chain 链chance 偶然性;偶然的chance event 随机事件chance move 随机步chance quantity 随机量chance variable 机会变量change 变化change of metrics 度量的变换change of the base 基的变换change of the variable 变量的更换channel 信道channel width 信道宽度character 符号characteristic 特征characteristic boundary value problem 特者值问题characteristic class 示性类charge 电荷chart 图chebyshev function 切比雪夫函数chebyshev inequality /polynomial 切比雪夫不等式/多项式check 校验check digit 检验位chi square distribution 分布chi squared test 检验choice function 选择函数chord 弦chord line 弦chord of contact 切弦chordal distance 弦距离christoffel symbol克里斯托弗尔符号cipher 数字circle 圆circle diagram 圆图circle of contact 切圆circle of convergence 收敛圆circulant 循环行列式circulant matrix 轮换矩阵circular 圆的circular arc 圆弧circular cone 圆锥circular cylinder 圆柱circular disk 圆盘circular domain 圆形域circular frequency 角频率circular functions 圆函数circular measure 弧度circular ring 圆环circular section 圆截面circular sector 圆扇形circulation 循环circumcenter 外心circumcentre 外心circumcircle 外接圆circumscribe 外接circumscribed circle 外接圆circumsphere 外接球class 类class field 类域classical mechanics 经典力学classical sentential calculus经典语句演算classical set theory 经典集论classical statistical mechanics经典统计力学classical theory of probability经典概率论classification 分类classification statistic 分类统计classification theorem 分类定理classify 分类classifying map 分类映射classifying space 分类空间clear 擦去clockwise 顺时针的clockwise direction 顺时针方向clockwise rotation 顺时针旋转clopen set 闭开集closable linear operator可闭线性算子closable operator 可闭算子closed ball 闭球closed circuit 闭合电路closed convex hull 闭凸包closed domain 闭域closed half plane 闭半平面closed half space 闭半空间closed hull 闭包closed interval 闭区间closed kernel 闭核coder 编器codomain 上域coefficient 系数coefficient domain 系数域coefficient function 系数函数coefficient functional 系数泛函coefficient group 系数群coefficient of alienation不相关系数coefficient of association 相伴系数coefficient of covariation 共变系数cofunction 余函数coincidence 一致coincidence point 叠合点coincident 重合的collect 收集collective 集体collinear diagram 列线图collinear points 共线点collinear vectors 共线向量collinearity 共线性collineation 直射变换collineation group 直射群collineatory transformation直射变换collocation method 配置法collocation of boundary 边界配置collocation point 配置点column 列column finite matrix 列有限矩阵column matrix 列阵column rank 列秩column space 列空间column vector 列向量combination 组合command 命令commensurability 可通约性commensurable 可通约的common denominator 公分母common difference 公差common divisor 公约数common factor 公因子common factor theory 公因子论common fraction 普通分数common logarithm 常用对数common point 公共点common ratio 公比commutant 换位commutation law 交换律commutation relation 交换关系commutative 可换的commutative diagram 交换图表commutative group 交换群commutative groupoid 阿贝耳广群commutative law 交换律commutative lie ring 交换李环commutative ring 交换环commutativity 交换性commutator 换位子commutator group 换位子群commute 交换compact 紧的compact convergence 紧收敛compact group 紧群compact open topology紧收敛拓扑compact operator 紧算子compact set 紧集compact space 紧空间compact subgroup 紧子群comparison function 比较函数comparison method 比较法comparison series 比较用级数comparison test 比较检验comparison theorem 比较定理compatibile condition 相容性条件compatibility 一致性compatibility condition相容性条件compensate 补偿compensating method 补偿法compensation 补偿compensation of error 误差的补偿compiler 编译程序compiling routine 编译程序complanar line 共面线complele induction 数学归纳法complement 补集complement of an angle 余角complementary 补的complementary angle 余角complementary set 补集complementary space 补空间complete continuity 完全连续性complete disjunction 完全析取complete field 完全域complete field of sets 集的完全域complete graph/group 完全图/群complete induction 数学归纳法complete space 完备空间complete subcategory 完全子范畴complete system 完备系completely additive 完全加性的completely additive family of sets 完全加性集族completely continuous mapping全连续映射(operator)completely distributive lattice完全分配格completely homologous maps完全同党射completely independent system of axioms 完全独立公理系统completion 完备化complex 复形complex conjugate 复共轭的complex conjugate matrix复共轭阵complex curve 复曲线complex curvelinear integral复曲线积分complex domain 复域complex field 复数域complex flnction 复值函数complex fraction 繁分数complex group 辛群complex line 复线complex line bundle 复线丛complex manifold 复廖complex multiplication 复数乘法complex number 复数complex number plane 复数平面complex plane with cut有割的复平面complex quantity 复量complex root 复根complex series 复级数complex sphere 复球面complex variable 复变量complex vector bundle 复向量丛complexity 复杂性complication 复杂化component 分量composable 组成的compose 组成composite 合成composite divisor 合成除数composite function 合成函数composite functor 合成函子composite group 合成群composite hypothesis 复合假设composite number 合成数computable function 可计算函数computation 计算computational error 计算误差computational formula 计算公式computational mistake 计算误差compute 计算computer 计算机computing center 计算中心computing element 计算单元computing machine 计算机computing time 计算时间concave 凹的concave angle /curve凹角/曲线concave function 凹函数concave polygon 凹多边形concavity 凹性concavo convex 凹凸的concentration 集中;浓度concentration ellipse 同心椭圆concentric circles 同心圆concept 概念conclusion 结论concurrent planes 共点面concyclic points 共圆点condensation point 凝聚点conditional convergence 条件收敛conditionally convergent 条件收敛的conditionally convergent series条件收敛级数cone 锥cone of a complex 复形锥面cone of a simplex 单形锥面confidence belt 置信带confidence coefficient 置信系数confidence interval 置信区间confidence level 置信水平confidence limit 置信界限confidence region 置信区域configuration 布局confirmation 证实confrontation 比较confusion 混乱congruence 同余式congruence group 同余群congruence method 同余法congruence subgroup 同余子群congruence zeta function 同余函数congruent 同余的congruent mapping 合同映射congruent number 同余数congruent transformation 合同映射conic 圆锥曲线conic function 圆锥函数conic section 圆锥曲线conical helix 圆锥螺旋线conical surface 锥面conics 圆锥曲线论conjugate 共轭的conjugate axis 共轭轴conjugate class 共轭类。
马可夫跳变系统
ISSN1751-8644continuous-884IET Control Theory Appl.,2008,Vol.2,No.10,pp.884–894 &The Institution of Engineering and Technology2008doi:10.1049/iet-cta:20070297IET Control Theory Appl.,2008,Vol.2,No.10,pp.884–894885 doi:10.1049/iet-cta:20070297&The Institution of Engineering and Technology2008886IET Control Theory Appl.,2008,Vol.2,No.10,pp.884–894&The Institution of Engineering and Technology2008doi:10.1049/iet-cta:20070297IET Control Theory Appl.,2008,Vol.2,No.10,pp.884–894887 doi:10.1049/iet-cta:20070297&The Institution of Engineering and Technology2008888IET Control Theory Appl.,2008,Vol.2,No.10,pp.884–894&The Institution of Engineering and Technology2008doi:10.1049/iet-cta:20070297IET Control Theory Appl.,2008,Vol.2,No.10,pp.884–894889 doi:10.1049/iet-cta:20070297&The Institution of Engineering and Technology2008890IET Control Theory Appl.,2008,Vol.2,No.10,pp.884–894&The Institution of Engineering and Technology2008doi:10.1049/iet-cta:20070297Figure1Behaviours of the system states in function of time t Figure2Behaviours of the system states in function of time tIET Control Theory Appl.,2008,Vol.2,No.10,pp.884–894891 doi:10.1049/iet-cta:20070297&The Institution of Engineering and Technology2008system with the computed controller is piecewise regular,impulse-free and stochastically stable.5ConclusionThis paper dealt with a class of continuous-time singular linear systems with Markovian switching.Results on stochastic stability and its robustness,and the stochastic stabilisation and its robustness are developed.The LMI framework is used to establish the different results on stability,stabilisation and their robustness.Full and partial knowledge of the jump rates are considered.The results we developed here can easily be solved using any LMI toolbox like the one of Matlab or the one of Scilab.Figure 4Behaviours of the system states in function of time tFigure 3Behaviours of the system states in function of time t892IET Control Theory Appl.,2008,Vol.2,No.10,pp.884–894&The Institution of Engineering and Technology 2008doi:10.1049/iet-cta:20070297IET Control Theory Appl.,2008,Vol.2,No.10,pp.884–894893 doi:10.1049/iet-cta:20070297&The Institution of Engineering and Technology2008894IET Control Theory Appl.,2008,Vol.2,No.10,pp.884–894&The Institution of Engineering and Technology 2008doi:10.1049/iet-cta:20070297。
机器学习经典书目汇总
机器学习经典书目汇总本文总结了机器学习的经典书籍,包括数学基础和算法理论的书籍。
入门书单《数学之美》作者吴军大家都很熟悉。
以极为通俗的语言讲述了数学在机器学习和自然语言处理等领域的应用。
《Programming Collective Intelligence》(《集体智慧编程》)作者Toby Segaran也是《BeautifulData : The Stories Behind Elegant Data Solutions》(《数据之美:解密优雅数据解决方案背后的故事》)的作者。
这本书最大的优势就是里面没有理论推导和复杂的数学公式,是很不错的入门书。
目前中文版已经脱销,对于有志于这个领域的人来说,英文的pdf是个不错的选择,因为后面有很多经典书的翻译都较差,只能看英文版,不如从这个入手。
还有,这本书适合于快速看完,因为据评论,看完一些经典的带有数学推导的书后会发现这本书什么都没讲,只是举了很多例子而已。
《Algorithms of the Intelligent Web》(《智能web算法》)作者Haralambos Marmanis、Dmitry Babenko。
这本书中的公式比《集体智慧编程》要略多一点,里面的例子多是互联网上的应用,看名字就知道。
不足的地方在于里面的配套代码是BeanShell而不是python或其他。
总起来说,这本书还是适合初学者,与上一本一样需要快速读完,如果读完上一本的话,这一本可以不必细看代码,了解算法主要思想就行了。
《统计学习方法》作者李航,是国内机器学习领域的几个大家之一,曾在MSRA 任高级研究员,现在华为诺亚方舟实验室。
书中写了十个算法,每个算法的介绍都很干脆,直接上公式,是彻头彻尾的“干货书”。
每章末尾的参考文献也方便了想深入理解算法的童鞋直接查到经典论文;本书可以与上面两本书互为辅助阅读。
《Machine Learning》(《机器学习》)作者Tom Mitchell是CMU的大师,有机器学习和半监督学习的网络课程视频。
英汉数学物理常用词汇
Cauchy's integral formula,科西积分公式
Liouville's theorem,刘维尔定理
Sequence,序列
sequence of number,数列
sequence of function,函数列
derivative,导数
partial derivative,偏导数
higher derivative,高阶导数
derivative of order n/nth order derivative,n阶导数
analytic function,解析函数
regular function,正则函数
transcendented function,超越函数
hyperbolic function,双曲函数
anti-hyperbolic function,反双曲函数
trigonometric function,三角函数
anti-trigonometric function,反三角函数
analyticity,解析性
general term,通项
series,级数
series of numbers,数项级数
series of functions/functional series,函项级数
number of term,项数
infinite series,无穷级数
partial sum,部分和
remainder term,余项
multiply valued function,多值函数
simple function,单叶函数
漫谈微分几何、多复变函数与代数几何(Differential geometry, functions
漫谈微分几何、多复变函数与代数几何(Differential geometry, functions of complex variable and algebraic geometry)Differential geometry and tensor analysis, developed with the development of differential geometry, are the basic tools for mastering general relativity. Because general relativity's success, to always obscure differential geometry has become one of the central discipline of mathematics.Since the invention of differential calculus, the birth of differential geometry was born. But the work of Euler, Clairaut and Monge really made differential geometry an independent discipline. In the work of geodesy, Euler has gradually obtained important research, and obtained the famous Euler formula for the calculation of normal curvature. The Clairaut curve of the curvature and torsion, Monge published "analysis is applied to the geometry of the loose leaf paper", the important properties of curves and surfaces are represented by differential equations, which makes the development of classical differential geometry to reach a peak. Gauss in the study of geodesic, through complicated calculation, in 1827 found two main curvature surfaces and its product in the periphery of the Euclidean shape of the space not only depends on its first fundamental form, the result is Gauss proudly called the wonderful theorem, created from the intrinsic geometry. The free surface of space from the periphery, the surface itself as a space to study. In 1854, Riemann made the hypothesis about geometric foundation, and extended the intrinsic geometry of Gauss in 2 dimensional curved surface, thus developing n-dimensional Riemann geometry, with the development of complex functions. A group of excellentmathematicians extended the research objects of differential geometry to complex manifolds and extended them to the complex analytic space theory including singularities. Each step of differential geometry faces not only the deepening of knowledge, but also the continuous expansion of the field of knowledge. Here, differential geometry and complex functions, Lie group theory, algebraic geometry, and PDE all interact profoundly with one another. Mathematics is constantly dividing and blending with each other.By shining the charming glory and the differential geometric function theory of several complex variables, unit circle and the upper half plane (the two conformal mapping establishment) defined on Poincare metric, complex function theory and the differential geometric relationships can be seen distinctly. Poincare metric is conformal invariant. The famous Schwarz theorem can be explained as follows: the Poincare metric on the unit circle does not increase under analytic mapping; if and only if the mapping is a fractional linear transformation, the Poincare metric does not change Poincare. Applying the hyperbolic geometry of Poincare metric, we can easily prove the famous Picard theorem. The proof of Picard theorem to modular function theory is hard to use, if using the differential geometric point of view, can also be in a very simple way to prove. Differential geometry permeates deep into the theory of complex functions. In the theory of multiple complex functions, the curvature of the real differential geometry and other series of calculations are followed by the analysis of the region definition metric of the complex affine space. In complex situations, all of the singular discrete distribution, and in more complex situations, because of the famous Hartogsdevelopment phenomenon, all isolated singularities are engulfed by a continuous region even in singularity formation is often destroyed, only the formation of real codimension 1 manifold can avoid the bad luck. But even this situation requires other restrictions to ensure safety". The singular properties of singularities in the theory of functions of complex functions make them destined to be manifolds. In 1922, Bergman introduced the famous Bergman kernel function, the more complex function or Weyl said its era, in addition to the famous Hartogs, Poincare, Levi of Cousin and several predecessors almost no substantive progress, injected a dynamic Bergman work will undoubtedly give this dead area. In many complex function domains in the Bergman metric metric in the one-dimensional case is the unit circle and Poincare on the upper half plane of the Poincare, which doomed the importance of the work of Bergman.The basic object of algebraic geometry is the properties of the common zeros (algebraic families) of any dimension, affine space, or algebraic equations of a projective space (defined equations),The definitions of algebraic clusters, the coefficients of equations, and the domains in which the points of an algebraic cluster are located are called base domains. An irreducible algebraic variety is a finite sub extension of its base domain. In our numerical domain, the linear space is the extension of the base field in the number field, and the dimension of the linear space is the number of the expansion. From this point of view, algebraic geometry can be viewed as a study of finite extension fields. The properties of algebraic clusters areclosely related to their base domains. The algebraic domain of complex affine space or complex projective space, the research process is not only a large number of concepts and differential geometry and complex function theory and applied to a large number of coincidence, the similar tools in the process of research. Every step of the complex manifold and the complex analytic space has the same influence on these subjects. Many masters in related fields, although they seem to study only one field, have consequences for other areas. For example: the Lerey study of algebraic topology that it has little effect on layer, in algebraic topology, but because of Serre, Weil and H? Cartan (E? Cartan, eldest son) introduction, has a profound impact on algebraic geometry and complex function theory. Chern studies the categories of Hermite spaces, but it also affects algebraic geometry, differential geometry and complex functions. Hironaka studies the singular point resolution in algebraic geometry, but the modification of complex manifold to complex analytic space and blow up affect the theory of complex analytic space. Yau proves that the Calabi conjecture not only affects algebraic geometry and differential geometry, but also affects classical general relativity. At the same time, we can see the important position of nonlinear ordinary differential equations and partial differential equations in differential geometry. Cartan study of symmetric Riemann space, the classification theorem is important, given 1, 2 and 3 dimensional space of a Homogeneous Bounded Domain complete classification, prove that they are all homogeneous symmetric domains at the same time, he guessed: This is also true in the n-dimensional equivalent relation. In 1959, Piatetski-Shapiro has two counterexample and find the domain theory of automorphic function study in symmetry, in the 4 and 5dimensional cases each find a homogeneous bounded domain, which is not a homogeneous symmetric domain, the domain he named Siegel domain, to commemorate the profound work on Siegel in 1943 of automorphic function. The results of Piatetski-Shapiro has profound impact on the theory of complex variable functions and automorphic function theory, and have a profound impact on the symmetry space theory and a series of topics. As we know, Cartan transforms the study of symmetric spaces into the study of Lie groups and Lie algebras, which is directly influenced by Klein and greatly develops the initial idea of Klein. Then it is Cartan developed the concept of Levi-Civita connection, the development of differential geometry in general contact theory, isomorphic mapping through tangent space at each point on the manifold, realize the dream of Klein and greatly promote the development of differential geometry. Cartan is the same, and concluded that the importance of the research in the holonomy manifold twists and turns, finally after his death in thirty years has proved to be correct. Here, we see the vast beauty of differential geometry.As we know, geodesic ties are associated with ODE (ordinary differential equations), minimal surfaces and high dimensional submanifolds are associated with PDE (partial differential equations). These equations are nonlinear equations, so they have high requirements for analysis. Complex PDE and complex analysis the relationship between Cauchy-Riemann equations coupling the famous function theory, in the complex case, the Cauchy- Riemann equations not only deepen the unprecedented contact and the qualitative super Cauchy-Riemann equations (the number of variables is greater than the number of equations) led to a strange phenomenon. This makes PDE and the theory ofmultiple complex functions closely integrated with differential geometry.Most of the scholars have been studying the differential geometry of the intrinsic geometry of the Gauss and Riemann extremely deep stun, by Cartan's method of moving frames is beautiful and concise dumping, by Chern's theory of characteristic classes of the broad and profound admiration, Yau deep exquisite geometric analysis skills to deter.When the young Chern faced the whole differentiation, he said he was like a mountain facing the shining golden light, but he couldn't reach the summit at one time. But then he was cast as a master in this field before Hopf and Weil.If the differential geometry Cartan development to gradually change the general relativistic geometric model, then the differential geometry of Chern et al not only affect the continuation of Cartan and to promote the development of fiber bundle in the form of gauge field theory. Differential geometry is still closely bound up with physics as in the age of Einstein and continues to acquire research topics from physicsWhy does the three-dimensional sphere not give flatness gauge, but can give conformal flatness gauge? Because 3D balls and other dimension as the ball to establish flat space isometric mapping, so it is impossible to establish a flatness gauge; and n-dimensional balls are usually single curvature space, thus can establish a conformal flat metric. In differential geometry, isometry means that the distance between the points on the manifold before and after the mapping remains the same. Whena manifold is equidistant from a flat space, the curvature of its Riemann cross section is always zero. Since the curvature of all spheres is positive constant, the n-dimensional sphere and other manifolds whose sectional curvature is nonzero can not be assigned to local flatness gauge.But there are locally conformally flat manifolds for this concept, two gauge G and G, if G=exp{is called G, P}? G between a and G transform is a conformal transformation. Weyl conformal curvature tensor remains unchanged under conformal transformation. It is a tensor field of (1,3) type on a manifold. When the Weyl conformal curvature tensor is zero, the curvature tensor of the manifold can be represented by the Ricci curvature tensor and the scalar curvature, so Penrose always emphasizes the curvature =Ricci+Weyl.The metric tensor g of an n-dimensional Riemann manifold is conformally equivalent to the flatness gauge locally, and is called conformally flat manifold. All Manifolds (constant curvature manifolds) whose curvature is constant are conformally flat, so they can be given conformal conformal metric. And all dimensions of the sphere (including thethree-dimensional sphere) are manifold of constant curvature, so they must be given conformal conformal metric. Conversely, conformally flat manifolds are not necessarily manifolds of constant curvature. But a wonderful result related to Einstein manifolds can make up for this regret: conformally conformally Einstein manifolds over 3 dimensions must be manifolds of constant curvature. That is to say, if we want conformally conformally flat manifolds to be manifolds of constant curvature, we must call Ric= lambda g, and this is thedefinition of Einstein manifolds. In the formula, Ric is the Ricci curvature tensor, G is the metric tensor, and lambda is constant. The scalar curvature S=m of Einstein manifolds is constant. Moreover, if S is nonzero, there is no nonzero parallel tangent vector field over it. Einstein introduction of the cosmological constant. So he missed the great achievements that the expansion of the universe, so Hubble is successful in the official career; but the vacuum gravitational field equation of cosmological term with had a Einstein manifold, which provides a new stage for mathematicians wit.For the 3 dimensional connected Einstein manifold, even if does not require the conformal flat, it is also the automatic constant curvature manifolds, other dimensions do not set up this wonderful nature, I only know that this is the tensor analysis summer learning, the feeling is a kind of enjoyment. The sectional curvature in the real manifold is different from the curvature of the Holomorphic cross section in the Kahler manifold, and thus produces different results. If the curvature of holomorphic section is constant, the Ricci curvature of the manifold must be constant, so it must be Einstein manifold, called Kahler- Einstein manifold, Kahler. Kahler manifolds are Kahler- Einstein manifolds, if and only if they are Riemann manifolds, Einstein manifolds. N dimensional complex vector space, complex projective space, complex torus and complex hyperbolic space are Kahler- and Einstein manifolds. The study of Kahler-Einstein manifolds becomes the intellectual enjoyment of geometer.Let's go back to an important result of isometric mapping.In this paper, we consider the isometric mapping between M and N and the mapping of the cut space between the two Riemann manifolds, take P at any point on M, and select two non tangent tangent vectors in its tangent space, and obtain its sectional curvature. In the mapping, the two tangent vectors on the P point and its tangent space are transformed into two other tangent vectors under the mapping, and the sectional curvature of the vector is also obtained. If the mapping is isometric mapping, then the curvature of the two cross sections is equal. Or, to be vague, isometric mapping does not change the curvature of the section.Conversely, if the arbitrary points are set, the curvature of the section does not change in nature, then the mapping is not isometric mapping The answer was No. Even in thethree-dimensional Euclidean space on the surface can not set up this property. In some cases, the limit of the geodesic line must be added, and the properties of the Jacobi field can be used to do so. This is the famous Cartan isometry theorem. This theorem is a wonderful application of the Jacobi field. Its wide range of promotion is made by Ambrose and Hicks, known as the Cartan-Ambrose-Hicks theorem.Differential geometry is full of infinite charm. We classify pseudo-Riemannian spaces by using Weyl conformal curvature tensor, which can be classified by Ricci curvature tensor, or classified into 9 types by Bianchi. And these things are all can be attributed to the study of differential geometry, this distant view Riemann and slightly closer to the Klein point of the perfect combination, it can be seen that the great wisdom Cartan, here you can see the profound influence of Einstein.From the Hermite symmetry space to the Kahler-Hodge manifold, differential geometry is not only closely linked with the Lie group, but also connected with algebra, geometry and topologyThink of the great 1895 Poicare wrote the great "position analysis" was founded combination topology unabashedly said differential geometry in high dimensional space is of little importance to this subject, he said: "the home has beautiful scenery, where Xuyuan for." (Chern) topology is the beauty of the home. Why do you have to work hard to compute the curvature of surfaces or even manifolds of high dimensions? But this versatile mathematician is wrong, but we can not say that the mathematical genius no major contribution to differential geometry? Can not. Let's see today's close relation between differential geometry and topology, we'll see. When is a closed form the proper form? The inverse of the Poicare lemma in the region of the homotopy point (the single connected region) tells us that it is automatically established. In the non simply connected region is de famous Rham theorem tells us how to set up, that is the integral differential form in all closed on zero.Even in the field of differential geometry ignored by Poicare, he is still in a casual way deeply affected by the subject, or rather is affecting the whole mathematics.The nature of any discipline that seeks to be generalized after its creation, as is differential geometry. From the curvature, Euclidean curvature of space straight to zero, geometry extended to normal curvature number (narrow Riemann space) andnegative constant space (Lobachevskii space), we know that the greatness of non Euclidean geometry is that it not only independent of the fifth postulate and other alternative to the new geometry. It can be the founder of triangle analysis on it. But the famous mathematician Milnor said that before differential geometry went into non Euclidean geometry, non Euclidean geometry was only the torso with no hands and no feet. The non Euclidean geometry is born only when the curvature is computed uniformly after the metric is defined. In his speech in 1854, Riemann wrote only one formula: that is, this formula unifies the positive curvature, negative curvature and zero curvature geometry. Most people think that the formula for "Riemann" is based on intuition. In fact, later people found the draft paper that he used to calculate the formula. Only then did he realize that talent should be diligent. Riemann has explored the curvature of manifolds of arbitrary curvature of any dimension, but the quantitative calculations go beyond the mathematical tools of that time, and he can only write the unified formula for manifolds of constant curvature. But we know,Even today, this result is still important, differential geometry "comparison theorem" a multitude of names are in constant curvature manifolds for comparison model.When Riemann had considered two differential forms the root of two, this is what we are familiar with the Riemann metric Riemannnian, derived from geometry, he specifically mentioned another case, is the root of four four differential forms (equivalent to four yuan product and four times square). This is the contact and the difference between the two. But he saidthat for this situation and the previous case, the study does not require substantially different methods. It also says that such studies are time consuming and that new insights cannot be added to space, and the results of calculations lack geometric meaning. So Riemann studied only what is now called Riemann metric. Why are future generations of Finsler interested in promoting the Riemann's not wanting to study? It may be that mathematicians are so good that they become a hobby. Cartan in Finsler geometry made efforts, but the effect was little, Chern on the geometric really high hopes also developed some achievements. But I still and general view on the international consensus, that is the Finsler geometry bleak. This is also the essential reason of Finsler geometry has been unable to enter the mainstream of differential geometry, it no beautiful properties really worth geometers to struggle, also do not have what big application value. Later K- exhibition space, Cartan space will not become mainstream, although they are the extension of Riemannnian geometry, but did not get what the big development.In fact, sometimes the promotion of things to get new content is not much, differential geometry is the same, not the object of study, the more ordinary the better, but should be appropriate to the special good. For example, in Riemann manifold, homogeneous Riemann manifold is more special, beautiful nature, homogeneous Riemann manifolds, symmetric Riemann manifold is more special, so nature more beautiful. This is from the analysis of manifold Lie group action angle.From the point of view of metric, the complex structure is given on the even dimensional Riemann manifold, and the complexmanifold is very elegant. Near complex manifolds are complex manifolds only when the near complex structure is integrable. The complex manifold must be orientable, because it is easy to find that its Jacobian must be nonnegative, whereas the real manifold does not have this property in general. To narrow the scope of the Kahler manifold has more good properties, all complex Submanifolds of Kahler manifolds are Kahler manifolds, and minimal submanifolds (Wirtinger theorem), the beautiful results captured the hearts of many differential geometry and algebraic geometry, because other more general manifolds do not set up this beautiful results. If the first Chern number of a three-dimensional Kahler manifold is zero, the Calabi-Yau manifold can be obtained, which is a very interesting manifold for theoretical physicists. The manifold of mirrors of Calabi-Yau manifolds is also a common subject of differential geometry in algebraic geometry. The popular Hodge structure is a subject of endless appeal.Differential geometry, an endless topic. Just as algebraic geometry requires double - rational equivalence as a luxury, differential geometry requires isometric transformations to be difficult. Taxonomy is an eternal subject of mathematics. In group theory, there are single group classification, multi complex function theory, regional classification, algebraic geometry in the classification of algebraic clusters, differential geometry is also classified.The hard question has led to a dash of young geometry and old scholars, and the prospect of differential geometry is very bright.。
代数中常用英语词汇
(0,2) 插值||(0,2) interpolation0#||zero-sharp; 读作零井或零开。
0+||zero-dagger; 读作零正。
1-因子||1-factor3-流形||3-manifold; 又称“三维流形”。
AIC准则||AIC criterion, Akaike information criterionAp 权||Ap-weightA稳定性||A-stability, absolute stabilityA最优设计||A-optimal designBCH 码||BCH code, Bose-Chaudhuri-Hocquenghem codeBIC准则||BIC criterion, Bayesian modification of the AICBMOA函数||analytic function of bounded mean oscillation; 全称“有界平均振动解析函数”。
BMO鞅||BMO martingaleBSD猜想||Birch and Swinnerton-Dyer conjecture; 全称“伯奇与斯温纳顿-戴尔猜想”。
B样条||B-splineC*代数||C*-algebra; 读作“C星代数”。
C0 类函数||function of class C0; 又称“连续函数类”。
CA T准则||CAT criterion, criterion for autoregressiveCM域||CM fieldCN 群||CN-groupCW 复形的同调||homology of CW complexCW复形||CW complexCW复形的同伦群||homotopy group of CW complexesCW剖分||CW decompositionCn 类函数||function of class Cn; 又称“n次连续可微函数类”。
Cp统计量||Cp-statisticC。
理学 SCIENCE 学科中英文对照
理学SCIENCE课程中文名称课程英文名称矩阵分析Matrix Analysis面向对象程序设计方法Design Methods of Object Oriented Program李代数Lie Algebra代数图论Algebraic Graph Theory代数几何(I)Algebraic Geometry(I)泛函分析Functional Analysis论文选读Study on Selected PapersHopf代数Hopf Algebra基础代数Fundamental Algebra交换代数Commutative Algebra代数几何Algebraic GeometryHopf代数与代数群量子群Hopf Algebra , Algebraic Group and Qua ntum Group量子群表示Representation of Quantum Groups网络算法与复杂性Network Algorithms and Complexity组合数学Combinatorial Mathematics代数学Algebra半群理论Semigroup Theory计算机图形学Computer Graphics图的对称性Graph Symmetry代数拓扑Algebraic Topology代数几何(II)Algebraic Geometry(II)微分几何Differential Geometry多复变函数Analytic Functions of Several Complex Variab les代数曲面Algebraic Surfaces高维代数簇Algebraic Varieties of Higher Dimension数理方程Mathematics and Physical Equation偏微分方程近代方法The Recent Methods of Partial Differential Equations激波理论The Theory of Shock Waves非线性双曲型守恒律解的存在性The Existence of Solutions for Non linear Hyperbolic Conservation Laws粘性守恒律解的稳定性Stability of Solutions for Viscous Conservation Laws微分方程数值解Numerical Methods for Differential Equations小波理论与应用Warelet Theory and Application非线性方程组的数值解法Numerical Methods for No-linear System s of Equations网络算法与复杂性Network Algorithms and Complexity Graph Theory 60近世代数Modern Algebra高等量子力学Advanced Quantum Mechanics统计力学Statistical Mechanics固体理论Solid State Theory薄膜物理Thin Film Physics计算物理学Computational Physics量子场论Quantum Field Theory非线性物理导论Introduction to Nonlinear Physics固体磁性理论Theory of Magnetism in SolidC语言科学计算方法Scientific Computation Method in C功能材料原理与技术Principle and Technology of Functional Materials超高真空科学与技术Science and Technology of Ultrahigh Vacuum 60现代表面分析技术Modern Technology of Surface Analysis现代传感技术Modern Sensor Technology数学模型与计算机模拟Mathematical Models and Computer Simulations计算物理谱方法Spectral Method in Computational Physics卡特卡罗方法在统计物理中的应用Applications of the Monte Carlo Method in Statistical Physics理论物理Theoretical Physics固体物理Solid-State Physics近代物理实验Contemporary Physics Experiments计算物理基础Basics of Computational Physics真空与薄膜技术Vacuum & Thin Film Technology高等光学Advanced Optics量子光学与统计光学Quantum Optics and Statistical Optics光电子学与光电信息技术Optoelectronics and Optoelectronic Information Technology图像处理与分析Image Processing and Analysis光纤通信系统System of Fiber Communications计算机网络Computer Networks光电检测与信号处理Optoelectronic Detection and Processing物理光学与光电子技术实验Experiments for Physical Optics and Op toelectronic Technology非线性光学Nonlinear Optics集成光学Integrated Optics光子学器件原理与技术Principle and Technology of Photonics Devices物理光学与信息光子学实验Physical Optics & Information Photonics Experiments现代激光医学Modern Laser Medicine生物医学光子学Biomedicine Photonics激光医学临床实践Clinical Practice for Laser Medicine光纤通信网络Networks of Fiber Communications光接入网技术Technology of Light Access Network全光通信系统All-Optical Communication Systems计算机图形学Computer Graphics信息光学Information Optics光子学专题Special Topics on Photonics激光与近代光学Laser and Contemporary Optics光电子技术Photoelectronic Technique微机系统与接口Micro Computer System and Interface智能仪器Intelligent Instruments高等无机化学Advanced Inorganic Chemistry量子化学(含群论) Quantum Chemistry(including Group Theory)高等分析化学Advanced Analytical Chemistry高等有机化学Advanced Organic Chemistry现代科学前沿选论Literature on Frontiers of Modern Science and Technology 激光化学Laser Chemistry激光光谱Laser Spectroscopy稀土化学Rare Earth Chemistry材料化学Material Chemistry生物无机化学导论Bioinorganic Chemistry配位化学Coordination Chemistry膜模拟化学Membrane Mimetic Chemistry晶体工程基础Crystal Engineering催化原理Principles of Catalysis绿色化学Green Chemistry现代有机合成Modern Organic Synthesis无机化学Inorganic Chemistry物理化学Physics Chemistry有机化学Organic Chemistry分析化学Analytical Chemistry现代仪器分析Modern Instrumental Analysis现代波谱学Modern Spectroscopy化学计量学Chemomtrics现代食品分析Modern Methods of Food Analysis天然产物化学Natural Product Chemistry天然药物化学Natural Pharmaceutical Chemistry现代环境分析与监测Analysis and Monitoring of Environment Pollution现代科学前沿选论Literature on Frontiers of Modern Science and Technology 计算机在分析化学的应用Computer Application in Analytical Chemistry现代仪器分析技术Modern Instrument Analytical Technique分离科学Separation Science高等环境微生物Advanced Environmental Microorganism海洋资源利用与开发Utilization & Development of Ocean Resources立体化学Stereochemistry高等发光分析Advanced Luminescence Analysis激光光谱分析Laser Spectroscopy Analysis保健食品监督评价uation and Supervision on Health Food s生物电化学Bioelectrochemistry现代技术与中药Modern T echnology and Traditional Chinese Medicine高等有机化学Advanced Organic Chemistry中药新药研究与开发Study and Exploitation of Traditional Chinese Medicine 药物化学研究方法Pharmaceutical Chemical Research Methods废水处理工程Technology of Wastewater Treatment生物与化学传感技术Biosensors & Chemical Sensors现代分析化学研究方法Research Methods of Modern Analytical Chemistry神经生物学Neurobiology动物遗传工程Animal Genetic Engineering动物免疫学Animal Immunology动物病害学基础Basis of Animal Disease受体生物化学Receptor Biochemistry动物生理与分子生物学Animal Physiology and Molecular Biochemistry 分析生物化学Analytical Biochemistry学科前沿讲座Lectures on Frontiers of the Discipline微生物学Microbiology细胞生物学Cell Biology生理学Physiology电生理技术基础Basics of Electricphysiological Technology生理学Physiology生物化学Biochemistry高级水生生物学Advanced Aquatic Biology藻类生理生态学Ecological Physiology in Algae水生动物生理生态学Physiological Ecology of Aquatic Animal水域生态学Aquatic Ecology水生态毒理学Aquatic Ecotoxicology水生生物学研究进展Advance on Aquatic Biology水环境生态学模型Models of Water Quality藻类生态学Ecology in Algae生物数学Biological Mathematics植物生理生化Plant Biochemistry水质分析方法Water Quality Analysis水产养殖学Aquaculture环境生物学Environmental Biology专业文献综述Review on Special Information分子生物学Molecular Biology学科前沿讲座Lectures on Frontiers of the Discipline植物学Botany动物学Zoology普通生态学General Ecology生物统计学Biological Statistics分子遗传学Molecular Genetics基因工程原理Principles of Gene Engineering高级生物化学Advanced Biochemistry基因工程技术Technique for Gene Engineering基因诊断Gene Diagnosis基因组学Genomics医学遗传学Medical Genetics免疫遗传学Immunogenetics基因工程药物学Pharmacology of Gene Engineering高级生化技术Advanced Biochemical Technique基因治疗Gene Therapy肿瘤免疫学Tumour Immunology免疫学Immunology免疫化学技术Methods for Immunological Chemistry毒理遗传学Toxicological Genetics分子病毒学Molecular Virology分子生物学技术Protocols in Molecular Biology神经免疫调节Neuroimmunology普通生物学Biology生物化学技术Biochemic T echnique分子生物学Molecular Biology生殖生理与生殖内分泌Reproductive Physiology & Reproductive Endocrinology生殖免疫学Reproductive Immunology发育生物学原理与实验技术Principle and Experimental Technology of Development 免疫学Immunology蛋白质生物化学技术Biochemical Technology of Protein受精的分子生物学Molecular Biology of Fertilization免疫化学技术Immunochemical Technology低温生物学原理与应用Principle & Application of Cryobiology不育症的病因学Etiology of Infertility分子生物学Molecular Biology生物化学Biochemistry分析生物化学Analytical Biochemistry医学生物化学Medical Biochemistry医学分子生物学Medical Molecular Biology医学生物化学技术Techniques of Medical Biochemistry生化与分子生物学进展Progresses in Biochemistry and Molecular Biology高级植物生理生化Advanced Plant Physiology and Biochemistry拟南芥—结构与发育Arobidosis-Structure and Development开花的艺术Art of Flowering蛋白质结构基础Principle of Protein Structure生活在美国Living in America分子进化工程Engineering of Molecular Evolution生物工程下游技术Downstream Technique of Biotechnology仪器分析Instrumental Analysis临床检验与诊断Clinical Check-up & Diagnosis药理学Pharmacology。
斯普林格数学研究生教材丛书
斯普林格数学研究生教材丛书《斯普林格数学研究生教材丛书》(Graduate Texts in Mathematics)GTM001《Introduction to Axiomatic Set Theory》Gaisi Takeuti, Wilson M.Zaring GTM002《Measure and Category》John C.Oxtoby(测度和范畴)(2ed.)GTM003《T opological Vector Spaces》H.H.Schaefer, M.P.Wolff(2ed.)GTM004《A Course in Homological Algebra》P.J.Hilton, U.Stammbach(2ed.)(同调代数教程)GTM005《Categories for the Working Mathematician》Saunders Mac Lane(2ed.)GTM006《Projective Planes》Daniel R.Hughes, Fred C.Piper(投射平面)GTM007《A Course in Arithmetic》Jean-Pierre Serre(数论教程)GTM008《Axiomatic set theory》Gaisi Takeuti, Wilson M.Zaring(2ed.)GTM009《Introduction to Lie Algebras and Representation Theory》James E.Humphreys(李代数和表示论导论)GTM010《A Course in Simple-Homotopy Theory》M.M CohenGTM011《Functions of One Complex VariableⅠ》John B.ConwayGTM012《Advanced Mathematical Analysis》Richard Beals GTM013《Rings and Categories of Modules》Frank W.Anderson, Kent R.Fuller(环和模的范畴)(2ed.)GTM014《Stable Mappings and Their Singularities》Martin Golubitsky, Victor Guillemin (稳定映射及其奇点)GTM015《Lectures in Functional Analysis and OperatorTheory》Sterling K.Berberian GTM016《The Structure of Fields》David J.Winter(域结构)GTM017《Random Processes》Murray RosenblattGTM018《Measure Theory》Paul R.Halmos(测度论)GTM019《A Hilbert Space Problem Book》Paul R.Halmos (希尔伯特问题集)GTM020《Fibre Bundles》Dale Husemoller(纤维丛)GTM021《Linear Algebraic Groups》James E.Humphreys (线性代数群)GTM022《An Algebraic Introduction to Mathematical Logic》Donald W.Barnes, John M.MackGTM023《Linear Algebra》Werner H.Greub(线性代数)GTM024《Geometric Functional Analysis and Its Applications》Paul R.HolmesGTM025《Real and Abstract Analysis》Edwin Hewitt, Karl StrombergGTM026《Algebraic Theories》Ernest G.ManesGTM027《General Topology》John L.Kelley(一般拓扑学)GTM028《Commutative Algebra》VolumeⅠOscar Zariski, Pierre Samuel(交换代数)GTM029《Commutative Algebra》VolumeⅡOscar Zariski, Pierre Samuel(交换代数)GTM030《Lectures in Abstract AlgebraⅠ.Basic Concepts》Nathan Jacobson(抽象代数讲义Ⅰ基本概念分册)GTM031《Lectures in Abs tract AlgebraⅡ.Linear Algabra》Nathan.Jacobson(抽象代数讲义Ⅱ线性代数分册)GTM032《Lectures in Abstract AlgebraⅢ.Theory of Fields and Galois Theory》Nathan.Jacobson(抽象代数讲义Ⅲ域和伽罗瓦理论)GTM033《Differential Topology》Morris W.Hirsch(微分拓扑)GTM034《Principles of Random Walk》Frank Spitzer(2ed.)(随机游动原理)GTM035《Several Complex Variables and Banach Algebras》Herbert Alexander, John Wermer(多复变和Banach代数)GTM036《Linear Topological Spaces》John L.Kelley, Isaac Namioka(线性拓扑空间)GTM037《Mathematical Logic》J.Donald Monk(数理逻辑)GTM038《Several Complex Variables》H.Grauert, K.Fritzshe GTM039《An Invitation to C*-Algebras》William Arveson (C*-代数引论)GTM040《Denumerable Markov Chains》John G.Kemeny, /doc/e96250642.htmlurie Snell, Anthony W.KnappGTM041《Modular Functions and Dirichlet Series in Number Theory》Tom M.Apostol (数论中的模函数和Dirichlet序列)GTM042《Linear Representations of Finite Groups》Jean-Pierre Serre(有限群的线性表示)GTM043《Rings of Continuous Functions》Leonard Gillman, Meyer JerisonGTM044《Elementary Algebraic Geometry》Keith KendigGTM045《Probabi lity TheoryⅠ》M.Loève(概率论Ⅰ)(4ed.)GTM046《Probability TheoryⅡ》M.Loève(概率论Ⅱ)(4ed.)GTM047《Geometric Topology in Dimensions 2 and 3》Edwin E.MoiseGTM048《General Relativity for Mathematicians》Rainer.K.Sachs, H.Wu伍鸿熙(为数学家写的广义相对论)GTM049《Linear Geometry》K.W.Gruenberg, A.J.Weir(2ed.)GTM050《Fermat's Last Theorem》Harold M.EdwardsGTM051《A Course in Differential Geometry》WilhelmKlingenberg(微分几何教程)GTM052《Algebraic Geometry》Robin Hartshorne(代数几何)GTM053《 A Course in Mathematical Logic for Mathematicians》Yu.I.Manin(2ed.)GTM054《Combinatorics with Emphasis on the Theory of Graphs》Jack E.Graver, Mark E.WatkinsGTM055《Introduction to Operator TheoryⅠ》Arlen Brown, Carl PearcyGTM056《Algebraic Topology:An Introduction》W.S.MasseyGTM057《Introduction to Knot Theory》Richard.H.Crowell, Ralph.H.FoxGTM058《p-adic Numbers, p-adic Analysis, and Zeta-Functions》Neal Koblitz(p-adic 数、p-adic分析和Z函数)GTM059《Cyclotomic Fields》Serge LangGTM060《Mathematical Methods of Classical Mechanics》V.I.Arnold(经典力学的数学方法)(2ed.)GTM061《Elements of Homotopy Theory》George W.Whitehead(同论论基础)GTM062《Fundamentals of the Theory of Groups》M.I.Kargapolov, Ju.I.Merzljakov GTM063《Modern Graph Theory》Béla BollobásGTM064《Fourier Series:A Modern Introduction》VolumeⅠ(2ed.)R.E.Edwards(傅里叶级数)GTM065《Differential Analysis on Complex Manifolds》Raymond O.Wells, Jr.(3ed.)GTM066《Introduction to Affine Group Schemes》William C.Waterhouse(仿射群概型引论)GTM067《Local Fields》Jean-Pierre Serre(局部域)GTM069《Cyclotomic FieldsⅠandⅡ》Serge LangGTM070《Singular Homology Theory》William S.MasseyGTM071《Riemann Surfaces》Herschel M.Farkas, Irwin Kra (黎曼曲面)GTM072《Classical Topology and Combinatorial Group Theory》John Stillwell(经典拓扑和组合群论)GTM073《Algebra》Thomas W.Hungerford(代数)GTM074《Multiplicative Number Theory》Harold Davenport (乘法数论)(3ed.)GTM075《Basic Theory of Algebraic Groups and Lie Algebras》G.P.HochschildGTM076《Algebraic Geometry:An Introduction to Birational Geometry of Algebraic Varieties》Shigeru Iitaka GTM077《Lectures on the Theory of Algebraic Numbers》Erich HeckeGTM078《A Course in Universal Algebra》Stanley Burris, H.P.Sankappanavar(泛代数教程)GTM079《An Introduction to Ergodic Theory》Peter Walters (遍历性理论引论)GTM080《A Course in_the Theory of Groups》Derek J.S.RobinsonGTM081《Lectures on Riemann Surfaces》Otto ForsterGTM082《Differential Forms in Algebraic Topology》Raoul Bott, Loring W.Tu(代数拓扑中的微分形式)GTM083《Introduction to Cyclotomic Fields》Lawrence C.Washington(割圆域引论)GTM084《A Classical Introduction to Modern Number Theory》Kenneth Ireland, Michael Rosen(现代数论经典引论)GTM085《Fourier Series A Modern Introduction》Volume 1(2ed.)R.E.Edwards GTM086《Introduction to Coding Theory》J.H.van Lint(3ed .)GTM087《Cohomology of Groups》Kenneth S.Brown(上同调群)GTM088《Associative Algebras》Richard S.PierceGTM089《Introduction to Algebraic and Abelian Functions》Serge Lang(代数和交换函数引论)GTM090《An Introduction to Convex Polytopes》Ame BrondstedGTM091《The Geometry of Discrete Groups》Alan F.BeardonGTM092《Sequences and Series in BanachSpaces》Joseph DiestelGTM093《Modern Geometry-Methods and Applications》(PartⅠ.The of geometry Surface s Transformation Groups and Fields)B.A.Dubrovin, A.T.Fomenko, S.P.Novikov (现代几何学方法和应用)GTM094《Foundations of Differentiable Manifolds and Lie Groups》Frank W.Warner(可微流形和李群基础)GTM095《Probability》A.N.Shiryaev(2ed.)GTM096《A Course in Functional Analysis》John B.Conway (泛函分析教程)GTM097《Introduction to Elliptic Curves and Modular Forms》Neal Koblitz(椭圆曲线和模形式引论)GTM098《Representations of Compact Lie Groups》Theodor Bre?cker, Tammo tom DieckGTM099《Finite Reflection Groups》L.C.Grove, C.T.Benson (2ed.)GTM100《Harmonic Analysis on Semigroups》Christensen Berg, Jens Peter Reus Christensen, Paul ResselGTM101《Galois Theory》Harold M.Edwards(伽罗瓦理论)GTM102《Lie Groups, Lie Algebras, and Their Representation》V.S.Varadarajan(李群、李代数及其表示)GTM103《Complex Analysis》Serge LangGTM104《Modern Geometry-Methods and Applications》(PartⅡ.Geometry and Topology of Manifolds)B.A.Dubrovin, A.T.Fomenko, S.P.Novikov(现代几何学方法和应用)GTM105《SL? (R)》Serge Lang(SL? (R)群)GTM106《The Arithmetic of Elliptic Curves》Joseph H.Silverman(椭圆曲线的算术理论)GTM107《Applications of Lie Groups to Differential Equations》Peter J.Olver(李群在微分方程中的应用)GTM108《Holomorphic Functions and Integral Representations in Several Complex Variables》R.Michael Range GTM109《Univalent Functions and Teichmueller Spaces》Lehto OlliGTM110《Algebraic Number Theory》Serge Lang(代数数论)GTM111《Elliptic Curves》Dale Husemoeller(椭圆曲线)GTM112《Elliptic Functions》Serge Lang(椭圆函数)GTM113《Brownian Motion and Stochastic Calculus》Ioannis Karatzas, Steven E.Shreve (布朗运动和随机计算)GTM114《A Course in Number Theory and Cryptography》Neal Koblitz(数论和密码学教程)GTM115《Differential Geometry:Manifolds, Curves, and Surfaces》M.Berger, B.Gostiaux GTM116《Measure and Integral》Volume1 John L.Kelley, T.P.SrinivasanGTM117《Algebraic Groups and Class Fields》Jean-Pierre Serre(代数群和类域)GTM118《Analysis Now》Gert K.Pedersen (现代分析)GTM119《An introduction to Algebraic Topology》Jossph J.Rotman(代数拓扑导论)GTM120《Weakly Differentiable Functions》William P.Ziemer(弱可微函数)GTM121《Cyclotomic Fields》Serge LangGTM122《Theory of Complex Functions》Reinhold RemmertGTM123《Numbers》H.-D.Ebbinghaus, H.Hermes, F.Hirzebruch, M.Koecher, K.Mainzer, J.Neukirch, A.Prestel, R.Remmert(2ed.)GTM124《Modern Geometry-Methods and Applications》(PartⅢ.Introduction to Homology Theory)B.A.Dubrovin, A.T.Fomenko, S.P.Novikov(现代几何学方法和应用)GTM125《Complex Variables:An introduction》Garlos A.Berenstein, Roger Gay GTM126《Linear Algebraic Groups》Armand Borel (线性代数群)GTM127《A Basic Course in Algebraic Topology》William S.Massey(代数拓扑基础教程)GTM128《Partial Differential Equations》Jeffrey RauchGTM129《Representation Theory:A First Course》William Fulton, Joe HarrisGTM130《T ensor Geometry》C.T.J.Dodson, T.Poston(张量几何)GTM131《A First Course in Noncommutative Rings》/doc/e96250642.htmlm(非交换环初级教程)GTM132《Iteration of Rational Functions:Complex Analytic Dynamical Systems》AlanF.Beardon(有理函数的迭代:复解析动力系统)GTM133《Algebraic Geometry:A First Course》Joe Harris (代数几何)GTM134《Coding and Information Theory》Steven Roman GTM135《Advanced Linear Algebra》Steven RomanGTM136《Algebra:An Approach via Module Theory》William A.Adkins, Steven H.WeintraubGTM137《Harmonic Function Theory》Sheldon Axler, Paul Bourdon, Wade Ramey(调和函数理论)GTM138《A Course in Computational Algebraic NumberTheory》Henri Cohen(计算代数数论教程)GTM139《T opology and Geometry》Glen E.BredonGTM140《Optima and Equilibria:An Introduction to Nonlinear Analysis》Jean-Pierre AubinGTM141《A Computational Approach to Commutative Algebra》Gr?bner Bases, Thomas Becker, Volker Weispfenning, Heinz KredelGTM142《Real and Functional Analysis》Serge Lang(3ed.)GTM143《Measure Theory》J.L.DoobGTM144《Noncommutative Algebra》Benson Farb, R.Keith DennisGTM145《Homology Theory:An Introduction to Algebraic Topology》James W.Vick(同调论:代数拓扑简介)GTM146《Computability:A Mathematical Sketchbook》Douglas S.BridgesGTM147《Algebraic K-Theory and Its Applications》Jonathan Rosenberg(代数K理论及其应用)GTM148《An Introduction to the Theory of Groups》Joseph J.Rotman(群论入门)GTM149《Foundations of Hyperbolic Manifolds》John G.Ratcliffe(双曲流形基础)GTM150《Commutative Algebra with a view toward Algebraic Geometry》David EisenbudGTM151《Advanced Topics in the Arithmetic of Elliptic Curves》Joseph H.Silverman(椭圆曲线的算术高级选题)GTM152《Lectures on Polytopes》Günter M.ZieglerGTM153《Algebraic Topology:A First Course》William Fulton(代数拓扑)GTM154《An introduction to Analysis》Arlen Brown, Carl PearcyGTM155《Quantum Groups》Christian Kassel(量子群)GTM156《Classical Descriptive Set Theory》Alexander S.KechrisGTM157《Integration and Probability》Paul MalliavinGTM158《Field theory》Steven Roman(2ed.)GTM159《Functions of One Complex Variable VolⅡ》John B.ConwayGTM160《Differential and Riemannian Manifolds》Serge Lang(微分流形和黎曼流形)GTM161《Polynomials and Polynomial Inequalities》Peter Borwein, Tamás Erdélyi(多项式和多项式不等式)GTM162《Groups and Representations》J.L.Alperin, Rowen B.Bell(群及其表示)GTM163《Permutation Groups》John D.Dixon, Brian Mortime rGTM164《Additive Number Theory:The Classical Bases》Melvyn B.NathansonGTM165《Additive Number Theory:Inverse Problems and the Geometry of Sumsets》Melvyn B.NathansonGTM166《Differential Geometry:Cartan's Generalization of Klein's Erlangen Program》R.W.SharpeGTM167《Field and Galois Theory》Patrick MorandiGTM168《Combinatorial Convexity and Algebraic Geometry》Günter Ewald(组合凸面体和代数几何)GTM169《Matrix Analysis》Rajendra BhatiaGTM170《Sheaf Theory》Glen E.Bredon(2ed.)GTM171《Riemannian Geometry》Peter Petersen(黎曼几何)GTM172《Classical Topics in Complex Function Theory》Reinhold RemmertGTM173《Graph Theory》Reinhard Diestel(图论)(3ed.)GTM174《Foundations of Real and Abstract Analysis》Douglas S.Bridges(实分析和抽象分析基础)GTM175《An Introduction to Knot Theory》W.B.Raymond LickorishGTM176《Riemannian Manifolds:An Introduction to Curvature》John M.LeeGTM177《Analytic Number Theory》Donald J.Newman(解析数论)GTM178《Nonsmooth Analysis and Control Theory》F.H.clarke, Yu.S.Ledyaev, R.J.Stern, P.R.Wolenski(非光滑分析和控制论)GTM179《Banach Algebra Techniques in Operator Theory》Ronald G.Douglas(2ed.)GTM180《A Course on Borel Sets》S.M.Srivastava(Borel 集教程)GTM181《Numerical Analysis》Rainer KressGTM182《Ordinary Differential Equations》Wolfgang Walter GTM183《An introduction to Banach Spaces》Robert E.MegginsonGTM184《Modern Graph Theory》Béla Bollobás(现代图论)GTM185《Using Algebraic Geomety》David A.Cox, John Little, Donal O’Shea(应用代数几何)GTM186《Fourier Analysis on Number Fields》Dinakar Ramakrishnan, Robert J.Valenza GTM187《Moduli of Curves》Joe Harris, Ian Morrison(曲线模)GTM188《Lectures on the Hyperreals:An Introduction to Nonstandard Analysis》Robert GoldblattGTM189《Lectures on Modules and Rings》/doc/e96250642.htmlm(模和环讲义)GTM190《Problems in Algebraic Number Theory》M.Ram Murty, Jody Esmonde(代数数论中的问题)GTM191《Fundamentals of Differential Geometry》Serge Lang(微分几何基础)GTM192《Elements of Functional Analysis》Francis Hirsch, Gilles LacombeGTM193《Advanced Topics in Computational Number Theory》Henri CohenGTM194《One-Parameter Semigroups for Linear Evolution Equations》Klaus-Jochen Engel, Rainer Nagel(线性发展方程的单参数半群)GTM195《Elementary Methods in Number Theory》Melvyn B.Nathanson(数论中的基本方法)GTM196《Basic Homological Algebra》M.Scott OsborneGTM197《The Geometry of Schemes》David Eisenbud, Joe HarrisGTM198《A Course in p-adic Analysis》Alain M.RobertGTM199《Theory of Bergman Spaces》Hakan Hedenmalm, Boris Korenblum, Kehe Zhu(Bergman空间理论)GTM200《An Introduction to Riemann-Finsler Geometry》D.Bao, S.-S.Chern, Z.Shen GTM201《Diophantine Geometry An Introduction》Marc Hindry, Joseph H.Silverman GTM202《Introduction to T opological Manifolds》John M.Lee GTM203《The Symmetric Group》Bruce E.SaganGTM204《Galois Theory》Jean-Pierre EscofierGTM205《Rational Homotopy Theory》Yves Félix, Stephen Halperin, Jean-Claude Thomas(有理同伦论)GTM206《Problems in Analytic Number Theory》M.Ram MurtyGTM207《Algebraic Graph Theory》Chris Godsil, Gordon Royle(代数图论)GTM208《Analysis for Applied Mathematics》Ward Cheney GTM209《A Short Course on Spectral Theory》William Arveson(谱理论简明教程)GTM210《Number Theory in Function Fields》Michael RosenGTM211《Algebra》Serge Lang(代数)GTM212《Lectures on Discrete Geometry》Jiri Matousek (离散几何讲义)GTM213《From Holomorphic Functions to Complex Manifolds》Klaus Fritzsche, Hans Grauert(从正则函数到复流形)GTM214《Partial Differential Equations》Jüergen Jost(偏微分方程)GTM215《Algebraic Functions and Projective Curves》David M.Goldschmidt(代数函数和投影曲线)GTM216《Matrices:Theory and Applications》Denis Serre (矩阵:理论及应用)GTM217《Model Theory An Introduction》David Marker(模型论引论)GTM218《Introduction to Smooth Manifolds》John M.Lee (光滑流形引论)GTM219《The Arithmetic of Hyperbolic 3-Manifolds》Colin Maclachlan, Alan W.Reid GTM220《Smooth Manifolds and Observables》Jet Nestruev(光滑流形和直观)GTM221《Convex Polytopes》Branko GrüenbaumGTM222《Lie Groups, Lie Algebras, and Representations》Brian C.Hall(李群、李代数和表示)GTM223《Fourier Analysis and its Applications》Anders Vretblad(傅立叶分析及其应用)GTM224《Metric Structures in Differential Geometry》Gerard Walschap(微分几何中的度量结构)GTM225《Lie Groups》Daniel Bump(李群)GTM226《Spaces of Holomorphic Functions in the Unit Ball》Kehe Zhu(单位球内的全纯函数空间)GTM227《Combinatorial Commutative Algebra》Ezra Miller, Bernd Sturmfels(组合交换代数)GTM228《A First Course in Modular Forms》Fred Diamond, Jerry Shurman(模形式初级教程)GTM229《The Geometry of Syzygies》David Eisenbud(合冲几何)GTM230《An Introduction to Markov Processes》Daniel W.Stroock(马尔可夫过程引论)GTM231《Combinatorics of Coxeter Groups》Anders Bjr?ner, Francesco Brenti(Coxeter 群的组合学)GTM232《An Introduction to Number Theory》Graham Everest, Thomas Ward(数论入门)GTM233《T opics in Banach Space Theory》Fenando Albiac, Nigel J.Kalton(Banach空间理论选题)GTM234《Analysis and Probability:Wavelets, Signals, Fractals》Palle E.T.Jorgensen(分析与概率)GTM235《Compact Lie Groups》Mark R.Sepanski(紧致李群)GTM236《Bounded Analytic Functions》John B.Garnett(有界解析函数)GTM237《An Introduction to Operators on the Hardy-Hilbert Space》Rubén A.Martínez-Avendano, Peter Rosenthal (哈代-希尔伯特空间算子引论)GTM238《A Course in Enumeration》Martin Aigner(枚举教程)GTM239《Number Theory:VolumeⅠT ools and Diophantine Equations》Henri Cohen GTM240《Number Theory:VolumeⅡAna lytic and Modern T ools》Henri Cohen GTM241《The Arithmetic of Dynamical Systems》Joseph H.SilvermanGTM242《Abstract Algebra》Pierre Antoine Grillet(抽象代数)GTM243《Topological Methods in Group Theory》Ross GeogheganGTM244《Graph Theory》J.A.Bondy, U.S.R.MurtyGTM245《Complex Analysis:In the Spirit of Lipman Bers》Jane P.Gilman, Irwin Kra, Rubi E.RodriguezGTM246《A Course in Commutative Banach Algebras》Eberhard KaniuthGTM247《Braid Groups》Christian Kassel, Vladimir TuraevGTM248《Buildings Theory and Applications》Peter Abramenko, Kenneth S.Brown GTM249《Classical Fourier Analysis》Loukas Grafakos(经典傅里叶分析)GTM250《Modern Fourier Analysis》Loukas Grafakos(现代傅里叶分析)GTM251《The Finite Simple Groups》Robert A.WilsonGTM252《Distributions and Operators》Gerd GrubbGTM253《Elementary Functional Analysis》Barbara D.MacCluerGTM254《Algebraic Function Fields and Codes》Henning StichtenothGTM255《Symmetry Representations and Invariants》Roe Goodman, Nolan R.Wallach GTM256《A Course in Commutative Algebra》Kemper GregorGTM257《Deformation Theory》Robin HartshorneGTM258《Foundation of Optimization》Osman GülerGTM259《Ergodic Theory:with a view towards Number Theory》Manfred Einsiedler, Thomas WardGTM260《Monomial Ideals》Jurgen Herzog, Takayuki Hibi GTM261《Probability and Stochastics》Erhan CinlarGTM262《Essentials of Integration Theory for Analysis》Daniel W.StroockGTM263《Analysis on Fock Spaces》Kehe ZhuGTM264《Functional Analysis, Calculus of Variations and Optimal Control》Francis ClarkeGTM265《Unbounded Self-adjoint Operatorson Hilbert Space》Konrad Schmüdgen GTM266《Calculus Without Derivatives》Jean-Paul PenotGTM267《Quantum Theory for Mathematicians》Brian C.HallGTM268《Geometric Analysis of the Bergman Kernel and Metric》Steven G.Krantz GTM269《Locally Convex Spaces》M.Scott Osborne。
代数学ppt
Galois的境遇
1829:Galois论文由Cauchy审理,被遗失 1830:由Fourier审理,不久Fourier逝世 1831:再由Poisson审:“完全不能理解”,要其详细说明 1832-5-30夜Galois留下1份说明 第2天便与情敌决斗而死 1846: Liouville决定发表Galois的文章 1870: Jordan全面清晰地阐明Galois工作
从此Galois的工作得到完全承认
Hermann Weyl 的评价
“Galois的论述在好几十年中一直被看 成是“天书”;但是,它后来对数学的 整个发展产生愈来愈深远的影响。如 果从它所包含思想之新奇和意义之深 远来判断,也许是整个人类知识宝库 中价值最为重大的一件珍品”
对称和美
代数学新纪元
1843:Hamilton发现四元数代数 1846:Cayley引进抽象群和矩阵 1871:Dedekind引进理想 1872:Klein发表群的几何学纲领 1873:Lie创立Lie群 1894:Cartan分类复半单Lie代数 1896:Frobenius创立有限群表示论 1904:Schur建立无限群表示
古典代数学的终结
Evariste Galois(1811-1832) 17岁发现:代数方程的根式可解性 是由这个方程的Galois群的可解性 决定的.因此,5次及以上代数方程 不存在求根公式。而古典代数学的 其它难题(如尺规作图和倍方问题),此后也均可 用Galois理论得到完全解决。从而古典代数学终结
15/95
AMS分类中的代数学分支
交换代数 结合代数 Lie代数 范畴论与同调代数 K-理论 群论 量子化代数
ArXiv分类中的代数学分支
Algebraic Geometry (math.AG) Algebraic Topology (math.AT) Category Theory (math.CT) Commutative Algebra (math.AC) Group Theory (math.GR) K-Theory and Homology (math.KT) Mathematical Physics (math.MP) Operator Algebras (math.OA) Quantum Algebra (math.QA) Representation Theory (math.RT) Rings and Algebras (math.RA) 11/32
AlgebraicGraphTheory
Algebraic Graph TheoryChris Godsil(University of Waterloo),Mike Newman(University of Ottawa)April25–291Overview of the FieldAlgebraic graph theory comprises both the study of algebraic objects arising in connection with graphs, for example,automorphism groups of graphs along with the use of algebraic tools to establish interesting properties of combinatorial objects.One of the oldest themes in the area is the investigation of the relation between properties of a graph and the spectrum of its adjacency matrix.A central topic and important source of tools is the theory of association schemes.An association scheme is,roughly speaking,a collection of graphs on a common vertex set whichfit together in a highly regular fashion.These arise regularly in connection with extremal structures:such structures often have an unex-pected degree of regularity and,because of this,often give rise to an association scheme.This in turn leads to a semisimple commutative algebra and the representation theory of this algebra provides useful restrictions on the underlying combinatorial object.Thus in coding theory we look for codes that are as large as possible, since such codes are most effective in transmitting information over noisy channels.The theory of association schemes provides the most effective means for determining just how large is actually possible;this theory rests on Delsarte’s thesis[4],which showed how to use schemes to translate the problem into a question that be solved by linear programming.2Recent Developments and Open ProblemsBrouwer,Haemers and Cioabˇa have recently shown how information on the spectrum of a graph can be used to proved that certain classes of graphs must contain perfect matchings.Brouwer and others have also investigated the connectivity of strongly-regular and distance-regular graphs.This is an old question,but much remains to be done.Recently Brouwer and Koolen[2]proved that the vertex connectivity of a distance-regular graph is equal to its valency.Haemers and Van Dam have worked on extensively on the question of which graphs are characterized by the spectrum of their adjacency matrix.They consider both general graphs and special classes,such as distance-regular graphs.One very significant and unexpected outcome of this work was the construction,by Koolen and Van Dam[10],of a new family of distance-regular graphs with the same parameters as the Grassmann graphs.(The vertices of these graphs are the k-dimensional subspaces of a vector space of dimension v over thefinitefield GF(q);two vertices are adjacent if their intersection has dimension k1.The graphs are q-analog of the Johnson graphs,which play a role in design theory.)These graphs showed that the widely held belief that we knew all distance-regular graphs of“large diameter”was false,and they indicate that the classification of distance-regular graphs will be more complex(and more interesting?)than we expected.1Association schemes have long been applied to problems in extremal set theory and coding theory.In his(very)recent thesis,Vanhove[14]has demonstrated that they can also provide many interesting results in finite geometry.Recent work by Schrijver and others[13]showed how schemes could used in combination with semidef-inite programming to provide significant improvements to the best known bounds.However these methods are difficult to use,we do not yet have a feel for we might most usefully apply them and their underlying theory is imperfectly understood.Work in Quantum Information theory is leading to a wide range of questions which can be successfully studied using ideas and tools from Algebraic Graph Theory.Methods fromfinite geometry provide the most effective means of constructing mutually unbiased bases,which play a role in quantum information theory and in certain cryptographic protocols.One important question is to determine the maximum size of a set of mutually unbiased bases in d-dimensional complex space.If d is a prime power the geometric methods just mentioned provide sets of size d+1,which is the largest possible.But if d is twice an odd integer then in most cases no set larger than three has been found.Whether larger sets exist is an important open problem. 3Presentation HighlightsThe talks mostlyfitted into one of four areas,which we discuss separately.3.1SpectraWillem Haemers spoke on universal adjacency matrices with only two distinct eigenvalues.Such matrices are linear combinations of I,J,D and A(where D is the diagonal matrix of vertex degrees and A the usual adjacency matrix).Any matrix usually considered in spectral graph theory has this form,but Willem is considering these matrices in general.His talk focussed on the graphs for which some universal adjacency matrix has only two eigenvalues.With Omidi he has proved that such a graph must either be strong(its Seidel matrix has only two eigenvalues)or it has exactly two different vertex degrees and the subgraph induced by the vertices of a given degree must be regular.Brouwer formulated a conjecture on the minimum size of a subset S of the vertices of a strongly-regular graph X such that no component of X\S was a single vertex.Cioabˇa spoke on his recent work with Jack Koolen on this conjecture.They proved that it is false,and there are four infinite families of counterexamples.3.2PhysicsAs noted above,algebraic graph theory has many applications and potential applications to problems in quantum computing,although the connection has become apparent only very recently.A number of talks were related to this connection.One important problem in quantum computing is whether there is a quantum algorithm for the graph isomorphism problem that would be faster than the classical approaches.Currently the situation is quite open.Martin Roetteler’s talk described recent work[1]on this problem.For our workshop’s viewpoint,one surprising feature is that the work made use of the Bose-Mesner algebra of a related association scheme; this connection had not been made before.Severini discussed quantum applications of what is known as the Lov´a sz theta-function of a graph.This function can be viewed as an eigenvalue bound and is closely related to both the LP bound of Delsarte and the Delsarte-Hoffman bound on the size of an independent set in a regular graph.Severini’s work shows that Lov´a sz’s theta-function provides a bound on the capacity of a certain channel arising in quantum communication theoryWork in quantum information theory has lead to interest in complex Hadamard matrices—these are d×d complex matrices H such that all entries of H have the same absolute value and HH∗=dI.Both Chan and Sz¨o ll˝o si dealt with these in their talks.Aidan Roy spoke on complex spherical designs.Real spherical designs were much studied by Seidel and his coworkers,because of their many applications in combinatorics and other areas.The complex case languished because there were no apparent applications,but now we have learnt that these manifest them-selves in quantum information theory under acronyms such as MUBs and SIC-POVMs.Roy’s talk focussedon a recent 45page paper with Suda [12],where (among other things)they showed that extremal complex designs gave rise to association schemes.One feature of this work is that the matrices in their schemes are not symmetric,which is surprising because we have very few interesting examples of non-symmetric schemes that do not arise as conjugacy class schemes of finite groups.3.3Extremal Set TheoryCoherent configurations are a non-commutative extension of association schemes.They have played a sig-nificant role in work on the graph isomorphism problem but,in comparison with association schemes,they have provided much less information about interesting extremal structures.The work presented by Hobart and Williford may improve matters,since they have been able to extend and use some of the standard bounds from the theory of schemes.Delsarte [4]showed how association schemes could be used to derive linear programs,whose values provided strong upper bounds on the size of codes.Association schemes have both a combinatorial structure and an algebraic structure and these two structures are in some sense dual to one another.In Delsarte’s work,both the combinatorial and the algebraic structure had a natural linear ordering (the schemes are both metric and cometric)and this played an important role in his work.Martin explained how this linearity constraint could be relaxed.This work is important since it could lead to new bounds,and also provide a better understanding of duality.One of Rick Wilson’s many important contributions to combinatorics was his use of association schemes to prove a sharp form of the Erd˝o s-Ko-Rado theorem [15].The Erd˝o s-Ko-Rado theorem itself ([5])can certainly be called a seminal result,and by now there are many analogs and extensions of it which have been derived by a range of methods.More recently it has been realized that most of these extensions can be derived in a very natural way using the theory of association schemes.Karen Meagher presented recent joint work (with Godsil,and with Spiga,[8,11])on the case where the subsets in the Erd˝o s-Ko-Rado theorem are replaced by permutations.It has long been known that there is an interesting association scheme on permutations,but this scheme is much less manageable than the schemes used by Delsarte and,prior to the work presented by Meagher,no useful combinatorial information had been obtained from it.Chowdhury presented her recent work on a conjecture of Frankl and F¨u redi.This concerns families F of m -subsets of a set X such that any two distinct elements of have exactly λelements in common.Frankl and F¨u redi conjectured that the m -sets in any such family contain at least m 2 pairs of elements of X .Chowdhury verified this conjecture in a number of cases;she used classical combinatorial techniques and it remains to see whether algebraic methods can yield any leverage in problems of this type.3.4Finite GeometryEric Moorhouse spoke on questions concerning automorphism groups of projective planes,focussing on connections between the finite and infinite case.Thus for a group acting on a finite plane,the number of orbits on points must be equal to the number of orbits on lines.It is not known if this must be true for planes of infinite order.Is there an infinite plane such that for each positive integer k ,the automorphism group has only finitely many orbits on k -tuples?This question is open even for k =4.Simeon Ball considered the structure of subsets S of a k -dimensional vector space over a field of order q such that each d -subset of S is a basis.The canonical examples arise by adding a point at infinity to the point set of a rational normal curve.These sets arise in coding theory as maximum distance separable codes and in matroid theory,in the study of the representability of uniform matroids (to mention just two applications).It is conjectured that,if k ≤q −1then |S |≤q +1unless q is even and k =3or k =q −1,in which case |S |≤q +2.Simeon presented a proof of this theorem when q is a prime and commented on the general case.He developed a connection to Segre’s classical characterization of conics in planes of odd order,as sets of q +1points such that no three are collinear.There are many analogs between finite geometry and extremal set theory;questions about the geometry of subspaces can often be viewed as q -analogs of questions in extremal set theory.So the EKR-problem,which concerns characterizations of intersecting families of k -subsets of a fixed set,leads naturally to a study of intersecting families of k -subspaces of a finite vector space.In terms of association schemes this means we move from the Johnson scheme to the Grassmann scheme.This is fairly well understood,with thebasic results obtained by Frankl and Wilson[6].But infinite geometry,polar spaces form an important topic. Roughly speaking the object here is to study the families of subspaces that are isotropic relative to some form, for example the subspaces that lie on a smooth quadric.In group theoretic terms we are now dealing with symplectic,orthogonal and unitary groups.There are related association schemes on the isotropic subspaces of maximum dimension.Vanhove spoke on important work from his Ph.D.thesis,where he investigated the appropriate versions of the EKR problem in these schemes.4Outcome of the MeetingIt is too early to offer much in the way of concrete evidence of impact.Matt DeV os observed that a conjecture of Brouwer on the vertex connectivity of graphs in an association scheme was wrong,in a quite simple way. This indicates that the question is more complex than expected,and quite possibly more interesting.That this observation was made testifies to the scope of the meeting.On a broader level,one of the successes of the meeting was the wide variety of seemingly disparate topics that were able to come together;the ideas of algebraic graph theory touch a number of things that would at first glance seem neither algebraic nor graph theoretical.There was a lively interaction between researchers from different domains.The proportion of post-docs and graduate students was relatively high.This had a positive impact on the level of excitement and interaction at the meeting.The combination of expert and beginning researchers created a lively atmosphere for mathematical discussion.References[1]A.Ambainis,L.Magnin,M.Roetteler,J.Roland.Symmetry-assisted adversaries for quantum state gen-eration,arXiv1012.2112,35pp.[2]A.E.Brouwer,J.H.Koolen.The vertex connectivity of a distance-regular graph.European bina-torics30(2009),668–673.[3]A.E.Brouwer,D.M.Mesner.The connectivity of strongly regular graphs.European binatorics,6(1985),215–216.[4]P.Delsarte.An algebraic approach to the association schemes of coding theory.Philips Res.Rep.Suppl.,(10):vi+97,1973.[5]P.Erd˝o s,C.Ko,R.Rado.Intersection theorems for systems offinite sets.Quart.J.Math.Oxford Ser.(2),12(1961),313–320.[6]P.Frankl,R.M.Wilson.The Erd˝o s-Ko-Rado theorem for vector binatorial Theory,SeriesA,43(1986),228–236.[7]D.Gijswijt,A.Schrijver,H.Tanaka.New upper bounds for nonbinary codes based on the Terwilligeralgebra and semidefinite binatorial Theory,Series A,113(2006),1719–1731. [8]C.D.Godsil,K.Meagher.A new proof of the Erd˝o s-Ko-Rado theorem for intersecting families of per-mutations.arXiv0710.2109,18pp.[9]C.D.Godsil,G.F.Royle.Algebraic Graph Theory,Springer-Verlag,(New York),2001.[10]J.H.Koolen,E.R.van Dam.A new family of distance-regular graphs with unbounded diameter.Inven-tiones Mathematicae,162(2005),189-193.[11]K.Meagher,P.Spiga.An Erdos-Ko-Rado theorem for the derangement graph of PGL(2,q)acting onthe projective line.arXiv0910.3193,17pp.[12]A.P.Roy,plex spherical Codes and designs,(2011),arXiv1104.4692,45pp.[13]A.Schrijver.New code upper bounds from the Terwilliger algebra and semidefinite programming.IEEETransactions on Information Theory51(2005),2859–2866.[14]F.Vanhove.Incidence geometry from an algebraic graph theory point of view.Ph.D.Thesis,Gent2011.[15]R.M.Wilson.The exact bound in the Erds-Ko-Rado binatorica,4(1984),247–257.。
一般算子系统的张量积
中图分类号:UDC:学校代码:10055密级:公开高恐大法博士学位论文一般算子系统的张量积TensorProductsofNon-unitalOperatorSystems评阅人生尚全:塾垫型!直国送整壹涸:篚丛笪南开大学研究生院二。
一三年五月Chapter2OperatorspaceandoperatorsystemChapter2Operatorspaceandoperator2.1Preliminariessystem_LetVbeacomplexvectorspace.WecallVa木-vectorspace.ifthereisamap爿c:V-÷Vsuchthat(z。
)+=zand(Ax+可)+=Ax‘+Y+forallz,可∈VandA∈C.Thesetoftheelementsz∈Vsatisfyingz+=zisarealvectorspace.calledthesetofhermitianelements,denotedbyK口.Thenv0∈Koiscalledaconeifz+可∈v0and7’z∈v0foranyr>0,z,Y∈v0.Supposethatn,m∈N.Wedenoteby^厶,m(y)t11evectorspaceofn×mmatriceswithelementsinV.Forsimplicity,wedenote螈,m:=‰m(C),螈(y):=%,几(y)and螈:=%∽Then螈(y)isalsoa爿c-vectorspacewiththecanonical爿c-operationdefinedby(ai,J)b:=(n釉t,J.Let乱∈^霸(y)andu∈Mm(y).Theirdirectsumistheelementin^磊+m(y)definedbyYeW:=降Z,:]∈%删一Moreover,ifQ∈Mn,mandp∈‰,n,wedefinetheirmatrixproductc℃vfi∈A靠(y)byQ"p:=[∑¨Q啪Vk,lp幻kLetV,WandXbevectorspaces.WedenotebyVOWtheftalgebraictensorproduct,whichislinearlyspannedbytheelementszOYwhereX∈VandY∈W.If圣:V×W--+Xisbilinear,thereisauniquelinearmappingePL:VQW斗Xsuchthatffz(zoY)=圣(z,Y)foranyz∈VandY∈W.4Thecompletelyboundednormofabilinearmappingisdefinedtobe1圣1c6:=sup{l[圣p;rp,7.∈卧Thenthisbilinearmappingiscalledcompletelyboundedif11垂11cb<∞.WedenotebyCB(V×彬x)thesetofsuchcompletelyboundedmappings.Indeed.CB(VX彬X)isanoperatorspaceviathecanonicalidentiffcationMn(CB(V×彬x))=CB(V×彬螈(x))Proposition2.13lf33.Proposition7.1.21)LetV.WandXbeoperatorspaces.ThenwehavethecompletelyisometricidentificationsCB(V圆W,X)=CB(V×彬x)=CB(V,CB(彬x))’rheorem2.14f[33,Proposition7.1.71)LetⅥ,%,胍and%beoperatorspaces.-Supposethat妒:Ⅵj%and妒:肌_÷w2arecompletequotientmappings.Thenthecorrespondingmapping妒@砂:Ⅵo阢一%ow2extendstoacompletequotientmapping妒园砂:M圆M_÷%4w2.2.4OperatorsystemWecalla木。
数学中常用的英语单词[3篇]
数学中常用的英语单词[3篇]以下是网友分享的关于数学中常用的英语单词的资料3篇,希望对您有所帮助,就爱阅读感谢您的支持。
第一篇代数ALGEBRA1. 数论natural number 自然数positive number 正数negative number 负数odd integer, oddnumber 奇数even integer, even number 偶数integer, whole number 整数positive whole number 正整数negative whole number 负整数consecutive number 连续整数realnumber, 实数rational number, 有理数irrational (number )无理数inverse 倒数composite number 合数e.g. 4,6,8,9,10,12,14,15…2. 基本数学概念arithmetic mean 算术平均值weighted average 加权平均值exponent指数,幂base 乘幂的底数, 底边cube 立方数,立方体square root 平方根cube root 立方根 3. 基本运算add ,plus 加subtract 减difference 差multiply, times 乘product 积divide 除divisible 可被整除的divided evenly 被整除dividend 被除数,4. 代数式,方程,不等式algebraic term 代数项like terms, similar terms 同类项numerical coefficient数字系数literal coefficient 字母系数 5. 分数,小数prime number 质数e.g. 2,3,5,7,11,13,15… reciprocal 倒数common divisor 公约数multiple 倍数(minimum) common multiple (最小) 公倍数(prime) factor (质) 因子common factor 公因子ordinary scale, decimalscale 十进制nonnegative 非负的tens 十位units 个位mode 众数mean 平均数median 中值common ratio 公比digit 数字constant 常数variable 变量linear 一次的,线性的factorization 因式分解absolute value绝对值,e.g. |-32|=32 round off 四舍五入divisor 因子,除数,公约数quotient 商remainder 余数factorial 阶乘power 乘方radical sign, root sign 根号round to 四舍五入to the nearest 四舍五入inequality 不等式original equation 原方程equivalent equation 同解方程,等价方程linear equation 线性方程(e.g.5x+6=22)proper fraction 真分数denominator 分母improper fraction 假分数(least) common denominator (最小)公mixed number 带分数分母vulgar fraction,common fraction 普通quarter 四分之一分数decimal fraction 纯小数simple fraction 简分数infinite decimal 无穷小数complex fraction繁分数recurring decimal 循环小数numerator 分子tenths unit 十分位6. 数列arithmetic progression(sequence) 等差数列geometric progression(sequence) 等比数列7. 其它approximate 近似parentheses 括号(anti)clockwise (逆) 顺时针方向proportion 比例cardinal 基数permutation 排列ordinal 序数combination 组合direct proportion 正比table 表格distinct 不同的trigonometric function 三角函数estimation 估计,近似unit 单位, 位几何GEOMETRY 1角alternate angle 内错角adjacent angle 邻角corresponding angle 同位角acute angle 锐角vertical angle 对顶角obtuse angle 钝角central angle 圆心角right angle 直角interior angle 内角round angle 周角exterior angle 外角straight angle 平角supplementary angles 补角included angle 夹角complementary angle 余角2. 三角形equilateral triangle 等边三角形right triangle 直角三角形scalene triangle 不等边三角形oblique 斜三角形isosceles triangle 等腰三角形inscribed triangle 内接三角形3. 收敛的平面图形,除三角形外semicircle 半圆nonagon 九边形concentric circles 同心圆decagon 十边形quadrilateral 四边形polygon 多边形pentagon 五边形parallelogram 平行四边形hexagon 六边形equilateral 等边形heptagon 七边形plane 平面octagon 八边形square 正方形,平方rectangle 长方形regular polygon 正多边形4. 其它平面图形arc 弧line, straight line 直线line segment 线段5. 立体图形cube 立方体,立方数rectangular solid 长方体regular solid/regular polyhedron 正多面体6. 图形的附属概念plane geometry 平面几何trigonometry 三角学bisect 平分circumscribe 外切inscribe 内切intersect 相交perpendicular 垂直Pythagorean theorem 勾股定理(毕达哥拉斯定理)congruent 全等的multilateral 多边的altitude 高depth 深度side 边长circumference, perimeter周长radian 弧度surface area 表面积volume 体积arm 直角三角形的股cross section 横截面7. 坐标coordinate system 坐标系rectangular coordinate 直角坐标系origin 原点abscissa 横坐标rhombus 菱形trapezoid 梯形parallel lines 平行线segment of a circle 弧形circular cylinder 圆柱体cone 圆锥sphere 球体solid 立体的center of a circle 圆心chord 弦diameter 直径radius 半径angle bisector 角平分线edge 棱face of a solid 立体的面hypotenuse 斜边included side 夹边leg 三角形的直角边median (三角形的)中线base 底边,底数(e.g. 2的5次方,2就是底数)opposite 直角三角形中的对边midpoint 中点endpoint 端点vertex (复数形式vertices) 顶点tangent 切线的transversal 截线intercept 截距ordinate 纵坐标number line 数轴quadrant 象限slope 斜率第二篇Algebra & arithmetic terms:Absolute value 绝对值Add (addition) 加Average value 算术平均值Algebra 代数Algebraic expression 代数式Arithmetic mean 算术平均值Arithmetic progression (sequence)等差数列Approximate 近似Abscissa 横坐标Ordinate 纵坐标Binomial 二项式Common factor 公因子Common multiple 公倍数Common divisor 公约数Simple fractionCommon fraction 简分数Complex fraction 繁分数Common logarithm 常用对数Common ratio 公比Complex number 复数Complex conjugate 复共轭Composite number 合数Prime number 质数Consecutive number 连续整数Consecutive even(odd) integer 连续偶(奇)数Cross multiply 交叉相乘Coefficient 系数Complete quadratic equation 完全二次方程Complementary function 余函数Constant 常数Coordinate system 坐标系Decimal 小数Decimal point 小数点Decimal fraction 纯小数Decimal arithmetic 十进制运算Decimal system/decimal scale 十进制Denominator 分母Difference 差Direct proportion 正比Divide 除Divided evenly 被整除Differential 微分Distinct 不同的Dividend 被除数,红利Division 除法Division sign 除号Divisor 因子,除数Divisible 可被整除的Equivalent fractions 等值分数Equivalent equation 等价方程式Equivalence relation 等价关系Even integer/number 偶数Exponent 指数,幂Equation 方程Equation of the first degree 一次方程Endpoint 端点Estimation 近似Factor 因子Factorable quadratic equation 可因式分解的二次方程Incomplete quadratic equation 不完全二次方程Factorial 阶乘Factorization 因式分解Geometric mean 几何平均数Graph theory 图论Inequality 不等式Improper fraction 假分数Infinite decimal 无穷小数Inverse proportion 反比Irrational number 无理数Infinitesimal calculus 微积分Infinity 无穷大Infinitesimal 无穷小Integerable 可积分的Integral 积分Integral domain 整域Integrand 被积函数Integrating factor 积分因子Inverse function 反函数Inverse/reciprocal 倒数Least common denominator 最小公分母Least common multiple 最小公倍数Literal coefficient 字母系数Like terms 同类项Linear 线性的Minuend 被减数Subtrahend 被减数Mixed decimal 混合小数Mixed number 带分数Minor 子行列式Multiplicand 被乘数Multiplication 乘法Multiplier 乘数Monomial 单项式Mean 平均数Mode 众数Median 中数Negative (positive) number 负(正)数Numerator 分子Null set (empty set) 空集Number theory 数论Number line 数轴Numerical analysis 数值分析Natural logarithm 自然对数Natural number 自然数Nonnegative 非负数Original equation 原方程Ordinary scale 十进制Ordinal 序数Percentage 百分比Parentheses 括号Polynomial 多项式Power 乘方Product 积Proper fraction 真分数Proportion 比例Permutation 排列Proper subset 真子集Prime factor 质因子Progression 数列Quadrant 象限Quadratic equation 二次方程Quarter 四分之一Ratio 比率Real number 实数Round off 四舍五入Round to 四舍五入Root 根Radical sign 根号Root sign 根号Recurring decimal 循环小数Sequence 数列Similar terms 同类项T ens 十位T enths 十分位Trinomial 三相式Units 个位Unit 单位Weighted average 加权平均值Union 并集Yard 码Whole number 整数Mutually exclusive 互相排斥Independent events 相互独立事件Probability 概率Combination 组合Standard deviation 标准方差Range 值域Frequency distribution 频率分布[1] 2 下一页Domain 定义域Bar graph 柱图——Geometry terms:Angle bisector 角平分线Adjacent angle 邻角Alternate angel 内错角Acute angle 锐角Obtuse angle 钝角Bisect 角平分线Adjacent vertices 相邻顶点Arc 弧Altitude 高Arm 直角三角形的股Complex plane 复平面Convex (concave) polygon 凸(凹)多边形Complementary angle 余角Cube 立方体Central angle 圆心角Circle 圆Clockwise 顺时钟方向Counterclockwise 逆时钟方向Chord 弦Circular cylinder 圆柱体Congruent 全等的Corresponding angle 同位角Circumference (perimeter) 周长Concentric circles 同心圆Circle graph 扇面图Cone (V =pai * r * h/3) 圆锥Circumscribe 外切Inscribe 内切第三篇数学mathematics, maths(BrE), math(AmE) 公理axiom 定理theorem 计算calculation 运算operation 证明prove 假设hypothesis, hypotheses(pl.) 命题proposition算术arithmetic 加plus(prep.), add(v.), addition(n.) 被加数augend, summand 加数addend和sum 减minus(prep.), subtract(v.), subtraction(n.)被减数minuend 减数subtrahend差remainder 乘times(prep.), multiply(v.), multiplication(n.)被乘数multiplicand, faciend 乘数multiplicator积product 除divided by(prep.), divide(v.), division(n.)被除数dividend 除数divisor商quotient 等于equals, is equal to, is equivalent to 大于is greater than 小于is lesser than大于等于is equal or greater than 小于等于is equal or lesser than 运算符operator 数字digit数number 自然数natural number 整数integer 小数decimal 小数点decimal point 分数fraction分子numerator 分母denominator 比ratio 正positive 负negative 零null, zero, nought, nil 十进制decimal system 二进制binary system 十六进制hexadecimal system 权weight, significance 进位carry 截尾truncation四舍五入round 下舍入round down上舍入round up 有效数字significant digit 无效数字insignificant digit 代数algebra公式formula, formulae(pl.) 单项式monomial 多项式polynomial, multinomial 系数coefficient未知数unknown, x-factor, y-factor, z-factor 等式,方程式equation一次方程simple equation 二次方程quadratic equation 三次方程cubic equation 四次方程quartic equation 不等式inequation 阶乘factorial对数logarithm 指数,幂exponent 乘方power 二次方,平方square三次方,立方cube 四次方the power of four, the fourth powern 次方the power of n, the nth power 开方evolution, extraction二次方根,平方根square root 三次方根,立方根cube root 四次方根the root of four, the fourth root n 次方根the root of n, the nth root集合aggregate 元素element 空集void 子集subset 交集intersection 并集union补集complement 映射mapping函数function 定义域domain, field of definition 值域range 常量constant变量variable 单调性monotonicity 奇偶性parity 周期性periodicity 图象image 数列,级数series 微积分calculus 导数derivative 无穷大infinite(a.) infinity(n.) 积分integral 不定积分indefinite integral 无理数irrational number 虚数imaginary number 矩阵matrix 几何geometry 线line 体solid 射线radial 相交intersect 角度degree 锐角acute angle 钝角obtuse angle 周角perigon 边side 三角形triangle 直角三角形right triangle 斜边hypotenuse 钝角三角形obtuse triangle 等腰三角形isosceles triangle 四边形quadrilateral 矩形rectangle 宽width diamond正方形square 直角梯形right trapezoid 五边形pentagon 七边形heptagon 九边形enneagon 十一边形hendecagon 多边形polygon 圆circle 微分differential 极限limit 无穷小infinitesimal定积分definite integral 有理数rational number 实数real number复数complex number 行列式determinant 点point 面plane线段segment 平行parallel 角angle弧度radian 直角right angle 平角straight angle 底base 高height锐角三角形acute triangle 直角边leg勾股定理Pythagorean theorem 不等边三角形scalene triangle 等边三角形equilateral triangle 平行四边形parallelogram 长length菱形rhomb, rhombus, rhombi(pl.), 梯形trapezoid等腰梯形isosceles trapezoid 六边形hexagon 八边形octagon 十边形decagon 十二边形dodecagon正多边形equilateral polygon 圆心centre(BrE), center(AmE)半径radius 直径diameter 圆周率pi 弧arc 半圆semicircle 扇形sector 环ring 椭圆ellipse 圆周circumference 周长perimeter面积area 轨迹locus, loca(pl.) 相似similar 全等congruent 四面体tetrahedron 五面体pentahedron六面体hexahedron 平行六面体parallelepiped 立方体cube 八面体octahedron 十面体decahedron 十二面体dodecahedron 多面体polyhedron 棱柱prism 旋转rotation 圆锥cone 圆台frustum of a cone 半球hemisphere 表面积surface area 空间space 坐标轴x-axis, y-axis, z-axis 纵坐标y-coordinate 双曲线hyperbola 三角trigonometry 余弦cosine 余切cotangent余割cosecant 反余弦arc cosine 反余切arc cotangent 反余割arc cosecant 周期period 内心incentre(BrE), incenter(AmE) 旁心escentre(BrE), escenter(AmE) 重心barycentre(BrE), barycenter(AmE) 外切圆circumcircle 平均数average 方差variance deviation比例propotion 百分点percentage 排列permutation 概率,或然率probability 正态分布normal distribution 七面体heptahedron 九面体enneahedron十一面体hendecahedron 二十面体icosahedron 棱锥pyramid棱台frustum of a prism 轴axis圆柱cylinder 球sphere底面undersurface 体积volume坐标系coordinates 横坐标x-coordinate 原点origin 抛物线parabola 正弦sine 正切tangent 正割secant 反正弦arc sine 反正切arc tangent 反正割arc secant 相位phase振幅amplitude外心excentre(BrE), excenter(AmE) 垂心orthocentre(BrE), orthocenter(AmE) inscribed circle 统计statistics加权平均数weighted average标准差root-mean-square deviation, standard 百分比percent 百分位数percentile 组合combination 分布distribution非正态分布abnormal distribution内切圆图表graph 条形统计图bar graph柱形统计图histogram 折线统计图broken line graph 曲线统计图curve diagram 扇形统计图pie diagram21。
离散数学中英文名词对照表
离散数学中英文名词对照表外文中文AAbel category Abel 范畴Abel group (commutative group) Abel 群(交换群)Abel semigroup Abel 半群accessibility relation 可达关系action 作用addition principle 加法原理adequate set of connectives 联结词的功能完备(全)集adjacent 相邻(邻接)adjacent matrix 邻接矩阵adjugate 伴随adjunction 接合affine plane 仿射平面algebraic closed field 代数闭域algebraic element 代数元素algebraic extension 代数扩域(代数扩张)almost equivalent 几乎相等的alternating group 三次交代群annihilator 零化子antecedent 前件anti symmetry 反对称性anti-isomorphism 反同构arboricity 荫度arc set 弧集arity 元数arrangement problem 布置问题associate 相伴元associative algebra 结合代数associator 结合子asymmetric 不对称的(非对称的)atom 原子atomic formula 原子公式augmenting digeon hole principle 加强的鸽子笼原理augmenting path 可增路automorphism 自同构automorphism group of graph 图的自同构群auxiliary symbol 辅助符号axiom of choice 选择公理axiom of equality 相等公理axiom of extensionality 外延公式axiom of infinity 无穷公理axiom of pairs 配对公理axiom of regularity 正则公理axiom of replacement for the formula Ф关于公式Ф的替换公式axiom of the empty set 空集存在公理axiom of union 并集公理Bbalanced imcomplete block design 平衡不完全区组设计barber paradox 理发师悖论base 基Bell number Bell 数Bernoulli number Bernoulli 数Berry paradox Berry 悖论bijective 双射bi-mdule 双模binary relation 二元关系binary symmetric channel 二进制对称信道binomial coefficient 二项式系数binomial theorem 二项式定理binomial transform 二项式变换bipartite graph 二分图block 块block 块图(区组)block code 分组码block design 区组设计Bondy theorem Bondy 定理Boole algebra Boole 代数Boole function Boole 函数Boole homomorophism Boole 同态Boole lattice Boole 格bound occurrence 约束出现bound variable 约束变量bounded lattice 有界格bridge 桥Bruijn theorem Bruijn 定理Burali-Forti paradox Burali-Forti 悖论Burnside lemma Burnside 引理Ccage 笼canonical epimorphism 标准满态射Cantor conjecture Cantor 猜想Cantor diagonal method Cantor 对角线法Cantor paradox Cantor 悖论cardinal number 基数Cartesion product of graph 图的笛卡儿积Catalan number Catalan 数category 范畴Cayley graph Cayley 图Cayley theorem Cayley 定理center 中心characteristic function 特征函数characteristic of ring 环的特征characteristic polynomial 特征多项式check digits 校验位Chinese postman problem 中国邮递员问题chromatic number 色数chromatic polynomial 色多项式circuit 回路circulant graph 循环图circumference 周长class 类classical completeness 古典完全的classical consistent 古典相容的clique 团clique number 团数closed term 闭项closure 闭包closure of graph 图的闭包code 码code element 码元code length 码长code rate 码率code word 码字coefficient 系数coimage 上象co-kernal 上核coloring 着色coloring problem 着色问题combination number 组合数combination with repetation 可重组合common factor 公因子commutative diagram 交换图commutative ring 交换环commutative seimgroup 交换半群complement 补图(子图的余) complement element 补元complemented lattice 有补格complete bipartite graph 完全二分图complete graph 完全图complete k-partite graph 完全k-分图complete lattice 完全格composite 复合composite operation 复合运算composition (molecular proposition) 复合(分子)命题composition of graph (lexicographic product)图的合成(字典积)concatenation (juxtaposition) 邻接运算concatenation graph 连通图congruence relation 同余关系conjunctive normal form 正则合取范式connected component 连通分支connective 连接的connectivity 连通度consequence 推论(后承)consistent (non-contradiction) 相容性(无矛盾性)continuum 连续统contraction of graph 图的收缩contradiction 矛盾式(永假式)contravariant functor 反变函子coproduct 上积corank 余秩correct error 纠正错误corresponding universal map 对应的通用映射countably infinite set 可列无限集(可列集)covariant functor (共变)函子covering 覆盖covering number 覆盖数Coxeter graph Coxeter 图crossing number of graph 图的叉数cuset 陪集cotree 余树cut edge 割边cut vertex 割点cycle 圈cycle basis 圈基cycle matrix 圈矩阵cycle rank 圈秩cycle space 圈空间cycle vector 圈向量cyclic group 循环群cyclic index 循环(轮转)指标cyclic monoid 循环单元半群cyclic permutation 圆圈排列cyclic semigroup 循环半群DDe Morgan law De Morgan 律decision procedure 判决过程decoding table 译码表deduction theorem 演绎定理degree 次数,次(度)degree sequence 次(度)序列derivation algebra 微分代数Descartes product Descartes 积designated truth value 特指真值detect errer 检验错误deterministic 确定的diagonal functor 对角线函子diameter 直径digraph 有向图dilemma 二难推理direct consequence 直接推论(直接后承)direct limit 正向极限direct sum 直和directed by inclution 被包含关系定向discrete Fourier transform 离散 Fourier 变换disjunctive normal form 正则析取范式disjunctive syllogism 选言三段论distance 距离distance transitive graph 距离传递图distinguished element 特异元distributive lattice 分配格divisibility 整除division subring 子除环divison ring 除环divisor (factor) 因子domain 定义域Driac condition Dirac 条件dual category 对偶范畴dual form 对偶式dual graph 对偶图dual principle 对偶原则(对偶原理) dual statement 对偶命题dummy variable 哑变量(哑变元)Eeccentricity 离心率edge chromatic number 边色数edge coloring 边着色edge connectivity 边连通度edge covering 边覆盖edge covering number 边覆盖数edge cut 边割集edge set 边集edge-independence number 边独立数eigenvalue of graph 图的特征值elementary divisor ideal 初等因子理想elementary product 初等积elementary sum 初等和empty graph 空图empty relation 空关系empty set 空集endomorphism 自同态endpoint 端点enumeration function 计数函数epimorphism 满态射equipotent 等势equivalent category 等价范畴equivalent class 等价类equivalent matrix 等价矩阵equivalent object 等价对象equivalent relation 等价关系error function 错误函数error pattern 错误模式Euclid algorithm 欧几里德算法Euclid domain 欧氏整环Euler characteristic Euler 特征Euler function Euler 函数Euler graph Euler 图Euler number Euler 数Euler polyhedron formula Euler 多面体公式Euler tour Euler 闭迹Euler trail Euler 迹existential generalization 存在推广规则existential quantifier 存在量词existential specification 存在特指规则extended Fibonacci number 广义 Fibonacci 数extended Lucas number 广义Lucas 数extension 扩充(扩张)extension field 扩域extension graph 扩图exterior algebra 外代数Fface 面factor 因子factorable 可因子化的factorization 因子分解faithful (full) functor 忠实(完满)函子Ferrers graph Ferrers 图Fibonacci number Fibonacci 数field 域filter 滤子finite extension 有限扩域finite field (Galois field ) 有限域(Galois 域)finite dimensional associative division algebra有限维结合可除代数finite set 有限(穷)集finitely generated module 有限生成模first order theory with equality 带符号的一阶系统five-color theorem 五色定理five-time-repetition 五倍重复码fixed point 不动点forest 森林forgetful functor 忘却函子four-color theorem(conjecture) 四色定理(猜想)F-reduced product F-归纳积free element 自由元free monoid 自由单元半群free occurrence 自由出现free R-module 自由R-模free variable 自由变元free-Ω-algebra 自由Ω代数function scheme 映射格式GGalileo paradox Galileo 悖论Gauss coefficient Gauss 系数GBN (Gödel-Bernays-von Neumann system)GBN系统generalized petersen graph 广义 petersen 图generating function 生成函数generating procedure 生成过程generator 生成子(生成元)generator matrix 生成矩阵genus 亏格girth (腰)围长Gödel completeness theorem Gödel 完全性定理golden section number 黄金分割数(黄金分割率)graceful graph 优美图graceful tree conjecture 优美树猜想graph 图graph of first class for edge coloring 第一类边色图graph of second class for edge coloring 第二类边色图graph rank 图秩graph sequence 图序列greatest common factor 最大公因子greatest element 最大元(素)Grelling paradox Grelling 悖论Grötzsch graph Grötzsch 图group 群group code 群码group of graph 图的群HHajós conjecture Hajós 猜想Hamilton cycle Hamilton 圈Hamilton graph Hamilton 图Hamilton path Hamilton 路Harary graph Harary 图Hasse graph Hasse 图Heawood graph Heawood 图Herschel graph Herschel 图hom functor hom 函子homemorphism 图的同胚homomorphism 同态(同态映射)homomorphism of graph 图的同态hyperoctahedron 超八面体图hypothelical syllogism 假言三段论hypothese (premise) 假设(前提)Iideal 理想identity 单位元identity natural transformation 恒等自然变换imbedding 嵌入immediate predcessor 直接先行immediate successor 直接后继incident 关联incident axiom 关联公理incident matrix 关联矩阵inclusion and exclusion principle 包含与排斥原理inclusion relation 包含关系indegree 入次(入度)independent 独立的independent number 独立数independent set 独立集independent transcendental element 独立超越元素index 指数individual variable 个体变元induced subgraph 导出子图infinite extension 无限扩域infinite group 无限群infinite set 无限(穷)集initial endpoint 始端initial object 初始对象injection 单射injection functor 单射函子injective (one to one mapping) 单射(内射)inner face 内面inner neighbour set 内(入)邻集integral domain 整环integral subdomain 子整环internal direct sum 内直和intersection 交集intersection of graph 图的交intersection operation 交运算interval 区间invariant factor 不变因子invariant factor ideal 不变因子理想inverse limit 逆向极限inverse morphism 逆态射inverse natural transformation 逆自然变换inverse operation 逆运算inverse relation 逆关系inversion 反演isomorphic category 同构范畴isomorphism 同构态射isomorphism of graph 图的同构join of graph 图的联JJordan algebra Jordan 代数Jordan product (anti-commutator) Jordan乘积(反交换子)Jordan sieve formula Jordan 筛法公式j-skew j-斜元juxtaposition 邻接乘法Kk-chromatic graph k-色图k-connected graph k-连通图k-critical graph k-色临界图k-edge chromatic graph k-边色图k-edge-connected graph k-边连通图k-edge-critical graph k-边临界图kernel 核Kirkman schoolgirl problem Kirkman 女生问题Kuratowski theorem Kuratowski 定理Llabeled graph 有标号图Lah number Lah 数Latin rectangle Latin 矩形Latin square Latin 方lattice 格lattice homomorphism 格同态law 规律leader cuset 陪集头least element 最小元least upper bound 上确界(最小上界)left (right) identity 左(右)单位元left (right) invertible element 左(右)可逆元left (right) module 左(右)模left (right) zero 左(右)零元left (right) zero divisor 左(右)零因子left adjoint functor 左伴随函子left cancellable 左可消的left coset 左陪集length 长度Lie algebra Lie 代数line- group 图的线群logically equivanlent 逻辑等价logically implies 逻辑蕴涵logically valid 逻辑有效的(普效的)loop 环Lucas number Lucas 数Mmagic 幻方many valued proposition logic 多值命题逻辑matching 匹配mathematical structure 数学结构matrix representation 矩阵表示maximal element 极大元maximal ideal 极大理想maximal outerplanar graph 极大外平面图maximal planar graph 极大平面图maximum matching 最大匹配maxterm 极大项(基本析取式)maxterm normal form(conjunctive normal form) 极大项范式(合取范式)McGee graph McGee 图meet 交Menger theorem Menger 定理Meredith graph Meredith 图message word 信息字mini term 极小项minimal κ-connected graph 极小κ-连通图minimal polynomial 极小多项式Minimanoff paradox Minimanoff 悖论minimum distance 最小距离Minkowski sum Minkowski 和minterm (fundamental conjunctive form) 极小项(基本合取式)minterm normal form(disjunctive normal form)极小项范式(析取范式)Möbius function Möbius 函数Möbius ladder Möbius 梯Möbius transform (inversion) Möbius 变换(反演)modal logic 模态逻辑model 模型module homomorphism 模同态(R-同态)modus ponens 分离规则modus tollens 否定后件式module isomorphism 模同构monic morphism 单同态monoid 单元半群monomorphism 单态射morphism (arrow) 态射(箭)Möbius function Möbius 函数Möbius ladder Möbius 梯Möbius transform (inversion) Möbius 变换(反演)multigraph 多重图multinomial coefficient 多项式系数multinomial expansion theorem 多项式展开定理multiple-error-correcting code 纠多错码multiplication principle 乘法原理mutually orthogonal Latin square 相互正交拉丁方Nn-ary operation n-元运算n-ary product n-元积natural deduction system 自然推理系统natural isomorphism 自然同构natural transformation 自然变换neighbour set 邻集next state 下一个状态next state transition function 状态转移函数non-associative algebra 非结合代数non-standard logic 非标准逻辑Norlund formula Norlund 公式normal form 正规形normal model 标准模型normal subgroup (invariant subgroup) 正规子群(不变子群)n-relation n-元关系null object 零对象nullary operation 零元运算Oobject 对象orbit 轨道order 阶order ideal 阶理想Ore condition Ore 条件orientation 定向orthogonal Latin square 正交拉丁方orthogonal layout 正交表outarc 出弧outdegree 出次(出度)outer face 外面outer neighbour 外(出)邻集outerneighbour set 出(外)邻集outerplanar graph 外平面图Ppancycle graph 泛圈图parallelism 平行parallelism class 平行类parity-check code 奇偶校验码parity-check equation 奇偶校验方程parity-check machine 奇偶校验器parity-check matrix 奇偶校验矩阵partial function 偏函数partial ordering (partial relation) 偏序关系partial order relation 偏序关系partial order set (poset) 偏序集partition 划分,分划,分拆partition number of integer 整数的分拆数partition number of set 集合的划分数Pascal formula Pascal 公式path 路perfect code 完全码perfect t-error-correcting code 完全纠-错码perfect graph 完美图permutation 排列(置换)permutation group 置换群permutation with repetation 可重排列Petersen graph Petersen 图p-graph p-图Pierce arrow Pierce 箭pigeonhole principle 鸽子笼原理planar graph (可)平面图plane graph 平面图Pólya theorem Pólya 定理polynomail 多项式polynomial code 多项式码polynomial representation 多项式表示法polynomial ring 多项式环possible world 可能世界power functor 幂函子power of graph 图的幂power set 幂集predicate 谓词prenex normal form 前束范式pre-ordered set 拟序集primary cycle module 准素循环模prime field 素域prime to each other 互素primitive connective 初始联结词primitive element 本原元primitive polynomial 本原多项式principal ideal 主理想principal ideal domain 主理想整环principal of duality 对偶原理principal of redundancy 冗余性原则product 积product category 积范畴product-sum form 积和式proof (deduction) 证明(演绎)proper coloring 正常着色proper factor 真正因子proper filter 真滤子proper subgroup 真子群properly inclusive relation 真包含关系proposition 命题propositional constant 命题常量propositional formula(well-formed formula,wff)命题形式(合式公式)propositional function 命题函数propositional variable 命题变量pullback 拉回(回拖) pushout 推出Qquantification theory 量词理论quantifier 量词quasi order relation 拟序关系quaternion 四元数quotient (difference) algebra 商(差)代数quotient algebra 商代数quotient field (field of fraction) 商域(分式域)quotient group 商群quotient module 商模quotient ring (difference ring , residue ring) 商环(差环,同余类环)quotient set 商集RRamsey graph Ramsey 图Ramsey number Ramsey 数Ramsey theorem Ramsey 定理range 值域rank 秩reconstruction conjecture 重构猜想redundant digits 冗余位reflexive 自反的regular graph 正则图regular representation 正则表示relation matrix 关系矩阵replacement theorem 替换定理representation 表示representation functor 可表示函子restricted proposition form 受限命题形式restriction 限制retraction 收缩Richard paradox Richard 悖论right adjoint functor 右伴随函子right cancellable 右可消的right factor 右因子right zero divison 右零因子ring 环ring of endomorphism 自同态环ring with unity element 有单元的环R-linear independence R-线性无关root field 根域rule of inference 推理规则Russell paradox Russell 悖论Ssatisfiable 可满足的saturated 饱和的scope 辖域section 截口self-complement graph 自补图semantical completeness 语义完全的(弱完全的)semantical consistent 语义相容semigroup 半群separable element 可分元separable extension 可分扩域sequent 矢列式sequential 序列的Sheffer stroke Sheffer 竖(谢弗竖)simple algebraic extension 单代数扩域simple extension 单扩域simple graph 简单图simple proposition (atomic proposition) 简单(原子)命题simple transcental extension 单超越扩域simplication 简化规则slope 斜率small category 小范畴smallest element 最小元(素)Socrates argument Socrates 论断(苏格拉底论断)soundness (validity) theorem 可靠性(有效性)定理spanning subgraph 生成子图spanning tree 生成树spectra of graph 图的谱spetral radius 谱半径splitting field 分裂域standard model 标准模型standard monomil 标准单项式Steiner triple Steiner 三元系大集Stirling number Stirling 数Stirling transform Stirling 变换subalgebra 子代数subcategory 子范畴subdirect product 子直积subdivison of graph 图的细分subfield 子域subformula 子公式subdivision of graph 图的细分subgraph 子图subgroup 子群sub-module 子模subrelation 子关系subring 子环sub-semigroup 子半群subset 子集substitution theorem 代入定理substraction 差集substraction operation 差运算succedent 后件surjection (surjective) 满射switching-network 开关网络Sylvester formula Sylvester公式symmetric 对称的symmetric difference 对称差symmetric graph 对称图symmetric group 对称群syndrome 校验子syntactical completeness 语法完全的(强完全的)Syntactical consistent 语法相容system Ł3 , Łn , Łא0 , Łא系统Ł3 , Łn , Łא0 , Łאsystem L 公理系统 Lsystem Ł公理系统Łsystem L1 公理系统 L1system L2 公理系统 L2system L3 公理系统 L3system L4 公理系统 L4system L5 公理系统 L5system L6 公理系统 L6system Łn 公理系统Łnsystem of modal prepositional logic 模态命题逻辑系统system Pm 系统 Pmsystem S1 公理系统 S1system T (system M) 公理系统 T(系统M)Ttautology 重言式(永真公式)technique of truth table 真值表技术term 项terminal endpoint 终端terminal object 终结对象t-error-correcing BCH code 纠 t -错BCH码theorem (provable formal) 定理(可证公式)thickess 厚度timed sequence 时间序列torsion 扭元torsion module 扭模total chromatic number 全色数total chromatic number conjecture 全色数猜想total coloring 全着色total graph 全图total matrix ring 全方阵环total order set 全序集total permutation 全排列total relation 全关系tournament 竞赛图trace (trail) 迹tranformation group 变换群transcendental element 超越元素transitive 传递的tranverse design 横截设计traveling saleman problem 旅行商问题tree 树triple system 三元系triple-repetition code 三倍重复码trivial graph 平凡图trivial subgroup 平凡子群true in an interpretation 解释真truth table 真值表truth value function 真值函数Turán graph Turán 图Turán theorem Turán 定理Tutte graph Tutte 图Tutte theorem Tutte 定理Tutte-coxeter graph Tutte-coxeter 图UUlam conjecture Ulam 猜想ultrafilter 超滤子ultrapower 超幂ultraproduct 超积unary operation 一元运算unary relation 一元关系underlying graph 基础图undesignated truth value 非特指值undirected graph 无向图union 并(并集)union of graph 图的并union operation 并运算unique factorization 唯一分解unique factorization domain (Gauss domain) 唯一分解整域unique k-colorable graph 唯一k着色unit ideal 单位理想unity element 单元universal 全集universal algebra 泛代数(Ω代数)universal closure 全称闭包universal construction 通用结构universal enveloping algebra 通用包络代数universal generalization 全称推广规则universal quantifier 全称量词universal specification 全称特指规则universal upper bound 泛上界unlabeled graph 无标号图untorsion 无扭模upper (lower) bound 上(下)界useful equivalent 常用等值式useless code 废码字Vvalence 价valuation 赋值Vandermonde formula Vandermonde 公式variery 簇Venn graph Venn 图vertex cover 点覆盖vertex set 点割集vertex transitive graph 点传递图Vizing theorem Vizing 定理Wwalk 通道weakly antisymmetric 弱反对称的weight 重(权)weighted form for Burnside lemma 带权形式的Burnside引理well-formed formula (wff) 合式公式(wff)word 字Zzero divison 零因子zero element (universal lower bound) 零元(泛下界)ZFC (Zermelo-Fraenkel-Cohen) system ZFC系统form)normal(Skolemformnormalprenex-存在正则前束范式(Skolem 正则范式)3-value proposition logic 三值命题逻辑。
法国数学家拉格朗日著作《解析函数论》英文名
法国数学家拉格朗日著作《解析函数论》英文名全文共3篇示例,供读者参考篇1Title: French Mathematician Lagrange's Work "Analytical Function Theory"Introduction:Lagrange's "Analytical Function Theory" is a seminal work by the French mathematician Joseph-Louis Lagrange, also known as the Lagrange interpolation or Lagrange polynomial. In this work, Lagrange presents a detailed analysis of functions and their properties, laying the foundation for modern function theory. The book delves into topics such as series, limits, derivatives, and integrals of functions, providing a comprehensive study of mathematical functions.Chapter 1: Historical BackgroundJoseph-Louis Lagrange was born in Turin, Italy, in 1736 and later moved to Paris, where he made significant contributions to mathematics, mechanics, and astronomy. Lagrange's work in function theory was influenced by earlier mathematicians such as Euler, d'Alembert, and Legendre. His innovative approach toanalyzing functions set him apart as a pioneering figure in the field of mathematics.Chapter 2: Analytical Function TheoryIn "Analytical Function Theory," Lagrange explores the properties of functions through the use of calculus and algebraic techniques. He introduces the concept of series as a way to represent functions as infinite sums of terms, allowing for a more precise analysis of their behavior. Lagrange also discusses the importance of limits in determining the behavior of functions at particular points, laying the groundwork for modern calculus.Chapter 3: Applications and ImpactLagrange's work on function theory has had a lasting impact on mathematics, with his ideas forming the basis for modern theories in analysis and calculus. The concept of the Lagrange interpolation polynomial, named in his honor, is still widely used in numerical analysis and approximation techniques. His work has inspired generations of mathematicians to further explore the depths of function theory and its applications in various fields.Conclusion:In conclusion, Joseph-Louis Lagrange's work "Analytical Function Theory" stands as a testament to his brilliance and innovative contributions to the field of mathematics. Through his meticulous analysis of functions and their properties, Lagrange paved the way for future developments in function theory and calculus. His work remains a cornerstone of modern mathematics, continuing to inspire mathematicians worldwide to push the boundaries of knowledge in this dynamic field.篇2Title: French Mathematician Lagrange's Work "Analytic Functions Theory"IntroductionLagrange's work on Analytic Functions Theory is a significant contribution to the field of mathematics. This book, also known as "Théorie des Fonctions Analytiques" in French, was published in the year 1797 by the renowned French mathematician Joseph Louis Lagrange. In this seminal work, Lagrange established the foundation for the study of analytic functions and laid the groundwork for the development of complex analysis.Background of LagrangeJoseph Louis Lagrange, born in Turin, Italy in 1736, was a prominent mathematician who made groundbreaking contributions to various fields of mathematics, such as number theory, calculus, and celestial mechanics. He is widely regarded as one of the greatest mathematicians of all time and his work continues to influence modern mathematics.Content of the BookIn "Analytic Functions Theory", Lagrange delves into the study of functions that can be represented by a power series expansion. He introduces key concepts and theorems related to complex analysis, such as Cauchy's integral theorem, the residue theorem, and the fundamental theorem of algebra. Lagrange's work on the properties and behavior of analytic functions revolutionized the field of mathematics and paved the way for further developments in the study of complex numbers.Significance of the WorkLagrange's book is considered a seminal work in the field of mathematics and remains a cornerstone of complex analysis. His contributions to analytic functions theory have had a lasting impact on the field of mathematics and continue to influence contemporary research in areas such as number theory, physics,and engineering. The book has been widely studied and referenced by mathematicians and scientists around the world.ConclusionIn conclusion, Lagrange's work on Analytic Functions Theory stands as a testament to his brilliance and innovation in the field of mathematics. His insights and discoveries continue to shape our understanding of complex analysis and pave the way for new advancements in the field. The book remains a timeless classic in the realm of mathematics and serves as a source of inspiration for generations of mathematicians to come.篇3Title: The Analytic Function Theory by French Mathematician LagrangeIntroduction:Joseph-Louis Lagrange, a renowned mathematician from France, made significant contributions to the field of mathematics during the 18th century. One of his most influential works is the book "Analytic Function Theory," where he laid down the foundations for the study of complex functions. In this article, we will delve into the contents of this seminal work and discuss its impact on the development of mathematics.Overview of the Book:Lagrange's "Analytic Function Theory" is a comprehensive treatise on the analysis of complex functions, which play a crucial role in a variety of mathematical disciplines including calculus, differential equations, and number theory. The book is divided into several sections, each covering different aspects of the theory of analytic functions. Lagrange begins by introducing the basic concepts of complex numbers and functions, before delving into more advanced topics such as power series, contour integration, and the Cauchy-Riemann equations.Key Concepts and Theorems:One of the key contributions of Lagrange in this work is the development of the Cauchy Integral Formula, which provides a powerful method for calculating complex integrals over closed curves. This formula has important applications in the study of harmonic functions and the theory of residues. Lagrange also proved several important theorems in the book, including the Maximum Modulus Principle and the Riemann Mapping Theorem, which have been instrumental in the development of complex analysis.Impact on Mathematics:Lagrange's "Analytic Function Theory" is considered a seminal work in the field of complex analysis and has had a lasting impact on the development of mathematics. The insights and techniques introduced by Lagrange in this book have been instrumental in solving many mathematical problems in diverse areas such as physics, engineering, and computer science. The book continues to be studied and referenced by mathematicians and researchers around the world, highlighting the enduring legacy of Lagrange's contributions to the field.Conclusion:In conclusion, Joseph-Louis Lagrange's "Analytic Function Theory" stands as a cornerstone in the field of complex analysis, providing a solid foundation for the study of analytic functions and their applications. The insights and theorems introduced by Lagrange in this book have had a profound impact on the development of mathematics, shaping the way we understand and solve complex mathematical problems. As we continue to push the boundaries of mathematical research, Lagrange's work remains as relevant and influential as ever.。
数学中英语专业名词
数学中英语专业名词Aabelian group:阿贝尔群;absolute geometry:绝对几何;absolute value:绝对值;abstract algebra:抽象代数;addition:加法;algebra:代数;algebraic closure:代数闭包;algebraic geometry:代数几何;algebraic geometry and analytic geometry:代数几何和解析几何;algebraic numbers:代数数;algorithm:算法;almost all:绝大多数;analytic function:解析函数;analytic geometry:解析几何;and:且;angle:角度;anticommutative:反交换律;antisymmetric relation:反对称关系;antisymmetry:反对称性;approximately equal:约等于;Archimedean field:阿基米德域;Archimedean group:阿基米德群;area:面积;arithmetic:算术;associative algebra:结合代数;associativity:结合律;axiom:公理;axiom of constructibility:可构造公理;axiom of empty set:空集公理;axiom of extensionality:外延公理;axiom of foundation:正则公理;axiom of pairing:对集公理;axiom of regularity:正则公理;axiom of replacement:代换公理;axiom of union:并集公理;axiom schema of separation:分离公理;axiom schema of specification:分离公理;axiomatic set theory:公理集合论;axiomatic system:公理系统;BBaire space:贝利空间;basis:基;Bézout's identity:贝祖恒等式;Bernoulli's inequality:伯努利不等式;Big O notation:大O符号;bilinear operator:双线性算子;binary operation:二元运算;binary predicate:二元谓词;binary relation:二元关系;Boolean algebra:布尔代数;Boolean logic:布尔逻辑;Boolean ring:布尔环;boundary:边界;boundary point:边界点;bounded lattice:有界格;Ccalculus:微积分学;Cantor's diagonal argument:康托尔对角线方法;cardinal number:基数;cardinality:势;cardinality of the continuum:连续统的势;Cartesian coordinate system:直角坐标系;Cartesian product:笛卡尔积;category:范畴;Cauchy sequence:柯西序列;Cauchy-Schwarz inequality:柯西不等式;Ceva's Theorem:塞瓦定理;characteristic:特征;characteristic polynomial:特征多项式;circle:圆;class:类;closed:闭集;closure:封闭性或闭包;closure algebra:闭包代数;combinatorial identities:组合恒等式;commutative group:交换群;commutative ring:交换环;commutativity::交换律;compact:紧致的;compact set:紧致集合;compact space:紧致空间;complement:补集或补运算;complete lattice:完备格;complete metric space:完备的度量空间;complete space:完备空间;complex manifold:复流形;complex plane:复平面;congruence:同余;congruent:全等;connected space:连通空间;constructible universe:可构造全集;constructions of the real numbers:实数的构造;continued fraction:连分数;continuous:连续;continuum hypothesis:连续统假设;contractible space:可缩空间;convergence space:收敛空间;cosine:余弦;countable:可数;countable set:可数集;cross product:叉积;cycle space:圈空间;cyclic group:循环群;Dde Morgan's laws:德·摩根律;Dedekind completion:戴德金完备性;Dedekind cut:戴德金分割;del:微分算子;dense:稠密;densely ordered:稠密排列;derivative:导数;determinant:行列式;diffeomorphism:可微同构;difference:差;differentiable manifold:可微流形;differential calculus:微分学;dimension:维数;directed graph:有向图;discrete space:离散空间;discriminant:判别式;distance:距离;distributivity:分配律;dividend:被除数;dividing:除;divisibility:整除;division:除法;divisor:除数;dot product:点积;Eeigenvalue:特征值;eigenvector:特征向量;element:元素;elementary algebra:初等代数;empty function:空函数;empty set:空集;empty product:空积;equal:等于;equality:等式或等于;equation:方程;equivalence relation:等价关系;Euclidean geometry:欧几里德几何;Euclidean metric:欧几里德度量;Euclidean space:欧几里德空间;Euler's identity:欧拉恒等式;even number:偶数;event:事件;existential quantifier:存在量词;exponential function:指数函数;exponential identities:指数恒等式;expression:表达式;extended real number line:扩展的实数轴;Ffalse:假;field:域;finite:有限;finite field:有限域;finite set:有限集合;first-countable space:第一可数空间;first order logic:一阶逻辑;foundations of mathematics:数学基础;function:函数;functional analysis:泛函分析;functional predicate:函数谓词;fundamental theorem of algebra:代数基本定理;fraction:分数;Ggauge space:规格空间;general linear group:一般线性群;geometry:几何学;gradient:梯度;graph:图;graph of a relation:关系图;graph theory:图论;greatest element:最大元;group:群;group homomorphism:群同态;HHausdorff space:豪斯多夫空间;hereditarily finite set:遗传有限集合;Heron's formula:海伦公式;Hilbert space:希尔伯特空间;Hilbert's axioms:希尔伯特公理系统;Hodge decomposition:霍奇分解;Hodge Laplacian:霍奇拉普拉斯算子;homeomorphism:同胚;horizontal:水平;hyperbolic function identities:双曲线函数恒等式;hypergeometric function identities:超几何函数恒等式;hyperreal number:超实数;Iidentical:同一的;identity:恒等式;identity element:单位元;identity matrix:单位矩阵;idempotent:幂等;if:若;if and only if:当且仅当;iff:当且仅当;imaginary number:虚数;inclusion:包含;index set:索引集合;indiscrete space:非离散空间;inequality:不等式或不等;inequality of arithmetic and geometric means:平均数不等式;infimum:下确界;infinite series:无穷级数;infinite:无穷大;infinitesimal:无穷小;infinity:无穷大;initial object:初始对象;inner angle:内角;inner product:内积;inner product space:内积空间;integer:整数;integer sequence:整数列;integral:积分;integral domain:整数环;interior:内部;interior algebra:内部代数;interior point:内点;intersection:交集;inverse element:逆元;invertible matrix:可逆矩阵;interval:区间;involution:回旋;irrational number:无理数;isolated point:孤点;isomorphism:同构;JJacobi identity:雅可比恒等式;join:并运算;K格式:Kuratowski closure axioms:Kuratowski 闭包公理;Lleast element:最小元;Lebesgue measure:勒贝格测度;Leibniz's law:莱布尼茨律;Lie algebra:李代数;Lie group:李群;limit:极限;limit point:极限点;line:线;line segment:线段;linear:线性;linear algebra:线性代数;linear operator:线性算子;linear space:线性空间;linear transformation:线性变换;linearity:线性性;list of inequalities:不等式列表;list of linear algebra topics:线性代数相关条目;locally compact space:局部紧致空间;logarithmic identities:对数恒等式;logic:逻辑学;logical positivism:逻辑实证主义;law of cosines:余弦定理;L??wenheim-Skolem theorem:L??wenheim-Skolem 定理;lower limit topology:下限拓扑;Mmagnitude:量;manifold:流形;map:映射;mathematical symbols:数学符号;mathematical analysis:数学分析;mathematical proof:数学证明;mathematics:数学;matrix:矩阵;matrix multiplication:矩阵乘法;meaning:语义; measure:测度;meet:交运算;member:元素;metamathematics:元数学;metric:度量;metric space:度量空间;model:模型;model theory:模型论;modular arithmetic:模运算;module:模;monotonic function:单调函数;multilinear algebra:多重线性代数;multiplication:乘法;multiset:多样集;Nnaive set theory:朴素集合论;natural logarithm:自然对数;natural number:自然数;natural science:自然科学;negative number:负数;neighbourhood:邻域;New Foundations:新基础理论;nine point circle:九点圆;non-Euclidean geometry:非欧几里德几何;nonlinearity:非线性;non-singular matrix:非奇异矩阵;nonstandard model:非标准模型;nonstandard analysis:非标准分析;norm:范数;normed vector space:赋范向量空间;n-tuple:n 元组或多元组;nullary:空;nullary intersection:空交集;number:数;number line:数轴;Oobject:对象;octonion:八元数;one-to-one correspondence:一一对应;open:开集;open ball:开球;operation:运算;operator:算子;or:或;order topology:序拓扑;ordered field:有序域;ordered pair:有序对;ordered set:偏序集;ordinal number:序数;ordinary mathematics:一般数学;origin:原点;orthogonal matrix:正交矩阵;Pp-adic number:p进数;paracompact space:仿紧致空间;parallel postulate:平行公理;parallelepiped:平行六面体;parallelogram:平行四边形;partial order:偏序关系;partition:分割;Peano arithmetic:皮亚诺公理;Pedoe's inequality:佩多不等式;perpendicular:垂直;philosopher:哲学家;philosophy:哲学;philosophy journals:哲学类杂志;plane:平面;plural quantification:复数量化;point:点;Point-Line-Plane postulate:点线面假设;polar coordinates:极坐标系;polynomial:多项式;polynomial sequence:多项式列;positive-definite matrix:正定矩阵;positive-semidefinite matrix:半正定矩阵;power set:幂集;predicate:谓词;predicate logic:谓词逻辑;preorder:预序关系;prime number:素数;product:积;proof:证明;proper class:纯类;proper subset:真子集;property:性质;proposition:命题;pseudovector:伪向量;Pythagorean theorem:勾股定理;QQ.E.D.:Q.E.D.;quaternion:四元数;quaternions and spatial rotation:四元数与空间旋转;question:疑问句;quotient field:商域;quotient set:商集;Rradius:半径;ratio:比;rational number:有理数;real analysis:实分析;real closed field:实闭域;real line:实数轴;real number:实数;real number line:实数线;reflexive relation:自反关系;reflexivity:自反性;reification:具体化;relation:关系;relative complement:相对补集;relatively complemented lattice:相对补格;right angle:直角;right-handed rule:右手定则;ring:环;Sscalar:标量;second-countable space:第二可数空间;self-adjoint operator:自伴随算子;sentence:判断;separable space:可分空间;sequence:数列或序列;sequence space:序列空间;series:级数;sesquilinear function:半双线性函数;set:集合;set-theoretic definition of natural numbers:自然数的集合论定义;set theory:集合论;several complex variables:一些复变量;shape:几何形状;sign function:符号函数;singleton:单元素集合;social science:社会科学;solid geometry:立体几何;space:空间;spherical coordinates:球坐标系;square matrix:方块矩阵;square root:平方根;strict:严格;structural recursion:结构递归;subset:子集;subsequence:子序列;subspace:子空间;subspace topology:子空间拓扑;subtraction:减法;sum:和;summation:求和;supremum:上确界;surreal number:超实数;symmetric difference:对称差;symmetric relation:对称关系;system of linear equations:线性方程组;Ttensor:张量;terminal object:终结对象;the algebra of sets:集合代数;theorem:定理;top element:最大元;topological field:拓扑域;topological manifold:拓扑流形;topological space:拓扑空间;topology:拓扑或拓扑学;total order:全序关系;totally disconnected:完全不连贯;totally ordered set:全序集;transcendental number:超越数;transfinite recursion:超限归纳法;transitivity:传递性;transitive relation:传递关系;transpose:转置;triangle inequality:三角不等式;trigonometric identities:三角恒等式;triple product:三重积;trivial topology:密着拓扑;true:真;truth value:真值;Uunary operation:一元运算;uncountable:不可数; uniform space:一致空间;union:并集;unique:唯一;unit interval:单位区间;unit step function:单位阶跃函数;unit vector:单位向量;universal quantification:全称量词;universal set:全集;upper bound:上界;Vvacuously true:??;Vandermonde's identity:Vandermonde 恒等式;variable:变量;vector:向量;vector calculus:向量分析;vector space:向量空间;Venn diagram:文氏图;volume:体积;von Neumann ordinal:冯·诺伊曼序数;von Neumann universe:冯·诺伊曼全集;vulgar fraction:分数;ZZermelo set theory:策梅罗集合论;Zermelo-Fraenkel set theory:策梅罗-弗兰克尔集合论;ZF set theory:ZF 系统;zero:零;zero object:零对象;。
Distributions of discriminants of cubic algebras
TAKASHI TANIGUCHI
arXiv:math/0606109v1 [math.NT] 5 Jun 2006
Abstract. We study the space of binary cubic and quadratic forms over the ring of integers O of an algebraic number field k. By applying the theory of prehomogeneous vector spaces founded by M. Sato and T. Shintani, we can associate the zeta functions for these spaces. Applying these zeta functions, we derive some density theorems on the distributions of discriminants of cubic algebras of O. In the case k is a quadratic field, we give a correction term as well as the main term. These are generalizations of Shintani’s asymptotic formulae of the mean values of class numbers of binary cubic forms over Z.
1. Introduction Let k be a number field and O the ring of integers of k. Let r1 and r2 be the number of real and complex places of k. We denote by ∆k , hk and ζk (s) the absolute discriminant, the class number and the Dedekind zeta function of k, respectively. We put Ak := (Ress=1 ζk (s)) · ζk (2) 2r1 +r2 , +1 Bk := (Ress=1 ζk (s)) · 3r1 +r2 /2 ζk (1/3) 5 · 2r1 +r2 ∆k
力学_专业英语词汇
附录:常用专业词汇和用语汇总表Aabsolute temperatureabutment [ə'bʌtmənt] acceleration [æk,selə'reɪʃə n] accelerometer [æk,selə'rɔmit ə] action-at-a-distanceactive gageacoustic emitteracute angleadaptivity [ədæp'tivəti] aerospace engineering aggregate ['æɡriɡit] algebraic equationAlmansi strainallowable stressalternator ['ɔ:lt əneitə] amorphous [ə'mɔ:fəs] amphiphileamphiphileamplitude ['æmplitju:d] amplification factoramplitude stressamplitude of vibrationanelastic [ˌænilˈæsti] aneurysm ['ænjuriz əm] anisotropic [æn,ais ə'trɔpik]绝对温度n. 桥墩;桥基;桥台n. 加速度n. 加速度计远距离作用工作片声发射器锐角n. 适应性航空工程n. 偏析,聚合体代数方程阿曼西应变许用应力n. 交流发电机adj. 无定性的;非晶形的,无一定方向的n. 两亲物;两亲性分子n. 两亲物n. 幅值放大因子,放大倍数幅值应力振动幅值;振幅adj. 滞弹性的n. 动脉瘤n. 各项异性的anisotropy [ænai's ɔtrəpi] apparatus [,æp ə'reitəs] apparent stressappearance [ə'pirəns]n. aqueous ['e ikwi əs]arch [ɑ:tʃ]arm [ɑ:m]artificial heart v alveassembly [ə'sembli]Atomic Force Microscope autocatalytic [,ɔ:təukætə'litik] austenite ['ɔ:stə,nait] austenite crystalaustenitic transformation average stressaxil forceBback differencebacking ['bækiŋ]bar [bɑ:]basalt [bə'sɔ:lt]basis functionBauschinger effectbeam [bi:m]bedding planebenchmark testbend [bɛnd]n. 各项异性n. 仪器;装置表观应力出现,显露,外观adj. 水的;水成的n. 拱n. 臂人工心脏瓣膜n. 组集,集合原子力显微镜adj. 自动催化的n. 奥氏体奥氏体晶粒奥氏体转变平均应力轴向力向后差分n. 衬底;基底n. 杆;条;横木;栅n. 玄武岩基函数包辛格效应n. 梁,桁,横梁层理面基准测试vt.&vi . 弯曲,折弯bending moment 弯矩bending stress 弯曲应力biaxial strain 双轴应变biaxial stress 双轴应力biharmonic [baihɑ:'mɔnik]adj. 双调和的bionanomaterial n. 生物纳米材料block copolymer 嵌段共聚物bobbin ['bɔbin]n. 线轴body force 体力bolt [bəult]n. 螺栓bomb blast 炸弹爆炸borehole ['bɔ:,houl]n. 钻孔boron ['bɔ:rɔn]n. 硼boundary condition 边界条件boundary integral 边界积分brake drum 制动鼓;鼓式制动器brass [br ɑ:s]brittle fracturebrittle fracture mechanics buckle ['bʌkl]bushing ['buʃiŋ]Ccalcite ['kælsait] calibration [,kæli'brei ʃən] calibration constant cantilever ['kæntili:v ə] carbon steelCartesian coordinate n. 黄铜,黄铜色脆性断裂脆性断裂力学vi. 屈曲n. 绝缘套,轴衬n. 方解石n. 标定标定常数n. 悬臂;支架碳钢笛卡儿坐标cast iron 铸铁catastrophically [,kæt 'strɔfikli]adv. 灾难性地cavitation [,kævi'tei ʃ n] cellular patterncentered difference central crackcentripetal acceleration centroidal axischaotic [kei' ɔtik]chord [kɔ:d]civil engineering cleavage ['kli:vid ʒ]clay soil s ettleclosed formcluster ['klʌst ]civil engineeringcoarse-graincollapse [k 'læps] collinear [kɔ'linj ] collision [k 'liʒ n] colloid ['kɔlɔid]column ['kɔl m] columnar jointing combustion [k m'bʌstʃ n] complex frequency response compliance [k m'plai ns] composite material n. 气穴;成洞空泡中心差分中心裂纹向心加速度形心轴,质心轴adj. 混乱的;混沌的n. 弦;弦杆土木工程n. 分裂;裂隙粘土土层沉降闭型n. 群;群集土木工程粗粒的;大粒度的vi. 破坏,塌陷adj. 同线的;共轴的n. 相撞,碰撞n. 胶体adj. 胶状的n. 柱体,圆柱柱状节理n. 燃烧,氧化复频响应n. 柔度复合材料compressibility compressive stress computational mechanics concomitant [k n'kɔmit nt] concrete ['kɔnkri:t] conservation of momentum consistency [k n's ist nsi] constraint [k n'streint] contaminant [k n'tæm n nt] continuum mechanics contractile [k n'træktail] contracted notation contour ['kɔntu ] convection-diffusion convective velocity convergence [k n'v :dʒ ns] convergence ratecoolant ['k u:l nt]Coriolis acceleration corrosion [k 'r uʒ n] corrosion resistancecouple-stresscouple ['kʌpl]curvature ['k :v tʃ ] corrugate ['kɔrugeit] complex truss compound truss可压缩性压应力计算力学adj. 伴随的;共存的n. 混凝土,凝结物动量守恒n. 收敛性n. 约束n. 杂质;污染物连续介质力学adj. 可压缩的缩约记号n. 轮廓,等高线对流扩散对流速度n. 收敛收敛速度n. 冷冻剂科氏加速度n. 腐蚀,侵入耐蚀性;抗腐蚀性偶应力n. 力偶vt. 偶合n. 弯曲;曲率vt.&vi. 起皱纹复式桁架复氏桁架criterion [krai't i ri n] coplanar [k u'plein ] concurrent [k n'kʌr nt] configuration [k n,figju'rei ʃ n] critical form complementary function critical dampingconjugate ['kɔndʒ ,geɪt] constituent [k n's titju nt] constitutive theory constitutive equation constantan ['kɔnst ntæn] contrived variational principle corrosion fatiguecounter stresscrack [kræk]crack frontcrack initiationcrack nucleationcrack propagationcrack tipcreep [kri:p]creep fatiguecreep fracturecross-bracingcross jointn. 标准;准则adj. 共平面的adj. 同时发生的n. 构型,结构,形态危形余函数临界阻尼adj. 共轭的adj. 本质的,本构的本构理论本构方程n. 一种铜与镍的合金约束变分原理腐蚀疲劳对应力;相反应力vt.&vi 裂开,爆裂,断裂n. 裂纹裂纹前沿裂纹起始;起裂裂纹成核裂纹扩展裂尖vi. 蠕变n. 蠕变蠕变疲劳蠕变断裂交叉撑条横节理cross sectioncritical statecritical loadcrook [kruk] crookedness ['krukidnis] crush [krʌʃ]crystal latticecull [kʌl]culminate ['kʌlmineit] cycle numbercyclic loadingcyclic stresscylinder headDdamage ['dæmid ʒ] damping ['dæmpiŋ] damping factordashe linedead weightdealloying [,di: 'lɔiiŋ] decameter ['d ek ,mi:t ] defect [di'f ekt]deflect [di'f lekt]deflection [di'flek ʃ n] deform [di'fɔ:m] deformation [,di:f ɔ:'mei ʃ n] degree of freedom横截面临界状态临界载荷vi. 弯曲,成钩状n. 弯曲;扭曲vt.&vi 压碎;折皱晶格vt. 剔除n. 剔除vi. 达到顶点循环次数循环载荷循环应力汽缸盖n. 损伤vt 损坏adj. 阻尼阻尼系数虚线静止重量;自重;净重n. 脱合金成分腐蚀n. 十米n. 缺陷vt.&vi. 偏斜,转向n. 挠曲,挠度,偏斜vt.&vi. 变形n. 变形自由度degree of redundancy denominator [dɪ'nɔm ,neɪt ] density functional theory (DFT) derivative [di'r iv tiv] determinate [di't :minit] determinate structuredeviatoric planedeviatoric stressdie [dai]die-cast housingdifferential equation differentiation [,dif ,renʃi'eiʃ n] differential operatordiffusion coefficientdigital image correlation dimensionless [d 'menʃ nl s] dip [dip]dip coatingDirac delta functiondirection cosineDirichlet conditiondiscipline ['d isiplin, 'dis plin] discretedislocation [,disl 'keiʃ n] displacement [dis'pleism nt] displacement function dissipation principle冗余度n. 分母密度泛函理论n. 导数adj. 确定的,静定的静定结构偏平面偏应力n. 冲模, 钢模压铸壳微分方程n. 微分微分算符扩散系数数字图像相关adj. 无量纲n. 浸泡;浸;下沉;倾斜vt.&vi. 浸泡;浸;下沉;倾斜浸涂狄拉克δ 函数方向余弦狄利克来条件n. 学科离散的n. 位错n. 位移位移函数耗散定理divergence [dai'v :dʒ ns] dolerite ['dɔl rait] dolomite ['dɔl mait]drag [dræg]droplet ['drɔplit]ductile ['dʌktail]ductility [dʌk't iliti] Duhamel's integraldummy resistorduty c ycledyke [daik]dynamics [dai'næmiks] dynamic crack g rowthEearth-moving eccentricity [,eksen'trisiti] elastic [i'læstik] elastic limitelastic-perfectly plasticelastic-plasticelastic waveelasticity [,elæs'tis ti] elasticity matrixelastomer [i'læst m ] elastoplastic [i'læst plæstik] elasto-viscoplasticelectrical resistance strain gage element ['elim nt] n. 散度,分歧,分离n. 辉绿岩,粗粒玄武岩n. 白云石,石灰石n. 阻力n. 小滴;微滴adj. 韧性的,柔软的n. 韧性杜哈美积分假电阻;仿真电阻负载循环;工作周期n. 沟;渠;堤坝n. 动力学;力学;动态动态裂纹扩展运土的n. 离心;偏心率adj. 弹性的弹性极限理想弹塑性弹塑性的弹性波n. 弹性弹性矩阵n. 弹性体n. 弹塑性弹粘塑性的电阻应变计n. 构件,要素,成分elongate ['i:l ɔŋgeit]vt. & vi. 拉长;伸长;延长elongation [,i:l ɔŋ'geiʃən] n.伸长,延长embossing [im'b ɔ:s]vt. 压纹;模压加工emulsion [i'mʌlʃən]n.乳胶液;感光乳剂encapsulation [in,kæpsju'lei ʃən]n.包装;封装energy release rate 能量释放率engine block 发动机缸体engineering shear strainepoxy [ep'ɔksi]n.工程剪应变环氧树脂equation of continuity 连续性方程equation of stateequilibrium [,i:kwi'libri əm]n.状态方程平衡,均衡equilibrium equation 平衡方程equivalent nodal force 等效节点力error estimationesthetics [es'θetiks]n.误差估计美学etch [etʃ]vt.蚀刻ethanol ['eθə.nɔl, 'eθə.nəul]n.乙醇Euler-Lagrange equationexcavation [,eksk ə'veiʃən]n.欧拉-拉格朗日方程挖掘;发掘excitation [ek's ait ətiv]n.激励exigency [ek's id ʒənsi]n.紧急experimental stress analysis 实验应力分析explicit algorithmextensometer [,eksten's ɔmitə]n.显式算法伸长计;引伸计external force 外力externally statically determinate 外部静定extreme position 极端位置Ffailure ['feilj ]fallacious [f 'leiʃ s] fashion ['fæʃn]fatigue [f 'ti:g]fatigue curvefatigue failurefault [fɔ:lt]felt padferroelectric [,fer ui'lektrik] fiber reinforced composite fibrous ['f aibr s]finite elementfinite difference methodfixed-endflange [flænd ʒ]flexible ['fleks bl] adj. flexure ['flek ʃ]flow [fl u]fluidics ['f lu:idiks]fluid couplingfluid mechanicsflux [fl ʌks]foil strain gaugefolded plateforce [fɔ:s]n. 破坏,失效adj. 谬误的;不合理的vt. 制造,使成形n. 时尚n. 疲劳vi.&vt. (使)疲劳疲劳曲线疲劳破坏n. 断层毛毡坐垫adj. 铁电的纤维增强复合材料adj. 纤维的有限单元有限差分法固定端n. 凸缘;边缘;轮缘柔度的,可弯曲的,柔韧的n. 弯曲,曲率,挠度vi. 流动n. 应用流体学;射流技术液力联轴节流体力学n. 流量;熔化箔氏应变计褶皱板n. 力; 力量forced vibration formula ['fɔ:mjulə] formulate ['fɔ:mjuleit] forward difference fracture ['frækt ʃə]fracture mechanics fracture toughness frame [freim]free-cutting alloyfree vibration frequency of v ibration friction forcefringe [frind ʒ] fragment ['frægm ənt] functional ['fʌŋkʃənəl]Ggage factorgas turbine engine geology [dʒi'ɔlədʒi] gigahertz [ˈɡiɡəhə:ts] gradient ['g reidi ənt] grain [grein] granite ['grænit] graphite ['græfait] grid [grid]Griffith‘s problem gusset ['gʌsit]强迫振动n. 公式vt. 公式化,用公式描述向前差分n. 断裂vi.&vt. (使)断裂断裂力学断裂韧性n. 框架易切削合金自由振动振动频率摩擦力n. 条纹n. 碎片;破碎n. 泛函应变灵敏度系数汽轮机n. 地质学,地质情况n. 十亿赫兹, 千兆赫n. 梯度,倾斜度n. 晶粒n. 花岗岩,花岗石n. 石墨n. 格子Griffith 问题n. 角板;三角形衬料gust [gʌst]n. 阵风Hhanger ['hæŋə ] n. 挂钩, 悬挂物hardening characteristichardening rulehardness ['hɑ:dnis]harmonic [hɑ:'mɔnik]harmonic forceharmonic motionharness ['hɑ:nis]headway ['h edwei]heat conduction equation heterodyning ['h et ərəu,dainiŋ] heterogeneity [,hetərodʒi'ni:iti] heterostructure [het ərəu'strʌktʃə(r)] heuristic [hju ə'r istik]hierarchical [,haiə'rɑ:kikl] hierarchicalorganizationhigh-cycle fatiguehigh-frequency componenthigh-strengthholder ['həuldə]holography [həu'lɔgrəfi]holy grailhomogeneous [,homə'dʒinɪəs]homogeneous equationHooke's law硬化特性强化准则,强化定律n. 硬度,硬性adj. 简谐的谐力简谐振动n. 马具;管理;控制n. 前进;航行速度热传导方程n. 外差作用n. 非均匀性n. 异质结构adj. 启发式的;探索的adj. 按等级划分的分层结构高周疲劳高频分量高强度n. 固定器;支架n. 全息照相技术圣杯;圣盘adj. 同质的, 均匀的, 齐次的n. 谐波其次方程胡克定律hostile environment hydrodynamics ['haidr udai'næmiks] hydrostatic pressurehysteresis [,hist 'ri:sis] hysteresis loopIideal gasidentity matrixigneous ['i gni s]imaginary partimaging methodimplicit algorithmimpregnate [im'p regneit]impress [im'p res]impulse-response function inasmuch [in z'mʌtʃ] incompressible fluid indeterminate [,indi't :minit] indeterminate structure indiscriminately [indi's kriminitli] inertia [in' :ʃi , in' :ʃ ] infinitesimal [,infini'tesim l] initial displacementinitial residual stressinitial velocityinitial yield surfaceinorganic ['in ɔ:'gænik]恶劣环境n. 水动力学静水压力n. 滞后(现象),滞后作用迟滞环;滞后回线理想气体单位矩阵adj. 火成的;火的虚部成像法隐式算法vt. 注入,使充满;adj. 充满的n. 印象;特征;传送vi. 印象;传送脉冲响应函数adv. 由于;因为不可压缩流体adj. 不确定的, 超静定的超静定结构adv. 无差别;任意地n. 惯性adj. 无限小的初始位移初始残余应力初始速度初始屈服面adj. 无机的;非自然生长的in-planeI-shaped steelinstability [,inst 'b iliti]insulating backingintegral ['i ntigr l]integral equationintegration [,inti'grei ʃ n] interferometry [,ɪnt f 'rɔmɪt ] interior cycleinternal forceinternal variableinternally statically indeterminaten interpolation function interdisciplinary [,int :'d isiplin ri] invariant [in'v ɛ ri nt] irreducible formulation面内工字钢n. 不稳定绝缘基n. 积分;整数积分方程n. 积分n. 干涉测量法内循环内力内变量内部静定插值函数adj. 学科间的;学科交叉的n. 不变量; adj. 无变化的,不变的不可约型公式isothermal ['aisu'θ:m l] adj. 等温的n. 等温线isotropic [,ais 'trɔpik] isotropic hardening isotropy [ai'sɔtr pi] iterative ['it r tiv]Jjaw [dʒɔː]jelly ['dʒeli]J integraljoint [dʒɔint]adj. 各向同性的各项同性强化n. 各向同性adj. 迭代的n. 虎钳n. 胶状物J 积分n. 节理Kkinematic hardening kinematics [,kin ə'mætiks] kinetic energykinetic frictionLLagrangian [lə'grɑ:ndʒiən] Lagrange methodLagrange multiplierLame constantslamina ['læm ənə]laminar ['læmin ə] laminate ['læmineit] lamination [,læmi'nei ʃən] landslide ['lændslaid] Laplace operatorlarge-scale parallel computing lateral forcelattice ['lætis]layer ['lei ə]least energy dissipation principle lifetime ['l aiftaim]linear elastic fracture m echanics linear interpolation linearized theorylipid ['l ipid]liquid crystallithological [li'θɔ lədʒikəl ]运动强化n. 运动学;动力学动能动摩擦adj. 拉格朗日的拉格朗日方法拉格朗日乘子拉梅常数n. 薄板;薄片adj. 层流n. 薄板;层压板;层板n. 制成薄板;薄板;层状体n. 滑坡拉普拉斯算符大规模并行计算横向力n. 格子;点阵n. 层最小能量耗散原理n. 寿命线性弹性断裂力学线性插值线性化理论n. 脂质;油脂液晶adj. 岩性的,岩石的Lode parameter longevity [l ɔn'dʒeviti]Lode 参数n. 长寿;寿命longitudinal ['lɔndʒi'tju:dinəl]adj. 纵向的,经度的longitudinal shear (or antiplane) mode of cracking 裂纹纵向剪切(反对称)模式longitudinal strainlow-carbon steellow-cycle fatiguelowly ['ləuli]Mmachinability [məʃi:nə'b iliti] macro-mechanics macroscopic crackmagnetic dotmagnesium ['mæg'ni: ʃiəm] mandrel ['mændr əl] martensite ['mɑ:tən,zait] martensitic transformation masonry ['meisnri]mass-spring-damper system material derivative mathematical statementmatrix ['m eitriks]matrices [ 复数] ['m eitrisi:z] mean free pathmeasurable ['me ʒərəbəl] mechanics [mi'kæniks] mechanics of fluids纵向应变低碳钢低周疲劳adj. 贫贱的;地位低下的n. 可切削性;机械加工性宏观力学宏观裂纹磁点n. 镁n. 心轴;拉延n. 马氏体马氏体转变n. 石造建筑;石造工程质量-弹簧-阻尼系统物质导数数学表达式,数学描述n. 矩阵;基体(材料)平均自由程adj. 可测量的n. 力学流体力学mechanistic [,mek ə'nistik] member ['memb ə] meso-mechanics mesostructure adj. 机械学的;机械的n. 构件细观力学n. 细观结构;中构造metallurgical [,met ə'lə:dʒikl] metal formingmetamorphic [,met ə'mɔ:fik] method of weigted residual micelle [mai'sel] microcavitation adj. 冶金的金属成型adj. 变性的;变质的加权残值法n. 微团;胶束n. 微空隙microcrack ['maikr əukræk, 'maikr əu.kræk] n. 微裂纹micro-electro-mechanical micro-mechanics microscopic ['maikr ə'skɔpik] microvoid [,maikr əu'vɔid] military engineeringmining ['m ainiŋ]mis-foldingmixed formulation微机电的微观力学adj. 显微的,微观的n. 微孔军事工程学n. 采矿;矿业错折叠混合型公式mnemonic [ni:'m ɔnik]adj. 记忆的n. 记忆方法modal analysismodality [məu'dæliti] modulus ['mɔdjuləs];moduli [ 复数] ['mɔdʒə,lai] modulus of elasticity modulus of volume expansion Mohr-Coulomb failure criterion模态分析n. 样式;形式;形态n. 模量,系数弹性模量体积膨胀模量摩尔-哥伦布破坏准则moire [mwɑ:]moire i nterferometry molecular dynamics (MD) moment of inertia momentum [məu'ment əm] monolithic [,mɔnə'liθik] monotonic [mɔnəu'tɔnik] Monte Carlo (MC)mount [maunt]mud [mʌd]Multi Body Dynamics (MBD) multiphase flowmultiplier ['mʌltəplai ə] multi-scalemyriad ['miri əd]Nnanocomposite nanofabrication nanoholenano-mechanics nanoscale nanostructurenanowirenatural frequencynatural variational principle Navier‘s equation necessaryconditionn. 云纹云纹干涉法分子动力学惯性矩n. 动量,冲量adj. 独石的;单体的;整体的adj. 单调的;单斜晶体的蒙特卡罗vt. 安装n. 泥;泥浆多体动力学多相流n. 乘数多尺度n. 无数;极大数量adj. 无数的;极大数量的n. 纳米复合材料n. 纳米加工n. 纳米空洞纳米力学n. 纳米尺度n. 纳米结构n. 纳米线固有频率自然变分原理纳维方程必要条件necking zoneNeumann conditionneutral axisNewtonian fluidNewton's first lawNewton's second lawnitrocellulose ['n aitr u'seljul us]nodal displacement nondimensional ['nɔndi'men ʃ n l]nonhomogeneous ['nɔnhɔm 'dʒi:nj s] nonlinearity [,nɔnlini'æriti]normal forcenotwithstand [,nɔtwiθ'stændiŋ] numerator ['nu:m ,reɪt , 'nju:-]non-cyclic load nonhomogeneous ['nɔnhɔm 'dʒi:nj s] nonstationary ['nɔn'stei ʃ n ri] nondestructive evaluation nonviscousnon-Newtonian fluidOobjective functionoblique [ b'l i:k]offshore structureoff-latticeoff-roadopening mode of cracking紧缩区域纽曼条件中性轴牛顿流体牛顿第一定律牛顿第二定律n. 硝化纤维素节点位移n. 无量纲adj. 无量纲(的)adj. 非均质的;非齐次的;多相的n. 非线性法向力prep.尽管;虽然n. 分子非循环载荷adj. 非均匀的adj. 不稳定的;非定常的无损评价adj. 非粘性,无粘性非牛顿流体目标函数adj. 斜的;倾斜离岸结构非格子越野的裂纹张开模式operator ['ɔp ,reit ] optimization [,ɔptimai'zei ʃ n] optimize ['ɔptimaiz] optimum ['ɔptim m] ordinary integralordinary di fferential equation organic [ɔ:'gænik] orthotropic [, ɔ:θ 'trɔpik] oscillation [, ɔsi'lei ʃ n] ostensibly [ɔs'tens bli]out-of-planeout-of-planeoutperform [,autp 'fɔ:m] overstress [' uv 'stres, . uv 's tres] oxidize ['ɔksi,daiz]Pparadigm ['pær daim]partial differential equation particular integralparticulate [p 't ikjulit] particulate-reinforcedcomposite pendulum ['pendjul m] period of vibration permanent deformation perseverance [,p :si'vi r ns] phase [feiz]phase anglen. 算符n. 优化vt.&vi. 优化adj. 最优的寻常积分常微分方程adj. 有机的;有机物质adj. 正交的n. 振荡adv. 表面上地;外表上地n. 面外面外vt. 优于;超额完成n. 过应力vt.& vi. (使)氧化n. 范例偏微分方程特积分;特解adj. 微粒的颗粒增强复合材料n. 单摆,摆锤振动周期永久变形n. 不屈不挠;毅力n. 相相位角phenolics [fi'n ɔliks] photoelastic [fəutəui'læstik] photoelastic coating photoelastic stress analysis piezoelectric [pai,i:z əui'lektrik] pile [pail]pinned endpin jointpiston ['p ist ən]pitch [pit ʃ]pixelateplane-strainplane stressplastic ['plæstik]plastic flowplastic waveplasticity [plæs'tisiti] ploughman ['plaum ən] pneumatic [nju:'mætik] Poisson effectPoisson‘s ratiopolar coordinatepolarize ['pəulə,raiz] polycrysta l ine [pɔli'krist əlain] polymer ['pɔlimə]post [pəust]posteriori error estimation potential energyn. 酚醛树脂adj. 光弹性的光弹性涂层光弹性应力分析adj. 压电的n. 柱,桩,堆销轴支承铰接;关节接头n. 活塞n. 沥青vt. 使...像素化;将...分解成像素平面应变平面应力adj. 塑性的塑性流动塑性波n. 塑性n. 庄稼汉adj. 气动的;充气的伯松效应泊松比极坐标vi.&vt. (使)极化n. 多晶体n. 聚合物n. 柱后验误差估计势能predate [pri:'d eit] vt. 在日期上早于prestrain [pri:'strein] n. 预应变primary structure 主要结构primary unknowns 主要未知量principal material axis 材料主轴principal stress 主应力printed circuit technique 印刷电路技术product乘积proliferation [pr ,lif 'reiʃn] n. 增殖;扩散proportional limit 比例极限protein folding 蛋白质折叠pseudo-stochastic 伪随机的pulsating load 脉动载荷pulse excitation 脉冲激励pump [pʌmp]n. 泵punch [pʌntʃ]vt. 钻孔pure shear 纯剪切Qquadratic [kw 'drætik] adj. 二次的quadratic functional 二次泛函quantum mechanics 量子力学quasi-static 准静态,拟静态Rrate-dependednt 率相关的rateofdilation 膨胀率Rayleigh wave 瑞利波reaction [ri'æk ʃn] n. 支反力reactor pipingred blood cellredundant constraintreference axisreinforced concretereliability [ri,lai ə'biliti]reloading [ri:'l əudiŋ]rendition [ren'di ʃə n]repertoire ['repətwɑ:] Representative Volume Element (RVE) reservoir ['rezəvwɑ:]residual thermal stressresinous ['r ezin əs]resin-coatedresonance ['rezənənt]response [ri'sp ɔns]resultant [ri'z ʌltənt]resultant momentumretool [ri:'t u:l]reversible [ri'və:səbl]rib [rib]rigid-bodyrigid framerigidity [ri'd ʒiditi]rise timerivet ['rivit]rock foundationrock mechanics反应堆管道红血球多余约束参考坐标系增强混泥土,钢筋混凝土n. 可靠性,可靠度vt.&vi. 重复加载n. 解释;演奏;投降n. 全部节目;全部技能代表性体积单元n. 蓄水库残余热应力adj. 树脂的adj. 树脂涂层的adj. 共振n. 响应,反应,回答adj. 合成的,组合的合力矩vi.&vt. 重组;重新装备adj. 可逆的n. 肋刚体刚架n. 刚度,刚性上升时间n. 铆钉;铆接岩石基岩石力学rosette [r u'z et]rotate [r u't eit]rotation [r u'teiʃ n]round-off errorrubric ['ru:brik]Ssag [sæg]saturated soilscalar ['s keil ]Scanning Electron Microscope (SEM) scanning modeScanning Tunneling Microscope second order derivativescouring ['s kau riŋ]seed [si:d]sedimentary [,sedi'ment ri] seismic waveseismological [,saizm 'lɔdʒikl] seismology [saiz'mɔl dʒi]sequel ['s i:kw l]sewage ['s ju:id ʒ]shadow moireshape functionshape m emory alloy ( SM A) shape memory effect ( SM E) shape optimizationshearing strain n. 玫瑰花形物vi. 转动,旋转n. 转动,旋转舍入误差n. 类;标题;红色的n. 弧垂,垂度饱和土n. 数量;标量扫描电子显微镜扫描方式扫描隧道电子显微镜二阶导数n. 擦洗;冲刷vt. 崔云化雨adj. 沉积的;沉淀性的;沉淀作用造成的地震波adj. 地震学上的n. 地震学n. 结局;后果n. 污水,污秽物影栅云纹形状函数形状记忆合金形状记忆效应形状优化剪切应变shearing stress 剪切应力shock spectrum 冲击谱shock wave 冲击波;激波shrinkage 收缩;减少;损耗silicone gel 硅凝胶silly putty 弹性橡胶泥SImetricsystem 国际单位制simply supported beam 简支梁simple truss 简支桁架simultaneous [,saim l't einj s] adj. 同时发生的;同步的simultaneous equation 联立方程single-DOF 单自由度singularity [,siŋgju'læriti] n. 奇异性sintering ['sint ri vi. 烧结ŋ]sinusoidal function 正弦函数siting ['s aitiŋ]n.建设地点sizing optimization 尺寸优化slab [slæb] n.平板;厚板slenderness ['s lend nis] n.细长;细长度sliding ['slaidiŋ]n.滑移slip [slip] n.滑移slip plane 滑移面soil foundation 土基础soil mechanics 土力学solder ['sɔld ] n.焊接剂;接合剂solid mechanics 固体力学specified displacement 给定位移specified surface traction 给定面力speckle interferometry spring constantspring-supportedstability [st ə'b iliti] stainless steelstatical indeterminancy static equilibriumstatic fatiguestatic frictionstatics ['stætiks] stationarity [stei ʃə'næriti] stationary ['steiʃənəri] steady-statesteel-framedstep excitation散斑干涉法弹簧常数弹簧支撑n. 稳定,稳定性不锈钢静不定静力平衡静态疲劳静摩擦n. 静力学n. 稳定性;稳态adj. 稳定的;不动的稳态钢架阶跃激励stereological [sti əri'ɔlədʒi, ster ə'ɔlədʒi]adj. 体视学;立体测量学stereoscopic [,steri əs'kɔpik] stiffen ['s tifn]stiffness ['s tifnis]stocky ['stɔki]strain [stren]strain energystrain gagestrain-induced quantum dot strain rateadj. 有立体感的vt.&vi. 刚化;使坚硬n. 刚度adj. 矮壮的;结实的n. 应变应变能应变计应变诱发量子点应变率strength [streŋθ]n. 强度strength-to-weight ratio 比强度stress [str ɛs]n. 应力stress concentratorstress concentrationstress c orrosion crackingstress distributionstress gradientstress-induced martensite (SIM) stress intensity factorstress-matrixstress ratiostress-strain diagramstress tensorstress wavestretch [stret ʃ]strike [straik]structural optimization structural steelsub-disciplinesubdomainsubmicron ['sʌb'maikrɔn]substrate ['sʌbstreit] sufficient conditionsuper-hydrophobic superelasticity应力集中点应力集中应力腐蚀起裂应力分布应力梯度应力诱发马氏体应力强度因子应力矩阵应力比应力应变图应力张量应力波vt. & vi. 伸展,拉紧,.延伸vi. 走向结构优化结构钢分支学科n. 子域n. 亚微细米;亚微细粒adj. 表面活性剂的n. 基片;基底充分条件超蔬水n. 超弹性superposition [ˌsju:p p support [s 'pɔ:t] surface force ˈsurface traction ziʃ n] n. 叠加,重叠,叠合n. 支撑表面力表面力surfactant [s :'fækt nt] symmetric [si'm etrik]Ttangent matrixTaylor series expansionT-beamtectonophysics [,tekt n u'f iziks] tensile stresstensile strengthtensile-testing machinetensile test specimentension ['tenʃ n]tensor ['t ens ]tensor-transformation theoretical and applied mechanics thermal camerathermal expansion coefficient thermal stressthermo-fatigue n. 表面活性剂adj. 对称的切线矩阵泰勒级数展开T 型梁n. 构造物理学, 地壳构造物理学拉应力拉伸强度拉伸试验机拉伸试样n. 张量,张力,拉力n. 张量张量转换理论与应用力学热感照相机热膨胀系数热应力热疲劳thermography [θ :'mɔgr fi] n. 温度记录法;热熔印刷thermomechanics [θ :m umi'kæniks] thermosetting resin n. 热力学热固性树脂thrust [θrʌ st] vt.&vi. 抛掷tillage ['tilid ʒ] time derivative time lag n. 耕种,耕作时间导数时间滞后titanium [tai't eini m] n. 钛tolerating straintomographic [təu'mɔgrəfi] topography [tə'pɔgrəfi]topology optimizationtrade-offtransducer [træns'dju:s ə]transient termtransport equationTransmission Electron Microscope (TEM) transverse shear mode of cracking transversely isotropicTresca yield criteriontrial and errortrial functiontriaxiality [traiæksi'æliti]triclinic [trai'k linik]true stresstruncation errortruss [trʌs]turbulent flowtunable ['tju:n əbl]turbulent ['tə:bjul ənt]twinned boundarytwo-span beamUubiquitous [ju:'bikwit əs]ultimate tensile strengthultrasonics [,ʌltrə'sɔniks]容许应变n. X 线断层摄影术;X 线体层照相术n. 地质,地形学拓扑优化n. 权衡;取舍n. 传感器暂时项;衰减项输运方程;迁移方程透射电子显微镜裂纹横向剪切模式横观各向同性特雷斯加屈服准则试错试函数n. 三轴;三维adj. 三斜晶系的真实应力截断误差n. 桁架湍流流动adj. 可调谐的adj. 湍流的孪生边界双跨梁adj. 到处存在的最大拉伸强度n. 超声波, 超声学unbalance ['ʌn'bæl ns] unconditionally stable undamped [ʌn'dæmpt] uniaxial strainuniaxial stressuniaxial tensionunit impulseunload ['ʌn'l ud]upwind schemeVvacuum deposition technique variable ['vɛ ri bl]variational principlevector ['vekt ]vibration [vai'b rei ʃ n] vibratory ['vaibr t ri] Vierendeel trussvirtual designvisco-elasticviscoelastic wave viscoelasticity ['visk uilæs'tisiti] visco-plasticviscoplastic potentialviscosity [vis'k ɔsiti] viscosity coefficientviscous ['visk s]viscous dampingn. 不平衡无条件稳定的adj. 无阻尼的单轴应变单轴应力单轴拉伸单位脉冲vt.&vt. 卸载迎风格式真空淀积技术n. 变量adj. 可变的变分原理n. 矢量;向量n. 振动,震动adj. 振动的空腹桁架;弗伦第尔桁架虚拟设计粘弹性的粘弹性波n. 粘弹性粘塑性的粘塑性势n. 粘性粘性系数adj. 粘性的粘性阻尼。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. Introduction Let Γ be a torsion-free discrete group. It is a well-known conjecture that the Whitehead group W h(Γ) of Γ must vanish. A major tool in the pursuit of this conjecture has been the Fibered Isomorphism Conjecture (FIC ) of T. Farrell and L. Jones. The FIC asserts that the algebraic K theory groups of ZΓ may be computed from the corresponding algebraic K -theory groups of the virtually cyclic subgroups of Γ (see [12] or the Appendix for a precise formulation). When FIC holds for a torsion-free group, its Whitehead group vanishes. FIC has been verified in many instances: for discrete cocompact subgroups of virtually connected Lie groups by Farrell and Jones [12]; for pure braid groups by Aravinda, Farrell, and Roushon [1]; for braid groups by Farrell and Roushon [11]; for finitely generated Fuchsian groups by Berkove, Juan-Pineda, and Pearson [2]; and for Bianchi groups by Berkove, Juan-Pineda, Farrell, and Pearson [3]. In this paper we investigate when FIC holds for various mapping class groups. The pure mapping class group Γi g,r is the group of path components of orientation preserving self-diffeomorphisms of an orientable surface of genus g , with i punctures and r boundary components. We require that these diffeomorphisms pointwise fix the punctures and are the identity on the boundary components. The full mapping class group is defined similarly, but includes diffeomorphisms which permute the punctures.
arXiv:math/0305425v1 [math.KT] 29 May 2003
ALGEBRAIC K-THEORY OF MAPPING CLASS GROUPS
ETHAN BERKOVE, DANIEL JUAN-PINEDA, AND QIN LU Abstract. We show that the Fibered Isomorphism Conjecture of T. Farrell and L. Jones holds for various mapping class groups. In many cases, we explicitly calculate the lower algebraic K -groups, showing that they do not always vanish.
1991 Mathematics Subject Classification. 20F36, 19A31, 19B28, 19D35, 19J10. Key words and phrases. Mapping Class Group, Lower Algebraic K-Theory, Farrell-Jones Isomorphism Conjecture, Stronglion Space, Fixed Point Data.
ALGEBRAIC K-THEORY OF MAPPING CLASS GROUPS
3
2. An extension of the Fibered Isomorphism Conjecture Before we state our extension of the theorem, we introduce some background material. We start with two classes of groups that figure prominently in our analysis. Definition 2.1. A group is called virtually cyclic if it contains a cyclic group of finite index. In particular, a finite group is virtually cyclic. All infinite virtually cyclic groups contain an infinite cyclic group of finite index. Our arguments also involve a particular type of torsion-free group whose definition appears in a paper by Aravinda, Farrell and Roushon. Definition 2.2. [1] A discrete group Γ is called strongly poly-free if there exists a finite filtration by subgroups 1 = Γ0 ⊆ Γ1 ⊆ · · · ⊆ Γn = Γ such that the following conditions are satisfied: (1) Γi is normal in Γ for each i. (2) Γi+1 /Γi is a finitely generated free group for all i. (3) For each γ ∈ Γ there is a compact surface F and a diffeomorphism f : F → F such that the induced homomorphism f# on π1 (F ) is equal to cγ in Out(π1(F )), where cγ is the action of γ on Γi+1 /Γi by conjugation and π1 (F ) is identified with Γi+1 /Γi via a suitable isomorphism. The third condition says that the algebraic action of γ on Γi+1 /Γi can be geometrically realized. Remark 2.3. It is implicit in the Appendix of [11] that the finite product of strongly poly-free groups is also strongly poly-free. Our results build on a few known theorems. The first two are theorems of Farrell and Jones. Theorem 2.4. [12, Proposition 2.2] Let p : Γ → G be an epimorphism of groups such that FIC is true for G and p−1 (S ) where S ranges over all virtually cyclic subgroups of G. Then FIC is also true for Γ. Theorem 2.5. [12, A.8] If FIC holds for a group Γ, then FIC also holds for all subgroups of Γ. We will also use Farrell and Roushon’s Main Theorem, which applies to extensions by strongly poly-free groups. Theorem 2.6. [11] Let Γ be an extension of a finite group by a strongly poly-free group (the finite group is the quotient group). Then Γ satisfies FIC.
Theorem. 5.8. Let Γ be a pure mapping class group of genus g = 1. ˜ i (ZΓ) = 0 with two exceptions: when Γ = Γ0 Then for all i ≤ 1, K 1 or 1 Γ1 , there is one non-vanishing K -group, namely K−1 (ZΓ) = Z. The techniques we develop in the paper also allow us to study fundamental groups of configuration spaces. This paper is organized as follows. In section 2, we give the basic techniques and results that allow us to apply FIC to mapping class groups. In section 3 we prove FIC for various pure mapping class groups. We develop these techniques further in section 4 to study the case of full mapping class groups. We then use the implications of FIC to perform explicit K -theory calculations in section 5. In section 6 we mention how our techniques apply to other groups, particularly the fundamental groups of configuration spaces. We mention in the appendix the setup for FIC and some immediate consequences of its validity. Acknowledgements. This research was supported in part by grants CONACyT: 40057-F and DGAPA-UNAM: IN104601. We would like to thank Fred Cohen, Tom Farrell, and Jon Pakianathan for helpful comments and suggestions. The first author was a visitor at Lehigh University while this paper was written; he would like to thank the Department of Mathematics at Lehigh for its generosity and kind hospitality.