多孔石墨烯的制备与应用研究进展
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多孔石墨烯的制备与应用研究进展
白瑞; 牛永安; 刘皓; 卢翠英; 高平强; 刘丽娜
【期刊名称】《《河南科学》》
【年(卷),期】2019(037)009
【总页数】7页(P1408-1414)
【关键词】石墨烯; 多孔石墨烯; 制备方法; 应用
【作者】白瑞; 牛永安; 刘皓; 卢翠英; 高平强; 刘丽娜
【作者单位】榆林学院化学与化工学院陕西榆林 719000; 沈阳化工大学材料科学与工程学院沈阳 110000
【正文语种】中文
【中图分类】O646
石墨烯[1-4],一种由碳原子以sp2杂化形成呈六边形蜂巢晶格的二维碳纳米片层,作为碳家族(包括无定型碳、石墨、金刚石、富勒烯、碳纳米管、石墨炔等)中的一名新成员,因其具有独特的电子迁移性、超大的比表面积、高的机械强度、优异的耐腐蚀性和表面化学结构易调控性等特性而受到了广泛的关注,在微纳电子器件、吸附、催化、能量存储与转化等领域崭露头角[5-8]. 然而,原始的石墨
烯相对来说价格昂贵、水溶性差、有效比表面积低、吸附能力和可回收性低,以及复杂的后处理限制了它们的实际应用. 因此,许多研究者受石墨烯优异性能的启发,对石墨烯相关材料进行了广泛的实验和理论研究.
石墨烯被视为构建其他sp2碳质材料的基本结构单元. 通过石墨烯的组装获得石墨烯相关材料不仅能实现对石墨烯微观结构和宏观织构的调控,同时也能衍生出独特的新性质,将会极大拓展石墨烯的应用范围[9]. 因此,越来越多的学者开始研究如何通过石墨烯的结构组装来控制材料形貌和内部架构,从而达到满足各种应用的目的. 多孔石墨烯[10-11]在这种背景下应运而生.
1 多孔石墨烯的制备
多孔石墨烯是一类具有纳米级孔结构的石墨烯相关材料[12]. 近年来,为了满足不同应用的需要,人们致力于开发各种形貌、结构和性能的多孔石墨烯的合成方法. 目前一般将其制备方法分为自组装法、模板辅助法和直接沉积法三大类[13]. 1.1 自组装法
自组装法是获得三维多孔石墨烯最常用的策略之一. 目前已经开发了许多基于该策略的方法. 自组装法[14]是指基本结构单元(分子、纳米材料、微米或更大尺度的物质)在一定条件下自发形成有序结构的一种技术. 在自组装的过程中,基本结构单元在基于非共价键的相互作用下自发的组织或聚集为一个稳定、具有一定规则几何外观的结构.
但是,石墨烯液相分散性差、化学活性低,因此以石墨烯为原料的进行自组装存在一定的困难. 作为石墨烯重要的衍生物(氟化石墨烯[15-16]、氢化石墨烯[17-18]和氧化石墨烯[19-20])之一——氧化石墨烯,由于其片层之间的范德华吸引力与其表面官能团的静电排斥力之间存在力平衡,这使得氧化石墨烯在水性溶剂中很好地分散.
与石墨烯相比,氧化石墨烯克服了上述缺点,是实现石墨烯自组装的优选材料. 通过氧化石墨烯分散体的凝胶化过程和后还原过程来产生三维多孔石墨烯网络状结构是最典型的自组装方法. 目前引发氧化石墨烯分散体凝胶化的方法很多,如加入交联剂(如PVA、DNA、金属离子、聚合物及有机分子等)、加入弱还原剂(如硼
氢化钠、柠檬酸钠、维生素C、氢碘酸等)改变分散体系的pH或者对分散体进行超声波处理[21]. 除了凝胶化这一基本方法外,氧化石墨烯片层的自组装还可以通过冷冻干燥法、电化学沉积法、流延成型法、真空抽滤法和溶胶凝胶法等其他方法实现. 然后通过水热法或者化学还原法获得还原石墨烯(rGO)结构的三维多孔石墨烯. Kumar[22]等采用一锅微波法合成了三维Fe3O4/rGO杂化材料,如图1所示. 研究表明这种杂化材料的三维网状结构是由Fe3O4纳米粒子诱导形成的,且该材料具有优异的电化学性质,比电容达455 F/g、扫描速度达8 mV/s以及良好的循环稳定性.
图1 一锅微波法合成三维Fe3O4/rGO杂化材料流程图[22]Fig.1 The procedure of Fe3O4/rGO composite materials synthesized by one-pot microwave approach[22]
1.2 模板辅助法
模板法是制备微孔或中孔最有效的途径之一. 与自组装法相比,采用模板辅助法可以更准确地控制多孔石墨烯的微观形貌和孔结构尺寸. 目前已经报道的制备多孔石墨烯的模板辅助法有化学气相沉积(CVD)法、冰模板法、高分子聚合物法、水滴模板法等.
Li[23]以NiCl2·6H2O作为多孔Ni骨架的催化剂前躯体,在600 ℃、Ar/H2气氛中还原前躯体形成3D多孔交联的Ni骨架,以多孔Ni骨架为模板,使用甲烷为碳源,采用快速CVD法在几秒钟到几分钟内进行高效生长,在生长过程中经高温退火,最后通过在FeCl3/HCl溶液中刻蚀掉模板制备了高密度的多孔石墨烯(3D-GMO),如图2所示. 这种3D-GMO具有高电导率(12 S/cm)、大比表面积(560 m2/g)以及对重金属离子具有超高的吸附容量(Cd2+434 mg/g、Pb2+882 mg/g、Ni2+1683 mg/g、Cu2+3820 mg/g)和快速解析的特点. 另外,泡沫镍、阳极氧化铝(AAO)、MgO、金属纳米结构甚至金属盐也可作为模
板制备3DGM.
图2 商业镍泡沫生长石墨烯和多孔交联镍生长石墨烯的比较[23]Fig.2 Comparison between commercial Ni foam-grown graphene and our porous cross-linked Ni-grown graphene[23]注:a,b是泡沫镍去除前后;c,d多孔交联镍刻蚀前后.
此外,还可以另一种方便的方式获得三维多孔石墨烯. 通过将氧化石墨烯片组装到
3D模板上,然后将氧化石墨烯还原为还原石墨烯. 目前已经发展了许多组装技术,如电泳沉积、浸渍涂覆、高压釜回流模板辅助冷冻干燥等. 这些方法中使用的模板除了金属基底还可以是非金属基底,已报道的非金属包括二氧化硅纳米颗粒(NPs)、聚苯乙烯(PS)微球、聚甲基丙烯酸甲酯(PMMA)微球、Nafion支架、纤维素和纺织纤维等都可以作为制备了三维多孔石墨烯的模板[24-25].
图3 模板法制备的三维空心碳结构的过程Fig.3 The procedure for the preparation of three-dimensional hollow carbon structures by template method
Han[26]等报道了一种具有高效吸附性能的三维多孔石墨烯材料的制备方法. 通过采用模板辅助冷冻法和热还原法制备了具有优异热稳定性和大比表面积的亚微米级多孔石墨烯材料. Moon[27]等报告了一种合成良好控制的三维碳纳米结构方法,如图3所示. 他们采用氧化石墨烯为原料、球形的氧化铝包覆二氧化硅(ACS)为模板,通过氧化石墨烯在ACS的氧化铝催化位点聚合,然后在高温900 ℃、Ar 气氛下碳化形成石墨烯填充球形模板周围的复合物,最后HF刻蚀获得了三维空心碳机构的方法. 他们还发现根据氧化石墨烯的含量可以系统地调整复合材料的形貌(从层状复合材料到三维中孔结构,再到微孔材料). 由此获得的高比表面积和高孔隙率的复合材料在高电流密度下能显著提高其电容.
1.3 直接沉积法
通过在导电衬底上直接沉积获得三维多孔石墨烯结构是一种简单的方法. 目前已经有研究者采用等离子体技术在金和不锈钢衬底上进行直接沉积,获得了牢固附着在衬底上的三维多孔石墨烯. 这种多孔石墨烯在片层边缘有众多的活性位点适合于传感应用. Mao[28]等制备了一种生物传感器,该生物传感器由在金电极上垂直生长的石墨烯片和抗体偶联物组成,可以提供免疫球蛋白2 ng/mL的低检测限. 此外,具有设计特征的金属衬底也可以容易地控制三维多孔石墨烯结构,这可能使得能够针对不同的应用构建各种传感器结构.
除上述三类办法外,在最近的一项工作中,Niu[29]等采用所谓的“发酵”策略,类似于烘焙面包的过程来制备多孔石墨烯膜,其中致密的氧化石墨烯膜充当“面团”的作用. 采用AAO(氧化铝)膜过滤氧化石墨烯分散液,然后从AAO膜上剥离获得氧化石墨烯薄膜. 然后在90 ℃高压釜中放置10 h后,还原石墨烯膜上形成大量气孔,这是由于GO的还原使气相物质从致密膜中快速释放. 由于石墨烯的多孔结构和疏水性,与没有孔结构的石墨烯膜相比,该多孔石墨烯膜对有机溶剂如机油和石油的吸附能力有所提高.
2 多孔石墨烯的应用
2.1 超级电容器
超级电容器具有功率密度高、循环寿命长、快速充放电等优点,具有广阔的应用前景[30]. 活性炭、碳纳米管、石墨烯等材料以其低成本、高导电性、高比表面积等特点被广泛应用于超级电容器电极的构造. 但是,由于π-π层叠的相互作用和范德华在基平面间的吸引,氧化石墨烯或石墨烯片趋向于形成层叠石墨烯结构,导致其表面积的显著损失. 氧化石墨烯或石墨烯片的重新填充和聚集也阻碍了石墨烯材料在许多应用中的大规模使用和工艺,特别是用作储能器件,将导致电解质离子难以进入密集填充的石墨烯片材之间的间隙[31].三维多孔石墨烯的独特性能和多
孔结构不仅提高了电解质对电极表面的易接触性,而且为电极表面修饰的活性物质
提供了导电通道,提高了电化学性能.
为了改善三维多孔石墨烯超级电容性能,人们已经广泛地探索出了由具有高理论电容的电容材料(如金属氧化物导电聚合物)和三维多孔石墨烯组成的复合多孔石墨烯电极. 该复合电极具有较高的比容量和能量密度以及具有较好的倍率性能和较长的循环寿命[32]. 复合材料的超级电容器性能的提高通常来自于石墨烯和其他组分的协同作用. 具体为:首先,电容材料不仅对整个复合电极产生伪电容,而且还起到了隔离材料的作用. 石墨烯片之间的间隙,导致电解液对电极的可获得性的提高. 第二,互连的石墨烯片为复合材料提供导电通道,使得复合材料中的电荷传输迅速,并且在高充放电电流密度下保持了电极的良好性能[33].
2.2 气体分离净化
从当前研究水平和技术水平来看,无论是科学研究还是工业应用,对高纯气体(如He、Ar或H2等)需求量很大. 与传统的气体分离方法(如低温蒸馏、变压吸附)相比,膜分离具有较低的能源成本、对使用规模要求低并且具有较少的机械复杂性[34]. 气体膜分离的原理是根据不同气体的扩散速率差异进行的. 目前已开发的
各种传统膜,包括金属、沸石、聚合物等[35-36],其膜厚度范围在10~103 nm. 但是,膜的透过性与它的厚度成反比,这在一定程度上制约了其分离性能. 只有一个原子厚度的石墨烯被认为是理想的膜分离材料[37].但是,即使是最小的
气体原子氦,完美的石墨烯也是不可渗透的(因为密集填充的蜂窝状晶格足够防止任何原子和分子穿过它). 为了探索石墨烯潜在的高渗透性,在石墨烯中引入孔隙是必要的. Bieri[38]等成功合成聚苯型多孔石墨烯,这种多孔石墨烯只有一个原子厚度、具有按规律排布的孔以及均匀的空隙大小,在气体净化中开始应用.
2.3 储氢材料
氢气作为可再生能源具有储量丰富、清洁、高效的特点而备受关注,预计在未来将是主要能源. 但是,氢气制造业面临的最大挑战是寻找一种安全有效储氢材料. 石
墨烯具有高体积密度,氢气分子可以吸附在石墨烯的两侧[39]. 但是,在石墨烯片层和氢气之间范德华力相互作用比较弱,这会导致其储氢性能下降. 引入杂原子,特别是金属原子被认为是一种增强石墨烯片层和氢气相互作用的方式[40]. 多孔的石墨烯有助于避免金属聚集现象产生. Du[41]等研究者采用第一原理计算研
究Li修饰的多孔石墨烯的储氢性能,并预测金属修饰多孔石墨烯是一种有前途的
储氢材料. Reunchan[42]采用第一原理计算研究了不同金属原子在多孔石墨烯
吸附氢分子(H2)中的作用. 对每个金属原子在多孔石墨烯中的结合位点和结合能进行研究计算,结果表明H2在碱金属、碱土金属或过渡金属分别修饰的多孔石墨烯介质表现出不同吸附特性. 其中钙修饰的多孔石墨烯被认为是大容量储氢材料. Ao[43]将铝修饰多孔石墨烯作为储氢材料对其进行密度泛函计算. 结果表明,
铝修饰的多孔石墨烯的储氢容量为10.5 wt%,氢吸附能从1.11 eV降低到0.41 eV,在常压下氢气可实现有效的存储/释放. 此外,该研究还发现由于不同吸附位
点的吸附能量不同,氢气可以分三个阶段逐渐释放,这在实际储氢应用中是理想的. 并且通过对体系的原子电荷、电子分布和态密度的分析研究,剖析了铝原子修饰的多孔石墨烯改善储氢性能的机理.
2.4 DNA检测
快速、低成本、可靠的DNA测序是近年来人们最受好评的创新之一,它可以为高通量、无标记、廉价的个性化基因组测序技术铺平道路[44]. 生物纳米孔材料与传统材料相比由于具有使用成本低、分辨率高、操作简单等优点有望成为下一代DNA测序的有力工具. 已报道的研究发现单链RNA和DNA分子在电场作用下可
以通过纳米通道以及四种DNA碱基或核苷酸在纳米孔中不同程度地阻碍了离子电流,导致测量电流下降的现象[45-46]. Schneider[47]等也证实了随着电流
变化,单个DNA分子会通过纳米孔时迁移. 这些开创性的基础研究为纳米孔相关DNA测序奠定了坚实的基础. 导电性能好、机械强度高的含有纳米级孔的石墨烯
可被用于DNA分子的检测[48-49]. Yu[50]课题组采用全原子分子动力学模
拟方法研究了四种不同DNA链在功能化石墨烯纳米孔中的易位行为. 结果发现当
四种DNA碱DNA碱基通过氢化孔和羟基化孔时,它们可以通过不同的离子电流来识别. 对于氢化纳米孔,四个碱基的离子电流差异主要归因于碱基和离子之间不
同的静电相互作用. 对于羟基化纳米孔,除了静电相互作用外,核苷酸在纳米孔内
的位置和离子在核苷酸周围的停留时间也对离子电流起重要作用. Prasongkit[51]等提出使用石墨烯中的线缺陷来改善基于纳米孔的DNA测序装置中的核糖核酸酶的选择性. 他们使用量子力学/分子力学和非平衡格林函数相结合的方法来研究电导调制. 通过大量从分子动力学模拟中产生的不同取向的采样研究,从理论上证明了
基于石墨烯的电子器件利用线缺陷来区分四个核苷酸酶是可能的. 该研究有助于今后更好地设计一种新的DNA测序装置.
3 结语
三维多孔石墨烯材料已被证明具有广阔的研究价值. 到目前为止,已有一系列结构不同、功能各异的三维多孔石墨烯被报道. 这些新型材料不仅保留了单个二维石墨烯片的固有特性,而且也探索了多孔石墨烯实际应用的可能性. 但是,多孔石墨烯的可控制备和推广应用方面仍存在不少技术瓶颈,有一些关键问题尚未解决. 未来面对的挑战有:①如何精确控制多孔石墨烯的孔隙形貌;②不同孔隙的协同作用可使多孔石墨烯材料发挥优势,因此如何控制不同的空隙(即微孔、中孔和大孔)组合对多孔石墨烯是至关重要的;③多孔石墨烯制备原料内容单一,目前主要致力于制备具有无机和碳组分的多孔石墨烯. 这些问题在一定程度上限制了其实际应用领域的扩展. 基于当前的研究工作显示,挖掘多孔石墨烯的非凡潜力并不是很难的事情. 随着科学技术的不断发展和探索,合成具有可控孔结构的多功能多孔石墨烯材
料必将成为石墨烯材料的研究热点. 而且,多孔石墨烯材料在能量转换和存储设备中各项性能优良,我们相信这些设备的商业化会在不久的将来实现.
【相关文献】
[1] NOVOSELOV K S,GEIM A K,MOROZOV S V,et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669.
[2] NOVOSELOV K S,GEIM A K,MOROZOV S V,et al.Two-dimensional gas of massless dirac fermions in graphene[J].Nature,2005,438(7065):197.
[3]张璐.石墨烯材料的研究进展及应用[J].教育现代化,2018,5(36):275-278.
[4] LI X S,CAI W W,AN J H,et rge-area synthesis of high-quality and uniform graphene films on copper foils[J].Science,2009,324:1312-1314.
[5] SOAVI G,WANG G,ROSTAMI H,et al. Broadband,electrically tunable third-harmonic generation in graphene[J]. Nature Nano-technology,2018,13:583-588. [6] CAO Y,FATEMI V,FANG S,et al.Unconventional superconductivity in magic-angle graphene superlattices[J].Nature,2018,556(7699):43.
[7] LEE C,WEI X,KYSAR J W,et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J].Science,2008,321:385-388.
[8]许婧,邢悦,郝思嘉,等.石墨烯/聚合物基复合材料3D打印成型研究进展[J].材料工程,2018,46(7):1-11.
[9]杨绍斌,籍遥函,沈丁.氧化石墨烯液晶相结构的调控及应用进展[J].化工进展,2019,
38(3):1443-1451.
[10] ITO Y,TANABE Y,SUGAWARA K,et al. Three-dimensional porous graphene networks expand graphene-based electronic device applications[J].Physical Chemistry Chemical Physics,2018,20(9):6024-6033.
[11] STRAUSS V,MARSH K,KOWAL M D,et al. A simple route to porous graphene from carbon nanodots for supercapacitor applications[J].Advanced Materials,2018,
30(8):1704449.
[12] XU P T,YANG J X,WANG K S,et al.Porous graphene:properties,preparation,and potential applications[J].Chinese Science Bulletin,2012,57(23):2948-2955. [13] CAO X H,YIN Z Y,ZHANG H.Three-dimensional graphene materials:preparation structures and application in supercapacitors[J].Energy Environ Science,2014,7:1850-1865.
[14] YU P,BAO R Y,SHI X J,et al. Self-assembled high-strength
hydroxyapatite/graphene oxide/chitosan composite hydrogel for bone tissue engineering [J].Carbohydrate Polymers,2017,155:507-515.
[15] YE R,HAN X,KOSYNKIN D V,et al. Laser-induced conversion of teflon into
fluorinated nanodiamonds or fluorinated Graphene[J].ACS Nano,2018,12(2):1083-1088.
[16] AGUILAR-BOLADOS H,CONTRERAS-CID A,YAZDANI-PEDRAM M,et
al.Synthesis of fluorinated graphene oxide by using an easy one-pot deoxyfluorination reaction[J].Journal of Colloid and Interface Science,2018,524:219-226.
[17] COMPTON O C,AN Z,PUTZ K W,et al.Additive-free hydrogelation of graphene oxide by ultrasonication[J].Carbon,2012,50(10):3399-3406.
[18] LOZADA-HIDALGO M,ZHANG S,HU S,et al. Scalable and efficient separation
of hydrogen isotopes using graphene-based electrochemical pumping[J].Nature Communications,2017,8:15215.
[19] ABRAHAM J,VASU K S,WILLIAMS C D,et al. Tunable sieving of ions using graphene oxide membranes[J]. Nature Nanotechnology,2017,12(6):546.
[20] GAO W.The chemistry of graphene oxide[M]//Graphene oxide.Switzerland:Springer,Cham,2015:61-95.
[21] ZHU Y,MURALI S,CAI W,et al.Graphene and graphene oxide:synthesis,properties,and applications[J].Advanced Materials,2010,22(35):3906-3924. [22] KUMAR R,SINGH R K,VAZ A R,et al.Self-assembled and one-step synthesis of interconnected 3D network of Fe3O4/reduced graphene oxide nanosheets hybrid for
high-performance supercapacitor electrode[J]. ACS Applied Materials & Interfaces,2017,9(10):8880-8890.
[23] LI W W,GAO S,WU L,et al.High-density three-dimension graphene macroscopic objects for high-capacity removal of heavy metal ions[J].Scientific Reports,2013,3:2125.
[24] TANG C,LI B Q,ZHANG Q,et al. CaO-templated growth of hierarchical porous graphene for high-power lithium-sulfur battery applications[J].Advanced Functional Materials,2016,26(4):577-585.
[25] HAN S,WU D Q,LI S,et al.Porous graphene materials for advanced electrochemical energy storage and conversion devices[J].Advanced Materials,2014,26,849-864.
[26] HAN Q,YANG L,LIANG Q,et al. Three-dimensional hierarchical porous graphene aerogel for efficient adsorption and preconcentration of chemical warfare agents[J].Carbon,2017,122:556-563.
[27] MOON G,SHIN Y,CHOI D,et al.Catalytic templating approaches for three-dimensional hollow carbon/graphene oxide nanoarchitectures[J].Nanoscale,2013,5(14):6291-6296.
[28] MAO S,YU K,CHANG J,et al.Direct growth of vertically-oriented graphene for field-effect transistor biosensor[J].Scientific Reports,2013,3:1696.
[29] NIU Z,CHEN J,HNG H H,et al.A leavening strategy to prepare reduced graphene oxide foams[J].Advanced Materials,2012,24(30):4144-4150.
[30] SIMON P,GOGOTSI Y,DUNN B.Where do batteries end and supercapacitors begin?[J].Science,2014,343(6176):1210-1211.
[31]柴雅琼,李章朋,吴尊理,等.多孔石墨烯的制备及应用[J].人工晶体学报,2018,47(3):612-616.
[32] QIE L,CHEN W,XU H,et al.Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors[J].Energy&Environmental Science,2013,6(8):2497-2504.
[33] NG S W L,YILMAZ G,ONG W L,et al. One-step activation towards spontaneous etching of hollow and hierarchical porous carbon nanospheres for enhanced pollutant adsorption and energy storage[J].Applied Catalysis B:Environmental,2018,220:
533-541.
[34]关磊,张力嫱,张宇航,等.三维多孔泡沫石墨烯的制备与应用研究进展[J].合成化学,2018,26(5):383-388.
[35] KIM S,LEE Y M.Rigid and microporous polymers for gas separation membranes [J].Progress in Polymer Science,2015,43:1-32.
[36] LIN R B,XIANG S,XING H,et al. Exploration of porous metal-organic frameworks for gas separation and purification[J].Coordination Chemistry Reviews,2017.
[37] XU Q,XU H,CHEN J,et al.Graphene and graphene oxide:advanced membranes for gas separation and water purification[J].Inorganic Chemistry Frontiers,2015,2(5):417-424.
[38] BIERI M,TREIER M,CAI J,et al. Porous graphenes:two-dimensional polymer synthesis with atomic precision[J]. Chemical Communications,2009(45):6919-6921.
[39] DIMITRAKAKIS G K,TYLIANAKIS E,FROUDAKIS G E.Pillared graphene:a new 3-
D network nanostructure for enhanced hydrogen storage[J].Nano Letters,2008,8(10):3166-3170.
[40] KUMAR R,OH J H,KIM H J,et al.Nanohole-structured and palladium-embedded 3D porous graphene for ultrahigh hydrogen storage and CO oxidation multifunctionalities[J].ACS Nano,2015,9(7):7343-7351.
[41] DU A,ZHU Z,SMITH S C.Multifunctional porous graphene for nanoelectronics and hydrogen storage:new properties revealed by first principle calculations
[J].Journal of the American Chemical Society,2010,132(9):2876-2877.
[42] REUNCHAN P,JHI S H. Metal-dispersed porous graphene for hydrogen storage [J]. Applied Physics Letters,2011,98(9):093103.
[43] AO Z,DOU S,XU Z,et al.Hydrogen storage in porous graphene with Al decoration[J].International Journal of Hydrogen Energy,2014,39(28):16244-16251.
[44]董天宇.DNA测序技术[J].当代化工研究,2018(11):71-73.
[45] SCHNEIDER G F,DEKKER C.DNA sequencing with nanopores[J].Nature Biotechnology,2012,30(4):326.
[46] WELLS D B,BELKIN M,COMER J,et al.Assessing graphene nanopores for sequencing DNA[J].Nano Letters,2012,12(8):4117-4123.
[47] FRIED J P,SWETT J L,BIAN X,et al. Challenges in fabricating graphene nanodevices for electronic DNA sequencing[J].MRS Communications,2018,8(3):703-711.
[48]董子杰,张璞,李社红,等.柔性石墨烯平面电极对多巴胺的灵敏检测[J].分析化学,2018(7):1039-1046.
[49] SCHNEIDER G F,KOWALCZYK S W,CALADO V E,et al. DNA translocation through graphene nanopores[J]. Nano Lett,2010,10:3163-3167.
[50] YU Y,LU X,DING H,et al. Computational investigation on DNA sequencing using functionalized graphene nanopores[J].Physical Chemistry Chemical Physics,2018,20(14):9063-9069.
[51] PRASONGKIT J,MARTINS E F,DE SOUZA F A L,et al. Topological line defects around graphene nanopores for DNA sequencing[J].The Journal of Physical Chemistry C,2018,122(13):7094-7099.。