等比数列单元测试题含答案百度文库

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、等比数列选择题
1.已知等比数列{}n a 的前n 项和为n S ,且1352
a a +=,245
4a a +=,则n n S =a ( )
A .14n -
B .41n -
C .12n -
D .21n -
2.中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?此问题中1斗为10升,则牛主人应偿还多少升粟?( ) A .
50
3
B .
507
C .
100
7
D .
200
7
3.已知{}n a 是正项等比数列且1a ,312a ,22a 成等差数列,则91078
a a a a +=+( ) A
1 B
1
C
.3- D
.3+4.已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则数列{na n }的前n 项和为( )
A .-3+(n +1)×2n
B .3+(n +1)×2n
C .1+(n +1)×2n
D .1+(n -1)×2n
5.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个
单音,从第二个单音起,每一个单音的频率与它前一个单音的频率的比都等于六个单音的频率为f ,则( ) A .第四个单音的频率为1
12
2
f - B .第三个单音的频率为14
2
f -
C .第五个单音的频率为1
62f
D .第八个单音的频率为1
122f
6.等差数列{}n a 的首项为1,公差不为0.若2a 、3a 、6a 成等比数列,则{}n a 的前6项的和为( ) A .24- B .3-
C .3
D .8
7.已知等比数列{}n a 满足12234,12a a a a +=+=,则5S 等于( )
A .40
B .81
C .121
D .242
8

12
与1
2的等比中项是( )
A .-1
B .1
C

2
D
.2
±
9.数列{}n a 是等比数列,54a =,916a =,则7a =( )
A .8
B .8±
C .8-
D .1
10.记等比数列{}n a 的前n 项和为n S ,已知5=10S ,1050S =,则15=S ( ) A .180
B .160
C .210
D .250
11.等比数列{}n a 中各项均为正数,n S 是其前n 项和,且满足312283S a a =+,
416a =,则6S =( )
A .32
B .63
C .123
D .126
12.已知公比大于1的等比数列{}n a 满足2420a a +=,38a =.则数列()
{}
1
11n n n a a -+-的
前n 项的和为( )
A .()23
82133n n +--
B .()23
182155n n +---
C .()2382133
n n ++-
D .()23182155
n n +-+-
13.明代朱载堉创造了音乐学上极为重要的“等程律”.在创造律制的过程中,他不仅给出了求解三项等比数列的等比中项的方法,还给出了求解四项等比数列的中间两项的方法.比如,若已知黄钟、大吕、太簇、夹钟四个音律值成等比数列,则有
大吕=大吕=
太簇.据此,可得
正项等比数列{}n a 中,k a =( )
A .n -
B .n -
C .
D . 14.已知1a ,2a ,3a ,4a 成等比数列,且()2
1234123a a a a a a a +++=++,若11a >,则( )
A .13a a <,24a a <
B .13a a >,24a a <
C .13a a <,24a a >
D .13a a >,24a a >
15.正项等比数列{}n a 满足2
2
37610216a a a a a ++=,则28a a +=( ) A .1 B .2 C .4 D .8
16.已知{}n a 是各项均为正数的等比数列,121a a +=,344a a +=,则
5678a a a a +++=( )
A .80
B .20
C .32
D .
255
3
17.设数列{}n a ,下列判断一定正确的是( )
A .若对任意正整数n ,都有24n
n a =成立,则{}n a 为等比数列
B .若对任意正整数n ,都有12n n n a a a ++=⋅成立,则{}n a 为等比数列
C .若对任意正整数m ,n ,都有2m n
m n a a +⋅=成立,则{}n a 为等比数列
D .若对任意正整数n ,都有
312
11
n n n n a a a a +++=⋅⋅成立,则{}n a 为等比数列
18.已知等比数列{}n a 的通项公式为2*
3()n n a n N +=∈,则该数列的公比是( )
A .
19
B .9
C .
13
D .3
19.已知等比数列{}n a 的前n 项和为n S ,若123
111
2a a a ++=,22a =,则3S =( ) A .8
B .7
C .6
D .4
20.已知各项均为正数的等比数列{}n a 的前4项和为30,且53134a a a =+,则3a =( ) A .2
B .4
C .8
D .16
二、多选题21.题目文件丢失!
22.已知等差数列{}n a ,其前n 项的和为n S ,则下列结论正确的是( ) A .数列|n S n ⎧⎫

⎬⎩⎭
为等差数列 B .数列{}2
n
a 为等比数列
C .若,()m n a n a m m n ==≠,则0m n a +=
D .若,()m n S n S m m n ==≠,则0m n S += 23.已知数列{},{}n n a b 均为递增数列,{}n a 的前n 项和为,{}n n S b 的前n 项和为,n T 且满足*112,2()n n n n n a a n b b n N +++=⋅=∈,则下列结论正确的是( )
A .101a <<
B
.11b <<
C .22n n S T <
D .22n n S T ≥
24.若数列{}n a 的前n 项和是n S ,且22n n S a =-,数列{}n b 满足2log n n b a =,则下列选项正确的为( ) A .数列{}n a 是等差数列
B .2n
n a =
C .数列{}2n
a 的前n 项和为2122
3
n +-
D .数列11n n b b +⎧⎫
⎨⎬⋅⎩⎭
的前n 项和为n T ,则
1n T <
25.设n S 为等比数列{}n a 的前n 项和,满足13a =,且1a ,22a -,34a 成等差数列,则下列结论正确的是( ) A .1
13()2
n n a -=⋅-
B .36n
n S a =+
C .若数列{}n a 中存在两项p a ,s a
3a =,则
19p s +的最小值为83
D .若1
n n t S m S ≤-
≤恒成立,则m t -的最小值为116
26.在等比数列{a n }中,a 5=4,a 7=16,则a 6可以为( ) A .8 B .12 C .-8
D .-12
27.已知数列{}n a 的前n 项和为n S 且满足111
30(2),3
n n n a S S n a -+=≥=,下列命题中正确的是( ) A .1n S ⎧⎫

⎬⎩⎭
是等差数列 B .13n S n
=
C .1
3(1)
n a n n =-
-
D .{}
3n S 是等比数列
28.已知等比数列{}n a 中,满足11a =,2q ,n S 是{}n a 的前n 项和,则下列说法正
确的是( )
A .数列{}2n a 是等比数列
B .数列1n a ⎧⎫
⎨⎬⎩⎭
是递增数列
C .数列{}2log n a 是等差数列
D .数列{}n a 中,10S ,20S ,30S 仍成等比
数列
29.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件
11a >,781a a ⋅>,
871
01
a a -<-,则下列结论正确的是( ) A .01q << B .791a a ⋅> C .n S 的最大值为9S
D .n T 的最大值为7T
30.已知数列{}n a 是等比数列,有下列四个命题,其中正确的命题有( ) A .数列{}
n a 是等比数列
B .数列{}1n n a a +是等比数列
C .数列{}2
lg n a 是等比数列
D .数列1n a ⎧⎫
⎨⎬⎩⎭
是等比数列
31.已知数列{} n a 满足11a =,1
21++=+n n a a n ,*n N ∈, n S 是数列1 n a ⎧⎫⎨⎬⎩⎭
的前n 项和,则下列结论中正确的是( ) A .()211
21n n
S n a -=-⋅ B .212
n n S S =
C .2311222
n n n S S ≥
-+ D .212
n n S S ≥+
32.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件
11a >,671a a >,
671
01
a a -<-,则下列结论正确的是( ) A .01q <<
B .8601a a <<
C .n S 的最大值为7S
D .n T 的最大值为6T
33.设数列{}n a 满足*12335(21)2(),n a a a n a n n ++++-=∈N 记数列{
}21
n
a n +的前n 项和为,n S 则( ) A .12a =
B .2
21
n a n =
- C .21
n n
S n =
+ D .1n n S na +=
34.设数列{}n x ,若存在常数a ,对任意正数r ,总存在正整数N ,当n N ≥,有
n x a r -<,则数列{}n x 为收敛数列.下列关于收敛数列正确的有( )
A .等差数列不可能是收敛数列
B .若等比数列{}n x 是收敛数列,则公比(]1,1q ∈-
C .若数列{}n x 满足sin cos 22n x n n ππ⎛⎫⎛⎫
=
⎪ ⎪⎝⎭⎝⎭
,则{}n x 是收敛数列 D .设公差不为0的等差数列{}n x 的前n 项和为()0n n S S ≠,则数列1n S ⎧⎫
⎨⎬⎩⎭
一定是收敛数

35.对于数列{}n a ,若存在数列{}n b 满足1
n n n
b a a =-
(*n ∈N ),则称数列{}n b 是{}n a 的“倒差数列”,下列关于“倒差数列”描述正确的是( ) A .若数列{}n a 是单增数列,但其“倒差数列”不一定是单增数列;
B .若31n a n =-,则其“倒差数列”有最大值;
C .若31n a n =-,则其“倒差数列”有最小值;
D .若112n
n a ⎛⎫=-- ⎪⎝⎭,则其“倒差数列”有最大值.
【参考答案】***试卷处理标记,请不要删除
一、等比数列选择题 1.D
【分析】
根据题中条件,先求出等比数列的公比,再由等比数列的求和公式与通项公式,即可求出结果. 【详解】
因为等比数列{}n a 的前n 项和为n S ,且1352
a a +=
,2454a a +=,
所以2
4135
1
452
2
q a a a a =++==, 因此()()11
1
1111112
21112n n
n
n n n n n n
a q S q q a a q q q ---⎛⎫- ⎪
--⎝⎭=
=
==--⎛⎫ ⎪⎝⎭
. 故选:D. 2.D 【分析】
设羊、马、牛的主人应偿还粟的量分别为a 1,a 2,a 3,利用等比数列的前n 项和公式即可求解. 【详解】
5斗50=升,设羊、马、牛的主人应偿还粟的量分别为a 1,a 2,a 3,
由题意可知a 1,a 2,a 3构成公比为2的等比数列,且S 3=50,则(
)3
11212
a --=50,
解得a 1=507
,所以牛主人应偿还粟的量为2
3120027a a ==
故选:D 3.D 【分析】 根据1a ,
312a ,22a 成等差数列可得3121
222
a a a ⨯=+,转化为关于1a 和q 的方程,求出q 的值,将
910
78
a a a a ++化简即可求解.
【详解】
因为{}n a 是正项等比数列且1a ,31
2
a ,22a 成等差数列, 所以
3121
222
a a a ⨯=+,即21112a q a a q =+,所以2210q q --=,
解得:1q =+
1q =
(
22
2
2910787878
13a a a q a q q a a a a ++====+++,
故选:D 4.D 【分析】
利用已知条件列出方程组求解即可得1,a q ,求出数列{a n }的通项公式,再利用错位相减法求和即可. 【详解】
设等比数列{a n }的公比为q ,易知q ≠1,
所以由题设得()
()
3
136
1617
11631a q S q a q S q ⎧-⎪==-⎪
⎨-⎪
=
=⎪-⎩
, 两式相除得1+q 3=9,解得q =2, 进而可得a 1=1, 所以a n =a 1q n -1=2n -1, 所以na n =n ×2n -1.
设数列{na n }的前n 项和为T n , 则T n =1×20+2×21+3×22+…+n ×2n -1, 2T n =1×21+2×22+3×23+…+n ×2n ,
两式作差得-T n =1+2+22
+…+2n -1
-n ×2n
=
1212
n
---n ×2n =-1+(1-n )×2n , 故T n =1+(n -1)×2n . 故选:D. 【点睛】
本题主要考查了求等比数列的通项公式问题以及利用错位相减法求和的问题.属于较易题. 5.B 【分析】
根据题意得该单音构成公比为四、五、八项即可得答案. 【详解】
解:根据题意得该单音构成公比为 因为第六个单音的频率为f ,
14
14
22f f -==.
6
6
112
2
f f -
=
=.
所以第五个单音的频率为1
122f =. 所以第八个单音的频率为12
6
2f f =
故选:B. 6.A 【分析】
根据等比中项的性质列方程,解方程求得公差d ,由此求得{}n a 的前6项的和. 【详解】
设等差数列{}n a 的公差为d ,由2a 、3a 、6a 成等比数列可得2
326a a a =,
即2(12)(1)(15)d d d +=++,整理可得220d d +=,又公差不为0,则2d =-, 故{}n a 前6项的和为616(61)6(61)
661(2)2422
S a d ⨯-⨯-=+=⨯+⨯-=-. 故选:A 7.C 【分析】
根据已知条件先计算出等比数列的首项和公比,然后根据等比数列的前n 项和公式求解出
5S 的结果.
【详解】
因为12234,12a a a a +=+=,所以23
12
3a a q a a +=
=+,所以1134a a +=,所以11a =, 所以()5515113121113
a q S q
--===--, 故选:C. 8.D 【分析】
利用等比中项定义得解. 【详解】
2311(
)((22-==±,的等比中项是2
± 故选:D 9.A 【分析】
分析出70a >,再结合等比中项的性质可求得7a 的值. 【详解】
设等比数列{}n a 的公比为q ,则2
750a a q =>,
由等比中项的性质可得2
75964a a a ==,因此,78a =.
故选:A. 10.C 【分析】
首先根据题意得到5S ,105S S -,1510S S -构成等比数列,再利用等比中项的性质即可得到答案. 【详解】
因为{}n a 为等比数列,所以5S ,105S S -,1510S S -构成等比数列. 所以()()2
155010=1050S --,解得15210S =. 故选:C 11.D 【分析】
根据等比数列的通项公式建立方程,求得数列的公比和首项,代入等比数列的求和公式可得选项. 【详解】
设等比数列{}n a 的公比为(0)q q >.∵312283S a a =+, ∴123122()83a a a a a ++=+,即321260a a a --=. ∴2
260q q --=,∴2q 或3
2
q =-(舍去),
∵416a =,∴4
132a a q
=
=, ∴6616(1)2(12)
126112
a q S q --=
==--, 故选:D. 12.D 【分析】
根据条件列出方程组可求出等比数列的公比和首项,即可得到数列的通项公式,代入
()
1
11n n n a a -+-可知数列为等比数列,求和即可.
【详解】
因为公比大于1的等比数列{}n a 满足2420a a +=,38a =,
所以31121
20
8a q a q a q ⎧+=⎨=⎩,
解得2q
,12a =,
所以1222n n
n a -=⨯=,
()
()
()
111
1
1
1222111n n n n n n n n a a ++-+--+=⋅⋅-=∴--,
()
{
}
1
11n n n a a -+∴-是以8为首项,4-为公比的等比数列,
()
23
3
5
7
9
21
11
8[1(4)]8222222
(1)1(4)155
n n n n n n S -++---∴=-+--+
+⋅==+---, 故选:D 【点睛】
关键点点睛:求出等比数列的通项公式后,代入新数列,可得数列的通项公式,由通项公式可知数列为等比数列,根据等比数列的求和公式计算即可. 13.C 【分析】
根据题意,由等比数列的通项公式,以及题中条件,即可求出结果. 【详解】
因为三项等比数列的中项可由首项和末项表示,四项等比数列的第2、第3项均可由首项和末项表示,所以正项等比数列{}n a 中的k a 可由首项1a 和末项n a 表示,因为
11n n a a q -=
,所以q =
所以11
1
111k k n n k a a a a a ---⎛⎫ ⎪
⎛== ⎭


1111
n k k n n n
a a
----==⋅ 故选:C. 14.B 【分析】
由12340a a a a +++≥可得出1q ≥-,进而得出1q >-,再由11a >得出0q <,即可根据q 的范围判断大小. 【详解】
设等比数列的公比为q , 则(
)()()23
2
123411
1+++1+1+0a a a a a q q q
a q q +++==≥,可得1q ≥-,
当1q =-时,12340a a a a +++=,()2
1230a a a ++≠,1q ∴>-,
()2
1234123a a a a a a a +++=++,即()
2
23
211+++1++q q q a q q
=,
()
23
12
21+++11++q q q a q q ∴=
>,整理得432++2+0q q q q <,显然0q <,
()1,0q ∴∈-,()20,1q ∈,
()213110a a a q ∴-=->,即13a a >,
()()32241110a a a q q a q q ∴-=-=-<,即24a a <.
故选:B. 【点睛】
关键点睛:本题考查等比数列的性质,解题的关键是通过已知条件判断出()1,0q ∈-,从而可判断大小. 15.C 【分析】
利用等比数列的性质运算求解即可. 【详解】
根据题意,等比数列{}n a 满足2
2
37610216a a a a a ++=, 则有22
2
288216a a a a ++=,即()2
2816a a +=, 又由数列{}n a 为正项等比数列,故284a a +=. 故选:C . 16.A 【分析】
由条件求出公比q ,再利用前4项和和公比求5678a a a a +++的值. 【详解】
根据题意,由于{}n a 是各项均为正数的等比数列,
121a a +=,()234124a a q a a +==+,∴24q =,0q >,2q
则()()4
56781234161480a a a a q a a a a +++=+++=+=.
故选:A 17.C 【分析】
根据等比数列的定义和判定方法逐一判断. 【详解】
对于A ,若24n n a =,则2n
n a =±,+1+12n n a =±,则
1
2n n
a a +=±,即后一项与前一项的比不一定是常数,故A 错误;
对于B ,当0n a =时,满足12n n n a a a ++=⋅,但数列{}n a 不为等比数列,故B 错误; 对于C ,由2
m n
m n a a +⋅=可得0n a ≠,则+1
+12
m n m n a a +⋅=,所以1+1
222
n n m n m n a a +++==,故{}n a 为公比为2的等比数列,故C 正确;
对于D ,由
312
11
n n n n a a a a +++=⋅⋅可知0n a ≠,则312n n n n a a a a +++⋅=⋅,如1,2,6,12满
足312n n n n a a a a +++⋅=⋅,但不是等比数列,故D 错误. 故选:C. 【点睛】
方法点睛:证明或判断等比数列的方法, (1)定义法:对于数列{}n a ,若
()1
0,0n n n
a q q a a +=≠≠,则数列{}n a 为等比数列; (2)等比中项法:对于数列{}n a ,若()2
210n n n n a a a a ++=≠,则数列{}n a 为等比数列;
(3)通项公式法:若n n a cq =(,c q 均是不为0的常数),则数列{}n a 为等比数列; (4)特殊值法:若是选择题、填空题可以用特殊值法判断,特别注意0n a =的判断. 18.D 【分析】
利用等比数列的通项公式求出1a 和2a ,利用2
1
a a 求出公比即可 【详解】
设公比为q ,等比数列{}n a 的通项公式为2*
3()n n a n N +=∈,
则3
1327a ==,4
2381a ==,2
1
3a q a ∴
==, 故选:D 19.A 【分析】
利用已知条件化简,转化求解即可. 【详解】
已知{}n a 为等比数列,132
2a a a ∴=,且22a =,
满足
131233
21231322111124
a a a a a S a a a a a a a +++++=+===,则S 3=8. 故选:A . 【点睛】 思路点睛:
(1)先利用等比数列的性质,得132
2a a a ∴=,
(2)通分化简3
12311124
S a a a +
+==. 20.C 【分析】
根据等比数列的通项公式将53134a a a =+化为用基本量1,a q 来表示,解出q ,然后再由前4项和为30求出1a ,再根据通项公式即可求出3a . 【详解】
设正数的等比数列{}n a 的公比为()0q q >,
因为53134a a a =+,所以4211134a q a q a =+,则42
340q q --=,
解得2
4q =或21q =-(舍),所以2q

又等比数列{}n a 的前4项和为30,
所以23
111130a a q a q a q +++=,解得12a =, ∴2
318a a q ==.
故选:C .
二、多选题 21.无
22.ABC 【分析】
设等差数列{}n a 的首项为1a ,公差为d , ()11n a a n d +-=,其前n 项和为
()
112
n n n S na d -=+
,结合等差数列的定义和前n 项的和公式以及等比数列的定义对选项进行逐一判断可得答案. 【详解】
设等差数列{}n a 的首项为1a ,公差为d , ()11n a a n d +-= 其前n 项和为()
112
n n n S na d -=+ 选项A.
112n S n a d n -=+,则+1111+1222
n n S S n n d a d a d n n -⎛
⎫⎛⎫-=+-+
= ⎪ ⎪⎝⎭⎝⎭(常数) 所以数列|n S n ⎧⎫
⎨⎬⎩⎭
为等差数列,故A 正确.
选项B. ()1122
n
a n d
a +-=,则112222n n n n
a a a d a ++-==(常数),所以数列{}
2n a
为等比数列,故B
正确.
选项C. 由,m n a n a m ==,得()()1111m n
a a m d n
a a n d m ⎧=+-=⎪⎨
=+-=⎪⎩ ,解得11,1a m n d =+-=-
所以()()()111110m n a a n m d n m n m +=++-=+-++-⨯-=,故C 正确. 选项D. 由,m n S n S m ==,则()112
n n n n S a d m -=+
=,()112
m m m m S a d n -=+
=
将以上两式相减可得:()()()2212d
m n a m m n n n m ⎡⎤-+
---=-⎣

()()()112
d
m n a m n m n n m -+-+-=-,又m n ≠
所以()1112d a m n +
+-=-,即()1112
d
m n a +-=-- ()()()()()()()1
11112
m n m n m n d S m n a m n a m n a m n +++-=++
=+++--=-+,所
以D 不正确. 故选:ABC 【点睛】
关键点睛:本题考查等差数列和等比数列的定义的应用以及等差数列的前n 项和公式的应
用,解答本题的关键是利用通项公式得出()()1111m n
a a m d n
a a n d m ⎧=+-=⎪⎨=+-=⎪⎩,从中解出1,a d ,从而
判断选项C ,由前n 项和公式得到()112
n n n n S a d m -=+
=,
()112
m m m m S a d n -=+
=,然后得出
()1112
d
m n a +-=--,在代入m n S +中可判断D ,属于中档题. 23.ABC 【分析】
利用数列单调性及题干条件,可求出11,a b 范围;求出数列{},{}n n a b 的前2n 项和的表达式,利用数学归纳法即可证明其大小关系,即可得答案. 【详解】
因为数列{}n a 为递增数列, 所以123a a a <<,
所以11222a a a <+=,即11a <, 又22324a a a <+=,即2122a a =-<, 所以10a >,即101a <<,故A 正确; 因为{}n b 为递增数列, 所以123b b b <<,
所以2
1122b b b <=
,即1b <
又2
2234b b b <=,即21
2
2b b =
<, 所以11b >
,即11b <<,故B 正确;
{}n a 的前2n 项和为21234212()()()n n n S a a a a a a -=++++⋅⋅⋅++
= 22(121)
2[13(21)]22
n n n n +-++⋅⋅⋅+-=
=,
因为12n n n b b +⋅=,则1
122n n n b b +++⋅=,所以22n n b b +=,
则{}n b 的2n 项和为13212422()()n n n b b b b b b T -=++⋅⋅⋅++++⋅⋅⋅+
=1101101122(222)(222)()(21)n n n
b b b b --++⋅⋅⋅++++⋅⋅⋅+=+-
1)1)n n
>-=-, 当n =1
时,222,S T =>,所以22T S >,故D 错误; 当2n ≥时
假设当n=k
时,21)2k k ->
21)k k ->, 则当n=k +1
1121)21)21)2k k k k k ++-=
+-=->
2221(1)k k k >++=+
所以对于任意*n N ∈
,都有21)2k k ->,即22n n T S >,故C 正确 故选:ABC 【点睛】
本题考查数列的单调性的应用,数列前n 项和的求法,解题的关键在于,根据数列的单调性,得到项之间的大小关系,再结合题干条件,即可求出范围,比较前2n 项和大小时,需灵活应用等差等比求和公式及性质,结合基本不等式进行分析,考查分析理解,计算求值的能力,属中档题. 24.BD 【分析】
根据22n n S a =-,利用数列通项与前n 项和的关系得1,1,2n n
S n a S n =⎧=⎨≥⎩,求得通项n a ,然
后再根据选项求解逐项验证. 【详解】
当1n =时,12a =,
当2n ≥时,由22n n S a =-,得1122n n S a --=-, 两式相减得:12n n a a -=, 又212a a =,
所以数列{}n a 是以2为首项,以2为公比的等比数列, 所以2n n a =,24n
n a =,数列{}2n
a
的前n 项和为()14144414
3
n n n
S +--'=
=
-, 则22log log 2n
n n b a n ===,
所以()11111
11
n n b b n n n n +==-⋅⋅++,
所以 1111111
(11123411)
n T n n n =-+-++-=-<++, 故选:BD 【点睛】
方法点睛:求数列的前n 项和的方法 (1)公式法:①等差数列的前n 项和公式,()()
11122
n n n a a n n S na d +-=
=+②等比数列的前n 项和公式()
11,1
1,11n
n na q S a q q q =⎧⎪=-⎨≠⎪
-⎩

(2)分组转化法:把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.
(3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.
(5)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项之积构成的,则这个数列的前n 项和用错位相减法求解.
(6)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 25.ABD 【分析】
根据等差中项列式求出1
2
q =-,进而求出等比数列的通项和前n 项和,可知A ,B 正确;
3a =求出15p s =⎧⎨
=⎩或24p s =⎧⎨=⎩或42p s =⎧⎨=⎩或5
1
p s =⎧⎨=⎩,可知19p s +的最小值为
11
4,C 不正确;利用1n n
y S S =-关于n S 单调递增,求出1n n S S -的最大、最小值可得结
果. 【详解】
设等比数列{}n a 的公比为q ,
由13a =,21344a a a -=+得2
43343q q -⨯=+⨯,解得1
2
q =-
,所以11
3()2
n n a -=⋅-,
1
3(1())
1221()121()2
n n n S --⎛⎫==-- ⎪⎝⎭--;
1111361()66()63()63222n n n n n S a -⎛
⎫=--=--=+⋅-=+ ⎪⎝
⎭;所以A ,B 正确;
3a =,则23p s a a a ⋅=,1122111()p s p s a a a q a q a q --⋅==,
所以11
4p s q q
q --=,所以6p s +=,
则15p s =⎧⎨
=⎩或24p s =⎧⎨=⎩或42p s =⎧⎨=⎩或51p s =⎧⎨=⎩
,此时19145p s +=或114或194或465;C 不正确,
122,2121()2122,2n
n n n
n S n ⎧⎛⎫
+⎪ ⎪⎪⎝⎭⎛
⎫=--=⎨ ⎪⎝⎭⎛⎫
⎪- ⎪⎪⎝⎭⎩
为奇数为偶数, 当n 为奇数时,(2,3]n S ∈,当n 为偶数时,3
[,2)2
n S ∈,
又1n n y S S =-
关于n S 单调递增,所以当n 为奇数时,138
(,]23
n n S S -
∈,当n 为偶数时,153
[,)62n n S S -
∈,所以83
m ≥,56t ≤,所以8511366m t -≥-=,D 正确, 故选:ABD . 【点睛】
本题考查了等差中项的应用,考查了等比数列通项公式,考查了等比数列的前n 项和公式,考查了数列不等式恒成立问题,属于中档题. 26.AC 【分析】
求出等比数列的公比2q =±,再利用通项公式即可得答案; 【详解】
57216
24
a q q a ==⇒=±, 当2q
时,65428a a q ==⨯=,
当2q =-时,654(2)8a a q ==⨯-=-, 故选:AC. 【点睛】
本题考查等比数列通项公式的运算,考查运算求解能力,属于基础题. 27.ABD 【分析】
由1(2)n n n a S S n -=-≥代入已知式,可得{}n S 的递推式,变形后可证1n S ⎧⎫
⎨⎬⎩⎭
是等差数列,从而可求得n S ,利用n S 求出n a ,并确定3n S 的表达式,判断D . 【详解】
因为1(2)n n n a S S n -=-≥,1130n n n n S S S S ---+=,所以
1
11
3n n S S --=, 所以1n S ⎧⎫

⎬⎩⎭
是等差数列,A 正确; 公差为3,又
11113S a ==,所以1
33(1)3n n n S =+-=,13n S n
=.B 正确;
2n ≥时,由1n n n a S S -=-求得1
3(1)
n a n n =
-,但13a =不适合此表达式,因此C 错;
由1
3n S n =
得1
311333
n n n S +==⨯,∴{}
3n S 是等比数列,D 正确. 故选:ABD . 【点睛】
本题考查等差数列的证明与通项公式,考查等比数列的判断,解题关键由
1(2)n n n a S S n -=-≥,化已知等式为{}n S 的递推关系,变形后根据定义证明等差数列.
28.AC 【分析】 由已知得1
2
n n
a 可得以21
22
n n a -=,可判断A ;又1
111122n n n a --⎛⎫
== ⎪
⎝⎭
,可判断B ;由
122log log 21n n a n -==-,可判断C ;求得10S ,20S ,30S ,可判断D.
【详解】
等比数列{}n a 中,满足11a =,2q
,所以12n n a ,所以2122n n a -=,所以数列
{}2n a 是等比数列,故A 正确;
又1
111122n n n a --⎛⎫
== ⎪⎝⎭
,所以数列1n a ⎧⎫
⎨⎬⎩⎭是递减数列,故B 不正确;
因为1
22log log 2
1n n a n -==-,所以{}2log n a 是等差数列,故C 正确;
数列{}n a 中,101010111222
S -==--,202021S =-,30
3021S =-,10S ,20S ,30S 不成
等比数列,故D 不正确; 故选:AC . 【点睛】
本题综合考查等差、等比数列的定义、通项公式、前n 项和公式,以及数列的单调性的判
定,属于中档题. 29.AD 【分析】
根据题意71a >,81a <,再利用等比数列的定义以及性质逐一判断即可. 【详解】
因为11a >,781a a ⋅>,
871
01
a a -<-, 所以71a >,81a <,所以01q <<,故A 正确.
27981a a a =<⋅,故B 错误;
因为11a >,01q <<,所以数列{}n a 为递减数列,所以n S 无最大值,故C 错误; 又71a >,81a <,所以n T 的最大值为7T ,故D 正确. 故选:AD 【点睛】
本题考查了等比数列的性质、定义,考查了基本知识的掌握情况,属于基础题. 30.ABD 【分析】
分别按定义计算每个数列的后项与前项的比值,即可判断. 【详解】
根据题意,数列{}n a 是等比数列,设其公比为q ,则1
n n
a q a +=, 对于A ,对于数列{}
n a ,则有1
||n n
a q a ,{}n a 为等比数列,A 正确; 对于B ,对于数列{}1n n a a +,有
21
1n n n n
a a q a a +-=,{}1n n a a +为等比数列,B 正确; 对于C ,对于数列{}
2lg n a ,若1n a =,数列{}n a 是等比数列,但数列{}
2
lg n a 不是等比数
列,C 错误;
对于D ,对于数列1n a ⎧⎫⎨⎬⎩⎭
,有11
1
11n n n n a a a q a --==,1n a ⎧⎫
⎨⎬⎩⎭为等比数列,D 正确. 故选:ABD . 【点睛】
本题考查用定义判断一个数列是否是等比数列,属于基础题. 31.CD 【分析】
根据数列{} n a 满足11a =,121++=+n n a a n ,得到1223+++=+n n a a n ,两式相减得:
22n n a a +-=,然后利用等差数列的定义求得数列{} n a 的通项公式,再逐项判断.
【详解】
因为数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, 所以1223+++=+n n a a n , 两式相减得:22n n a a +-=,
所以奇数项为1,3,5,7,….的等差数列; 偶数项为2,4,6,8,10,….的等差数列; 所以数列{} n a 的通项公式是n a n =, A. 令2n =时, 311111236S =++=,而 ()13
22122
⨯-⋅=,故错误; B. 令1n =时, 213122
S =+=,而 111
22S =,故错误;
C. 当1n =时, 213122
S =+
=,而 3113
2222-+=,成立,当2n ≥时,
211111...23521n n S S n =++++--,因为221n n >-,所以
11212n n >-,所以111111311...1 (352148222)
n n n ++++>++++=--,故正确; D. 因为21111...1232n n S S n n n n
-=+++++++,令()1111
...1232f n n n n n
=+++++++,因为
()11111
1()021*******f n f n n n n n n +-=+-=->+++++,所以()f n 得到递增,
所以()()1
12
f n f ≥=,故正确;
故选:CD 【点睛】
本题主要考查等差数列的定义,等比数列的前n 项和公式以及数列的单调性和放缩法的应用,还考查了转化求解问题的能力,属于较难题. 32.ABD 【分析】
先分析公比取值范围,即可判断A ,再根据等比数列性质判断B,最后根据项的性质判断C,D. 【详解】
若0q <,则67670,00a a a a <>∴<与671a a >矛盾;
若1q ≥,则11a >∴671,1a a >>∴67101a a ->-与67101
a a -<-矛盾; 因此01q <<,所以A 正确; 667710101
a a a a -<∴>>>-,因此2768(,1)0a a a =∈,即B 正确; 因为0n a >,所以n S 单调递增,即n S 的最大值不为7S ,C 错误;
因为当7n ≥时,(0,1)n a ∈,当16n ≤≤时,(1,)n a ∈+∞,所以n T 的最大值为6T ,即D 正确;
故选:ABD
【点睛】
本题考查等比数列相关性质,考查综合分析判断能力,属中档题.
33.ABD
【分析】
由已知关系式可求1a 、n a ,进而求得{
}21n a n +的通项公式以及前n 项和,n S 即可知正确选项.
【详解】
由已知得:12a =,令12335...(21)2n n T a a a n a n =++++-=,
则当2n ≥时,1(21)2n n n T T n a --=-=,即221n a n =
-,而122211a ==⨯-也成立, ∴221n a n =-,*n N ∈,故数列{}21
n a n +通项公式为211(21)(21)2121n n n n =-+--+, ∴111111111121...133557232121212121n n S n n n n n n =-+-+-++-+-=-=---+++,即有1n n S na +=,
故选:ABD
【点睛】
关键点点睛:由已知12335...(21)2n n T a a a n a n =++++-=求1a 、n a ,注意验证1a 是否符合n a 通项,并由此得到{
}21
n a n +的通项公式,利用裂项法求前n 项和n S . 34.BCD
【分析】
根据等差数列前n 和公式以及收敛数列的定义可判断A ;根据等比数列的通项公式以及收敛的定义可判断B ;根据收敛的定义可判断C ;根据等差数列前n 和公式以及收敛数列的定义可判断D.
【详解】
当0n S >时,取2111222
222n d d d d d d S n a n n n a n a ⎛⎫⎛⎫=+-=+-≥+- ⎪ ⎪⎝⎭⎝⎭, 为使得1n S r >,所以只需要1122d d n a r
+->1112222
d a ra dr r n N d dr -+-+⇒>==. 对于A ,令1n x =,则存在1a =,使0n x a r -=<,故A 错;
对于B ,11n n x x q
-=,若1q >,则对任意正数r , 当11log 1q r n x ⎛⎫+>+ ⎪ ⎪⎝⎭
时, 1n x r >+,所以不存在正整数N 使得定义式成立, 若1q =,显然符合;若1q =-为摆动数列()
111n n x x -=-,
只有1x ±两个值,不会收敛于一个值,所以舍去; 若()1,1q ∈-,取0a =,1log 11q r N x ⎡⎤=++⎢⎥⎣⎦
, 当n N >时,11110n n r x x q
x r x --=<=,故B 正确; 对于C ,()1sin cos sin 0222
n x n n n πππ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,符合; 对于D ,()11n x x n d =+-,2122n d d S n x n ⎛⎫=
+- ⎪⎝⎭, 当0d >时,n S 单调递增并且可以取到比1r
更大的正数,
当n N >=时,110n n r S S -=<,同理0d <,所以D 正确. 故选:BCD
【点睛】
关键点点睛:解题的关键是理解收敛数列的定义,借助等差数列前n 和公式以及等比数列的通项公式求解,属于中档题.
35.ACD
【分析】
根据新定义进行判断.
【详解】
A .若数列{}n a 是单增数列,则11111
111()(1)n n n n n n n n n n b b a a a a a a a a ------=--+=-+,
虽然有1n n a a ->,但当1
110n n a a -+
<时,1n n b a -<,因此{}n b 不一定是单增数列,A 正确; B .31n a n =-,则13131
n b n n =--
-,易知{}n b 是递增数列,无最大值,B 错; C .31n a n =-,则13131
n b n n =---,易知{}n b 是递增数列,有最小值,最小值为1b ,C 正确;
D .若112n n a ⎛⎫=-- ⎪⎝⎭,则111()121()2
n n n b =-----, 首先函数1y x x
=-在(0,)+∞上是增函数, 当n 为偶数时,11()(0,1)2n n a =-∈,∴10n n n b a a =-<, 当n 为奇数时,1
1()2n n a =+1>,显然n a 是递减的,因此1n n n
b a a =-也是递减的, 即135b b b >>>
,∴{}n b 的奇数项中有最大值为13250236b =-=>, ∴156
b =是数列{}(*)n b n N ∈中的最大值.D 正确. 故选:ACD .
【点睛】
本题考查数列新定义,解题关键正确理解新定义,把问题转化为利用数列的单调性求最值.。

相关文档
最新文档