察哈尔右翼中旗第一中学校2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
察哈尔右翼中旗第一中学校2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 已知数列{}n a 的首项为11a =,且满足111
22
n n n a a +=+,则此数列的第4项是( ) A .1 B .12 C. 34 D .5
8
2. 以椭圆
+
=1的顶点为焦点,焦点为顶点的双曲线C ,其左、右焦点分别是F 1,F 2,已知点M 坐标为
(2,1),双曲线C 上点P (x 0,y 0)(x 0>0,y 0>0)满足=
,则
﹣S
( ) A .2
B .4
C .1
D .﹣1
3. 如图,三行三列的方阵中有9个数a ij (i=1,2,3;j=1,2,3),从中任取三个数,则至
少有两个数位于同行或同列的概率是( )
A .
B .
C .
D .
4. “x ≠0”是“x >0”是的( )
A .充分而不必要条件
B .必要而不充分条件
C .充分必要条件
D .既不充分也不必要条件 5. 函数y=sin (2x+)图象的一条对称轴方程为( ) A .x=﹣
B .x=﹣
C .x=
D .x=
6. 已知f (x )在R 上是奇函数,且f (x+4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=( ) A .﹣2 B .2 C .﹣98 D .98
7. 某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信 息,可确定被抽测的人数及分数在[]90,100内的人数分别为( )
A.20,2 B.24,4 C.25,2 D.25,4
8.设i是虚数单位,则复数
2
1
i
i
在复平面内所对应的点位于()
A.第一象限B.第二象限C.第三象限D.第四象限
9.设数列{a n}的前n项和为S n,若S n=n2+2n(n∈N*),则++…+=()A.B.C.D.
10.四棱锥的八条棱代表8种不同的化工产品,由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为()
A.96 B.48 C.24 D.0
11.下列说法正确的是()
A.类比推理是由特殊到一般的推理
B.演绎推理是特殊到一般的推理
C.归纳推理是个别到一般的推理
D.合情推理可以作为证明的步骤
12.设S n为等差数列{a n}的前n项和,已知在S n中有S17<0,S18>0,那么S n中最小的是()
A.S10B.S9C.S8D.S7
二、填空题
13.如图,一个空间几何体的正视图和侧视图都是边长为2的正三角形,俯视如图是一个圆,那么该几何体的体积是
.
14.若在圆C :x 2+(y ﹣a )2=4上有且仅有两个点到原点O 距离为1,则实数a 的取值范围是 .
15.设()x x
f x e
=
,在区间[0,3]上任取一个实数0x ,曲线()f x 在点()00,()x f x 处的切线斜率为k ,则随机事件“0k <”的概率为_________. 16.已知点E 、F 分别在正方体 的棱上,且, ,则
面AEF 与面ABC 所成的二面角的正切值等于 .
17.已知奇函数f (x )的定义域为[﹣2,2],且在定义域上单调递减,则满足不等式f (1﹣m )+f (1﹣2m )<0的实数m 的取值范围是 . 18.已知是等差数列,为其公差, 是其前项和,若只有是中的最小项,则可得出的结论中
所有正确的序号是___________ ①
②
③
④
⑤
三、解答题
19.某种产品的广告费支出x 与销售额y (单位:百万元)之间有如下对应数据:
x 2 4 5 6 8 y 30 40 60 50 70
(1)画出散点图; (2)求线性回归方程;
(3)预测当广告费支出7(百万元)时的销售额.
20.某滨海旅游公司今年年初用49万元购进一艘游艇,并立即投入使用,预计每年的收入为25万元,此外每年都要花费一定的维护费用,计划第一年维护费用4万元,从第二年起,每年的维修费用比上一年多2万元,设使用x年后游艇的盈利为y万元.
(1)写出y与x之间的函数关系式;
(2)此游艇使用多少年,可使年平均盈利额最大?
21.现有5名男生和3名女生.
(1)若3名女生必须相邻排在一起,则这8人站成一排,共有多少种不同的排法?
(2)若从中选5人,且要求女生只有2名,站成一排,共有多少种不同的排法?
22.已知函数f(x)=sin2x•sinφ+cos2x•cosφ+sin(π﹣φ)(0<φ<π),其图象过点(,.)(Ⅰ)求函数f(x)在[0,π]上的单调递减区间;
(Ⅱ)若x0∈(,π),sinx0=,求f(x0)的值.
23.(本小题满分12分)
成都市某中学计划举办“国学”经典知识讲座.由于条件限制,按男、女生比例采取分层抽样的方法,从
某班选出10人参加活动,在活动前,对所选的10名同学进行了国学素养测试,这10名同学的性别和测试
成绩(百分制)的茎叶图如图所示.
(1)根据这10名同学的测试成绩,分别估计该班男、女生国学素养测试的平均成绩;
(2)若从这10名同学中随机选取一男一女两名同学,求这两名同学的国学素养测试成绩均为优良的概率.(注:成绩大于等于75分为优良)
24f x=sinωx+φω00φ2π
x 0
y 1 0 ﹣1
(2)求函数g(x)=f(x)+sin2x的单调递增区间.
察哈尔右翼中旗第一中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题
1.【答案】B
【解析】
2.【答案】A
【解析】解:∵椭圆方程为+=1,
∴其顶点坐标为(3,0)、(﹣3,0),焦点坐标为(2,0)、(﹣2,0),
∴双曲线方程为,
设点P(x,y),记F1(﹣3,0),F2(3,0),
∵=,
∴
=
,
整理得:=5,
化简得:5x=12y﹣15,
又∵,
∴5﹣4y2=20,
解得:y=或y=(舍),
∴P(3,),
∴直线PF1方程为:5x﹣12y+15=0,
∴点M到直线PF1的距离d==1,
易知点M到x轴、直线PF2的距离都为1,
结合平面几何知识可知点M(2,1)就是△F1PF2的内心.
故﹣===2,
故选:A.
【点评】本题考查椭圆方程,双曲线方程,三角形面积计算公式,注意解题方法的积累,属于中档题.3.【答案】
D
【解析】
古典概型及其概率计算公式.
【专题】计算题;概率与统计.
【分析】利用间接法,先求从9个数中任取3个数的取法,再求三个数分别位于三行或三列的情况,即可求得结论.
【解答】解:从9个数中任取3个数共有C93=84种取法,三个数分别位于三行或三列的情况有6种;
∴所求的概率为=
故选D.
【点评】本题考查计数原理和组合数公式的应用,考查概率的计算公式,直接解法较复杂,采用间接解法比较简单.
4.【答案】B
【解析】解:当x=﹣1时,满足x≠0,但x>0不成立.
当x>0时,一定有x≠0成立,
∴“x≠0”是“x>0”是的必要不充分条件.
故选:B.
5.【答案】A
【解析】解:对于函数y=sin(2x+),令2x+=kπ+,k∈z,
求得x=π,可得它的图象的对称轴方程为x=π,k∈z,
故选:A.
【点评】本题主要考查正弦函数的图象的对称性,属于基础题.
6.【答案】A
【解析】解:因为f(x+4)=f(x),故函数的周期是4
所以f(7)=f(3)=f(﹣1),
又f(x)在R上是奇函数,
所以f(﹣1)=﹣f(1)=﹣2×12=﹣2,
故选A.
【点评】本题考查函数的奇偶性与周期性.
7.【答案】C
【解析】
考点:茎叶图,频率分布直方图.
8.【答案】B
【解析】因为
所以,对应的点位于第二象限
故答案为:B
【答案】B
9.【答案】D
【解析】解:∵S n=n2+2n(n∈N*),∴当n=1时,a1=S1=3;当n≥2时,a n=S n﹣S n﹣1=(n2+2n)﹣[(n﹣1)2+2(n﹣1)]=2n+1.
∴==,
∴++…+=++…+
=
=﹣.
故选:D.
【点评】本题考查了递推关系、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.
10.【答案】
B
【解析】
排列、组合的实际应用;空间中直线与直线之间的位置关系.
【专题】计算题;压轴题.
【分析】首先分析题目已知由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,求安全存放的不同方法的种数.首先需要把四棱锥个顶点设出来,然后分析到四棱锥没有公共点的8条棱分4组,只有2种情况.然后求出即可得到答案.
【解答】解:8种化工产品分4组,设四棱锥的顶点是P,底面四边形的个顶点为A、B、C、D.
分析得到四棱锥没有公共点的8条棱分4组,只有2种情况,
(PA、DC;PB、AD;PC、AB;PD、BC)或(PA、BC;PD、AB;PC、AD;PB、DC)
那么安全存放的不同方法种数为2A44=48.
故选B.
【点评】此题主要考查排列组合在实际中的应用,其中涉及到空间直线与直线之间的位置关系的判断,把空间几何与概率问题联系在一起有一定的综合性且非常新颖.
11.【答案】C
【解析】解:因为归纳推理是由部分到整体的推理;类比推理是由特殊到特殊的推理;演绎推理是由一般到特殊的推理;合情推理的结论不一定正确,不可以作为证明的步骤,
故选C.
【点评】本题考查合情推理与演绎推理,考查学生分析解决问题的能力,属于基础题.
12.【答案】C
【解析】解:∵S16<0,S17>0,
∴=8(a8+a9)<0,=17a9>0,
∴a8<0,a9>0,
∴公差d>0.
∴S n中最小的是S8.
故选:C.
【点评】本题考查了等差数列的通项公式性质及其求和公式、不等式的解法,考查了推理能力与计算能力,属于中档题.
二、填空题
13.【答案】
.
【解析】解:此几何体是一个圆锥,由正视图和侧视图都是边长为2的正三角形,其底面半径为1,且其高为正三角形的高
由于此三角形的高为,故圆锥的高为
此圆锥的体积为=
故答案为
【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是圆锥的体积.三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是新课标的新增内容,在以后的高考中有加强的可能.
14.【答案】﹣3<a<﹣1或1<a<3.
【解析】解:根据题意知:圆x2+(y﹣a)2=4和以原点为圆心,1为半径的圆x2+y2=1相交,两圆圆心距d=|a|,∴2﹣1<|a|<2+1,
∴﹣3<a<﹣1或1<a<3.
故答案为:﹣3<a<﹣1或1<a<3.
【点评】本题体现了转化的数学思想,解题的关键在于将问题转化为:圆x2+(y﹣a)2=4和以原点为圆心,1为半径的圆x2+y2=1相交,属中档题.
15.【答案】
35
【解析】解析:本题考查几何概率的计算与切线斜率的计算.
001()x x k f x e -'==
,由0()0f x '<得,0
1x >,∴随机事件“0k <”的概率为2
3. 16.【答案】
【解析】延长EF 交BC 的延长线于P ,则AP 为面AEF 与面ABC 的交线,因为,所以
为
面AEF 与面ABC 所成的二面角的平面角。
17.【答案】 [﹣,] .
【解析】解:∵函数奇函数f (x )的定义域为[﹣2,2],且在定义域上单调递减,
∴不等式f (1﹣m )+f (1﹣2m )<0等价为f (1﹣m )<﹣f (1﹣2m )=f (2m ﹣1),
即,即,得﹣≤m ≤,
故答案为:[﹣,] 【点评】本题主要考查不等式的求解,根据函数奇偶性将不等式进行转化是解决本题的关键.注意定义域的限
制.
18.【答案】①②③④ 【解析】 因为只有是
中的最小项,所以
,,所以,故①②③正
确;
,故④正确;
,无法判断符号,故⑤错误, 故正确答案①②③④
答案:①②③④
三、解答题
19.【答案】
【解析】解:(1)
(2)
设回归方程为=bx+a
则b=﹣5/﹣5=1380﹣5×5×50/145﹣5×52=6.5
故回归方程为=6.5x+17.5
(3)当x=7时,=6.5×7+17.5=63,
所以当广告费支出7(百万元)时,销售额约为63(百万元).
【点评】本题考查线性回归方程的求法和应用,本题解题的关键是利用最小二乘法求出线性回归方程的系数,这是解答正确的主要环节.
20.【答案】
【解析】解:(1)(x∈N*) (6)
(2)盈利额为…
当且仅当即x=7时,上式取到等号 (11)
答:使用游艇平均7年的盈利额最大. (12)
【点评】本题考查函数模型的构建,考查利用基本不等式求函数的最值,属于中档题.
21.【答案】
【解析】解:(1)先排3个女生作为一个整体,与其余的5个元素做全排列有A33A66=4320种.
(2)从中选5人,且要求女生只有2名,则男生有3人,先选再排,故有C32C53A55=3600种
【点评】本题主要考查排列与组合及两个基本原理,排列数公式、组合数公式的应用,注意特殊元素和特殊位置要优先排.
22.【答案】
【解析】(本小题满分12分)φ
解:(Ⅰ)f(x)=+﹣
=+
=)
由f(x)图象过点()知:
所以:φ=
所以f(x)=
令(k∈Z)
即:
所以:函数f(x)在[0,π]上的单调区间为:
(Ⅱ)因为x0∈(π,2π),
则:
2x0∈(π,2π)
则:=
sin
所以=)=
【点评】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数单调区间的确定,三角函数的求值问题,属于基础题型.
23.【答案】
【解析】【命题意图】本题考查茎叶图的制作与读取,古典概型的概率计算,是概率统计的基本题型,解答的关键是应用相关数据进行准确计算,是中档题.
24.【答案】
【解析】(本题满分12分)
解:(1)由表格给出的信息知,函数f(x)的周期为T=2(﹣0)=π.
所以ω==2,由sin(2×0+φ)=1,且0<φ<2π,所以φ=.
所以函数的解析式为f(x)=sin(2x+)=cos2x…6分
(2)g(x)=f(x)+sin2x=sin2x+cos2x=2sin(2x+),
令2k≤2x+≤2k,k∈Z则得kπ﹣≤x≤kπ+,k∈Z
故函数g(x)=f(x)+sin2x的单调递增区间是:,k∈Z…12分
【点评】本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,正弦函数的单调性,周期公式的应用,属于基本知识的考查.。