八年级数学上册【几何模型三角形轴对称】试卷达标训练题(Word版 含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上册【几何模型三角形轴对称】试卷达标训练题(Word版含答
案)
一、八年级数学轴对称解答题压轴题(难)
1.如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1).
(1)请运用所学数学知识构造图形求出AB的长;
(2)若Rt△ABC中,点C在坐标轴上,请在备用图1中画出图形,找出所有的点C后不用计算写出你能写出的点C的坐标;
(3)在x轴上是否存在点P,使PA=PB且PA+PB最小?若存在,就求出点P的坐标;若不存在,请简要说明理由(在备用图2中画出示意图).
【答案】(1)AB=52)C2(0,7),C4(0,-4),C5(-1,0)、C6(1,0);(3)不存在这样的点P.
【解析】
【分析】
(1)如图,连结AB,作B关于y轴的对称点D,利用勾股定理即可得出AB;
(2)分别以A,B,C为直角顶点作图,然后直接得出符合条件的点的坐标即可;
(3)作AB的垂直平分线l3,则l3上的点满足PA=PB,作B关于x轴的对称点B′,连结AB′,即x轴上使得PA+PB最小的点,观察作图即可得出答案.
【详解】
解:(1)如图,连结AB,作B关于y轴的对称点D,
由已知可得,BD=4,AD=2.∴在Rt△ABD中,AB=5
(2)如图,①以A为直角顶点,过A作l1⊥AB交x轴于C1,交y轴于C2.
②以B为直角顶点,过B作l2⊥AB交x轴于C3,交y轴于C4.
③以C为直角顶点,以AB为直径作圆交坐标轴于C5、C6、C7.(用三角板画找出也可)
由图可知,C2(0,7),C4(0,-4),C5(-1,0)、C6(1,0).
(3)不存在这样的点P.
作AB的垂直平分线l3,则l3上的点满足PA=PB,
作B关于x轴的对称点B′,连结AB′,
由图可以看出两线交于第一象限.
∴不存在这样的点P.
【点睛】
本题考查了勾股定理,构造直角三角形,中垂线和轴对称--路径最短问题的综合作图分析,解题的关键是学会分类讨论,学会画好图形解决问题.
2.教材呈现:如图是华师版八年级上册数学教材第94页的部分内容.2.线段垂直平分线.我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图,直线MN是线段AB的垂直平分线,P是MN上任一点,连结PA、PB,将线段AB沿直线MN对称,我们发现PA与PB完全重合,由此即有:线段垂直平分线的性质定理线段垂直平分线上的点到线段的距离相等.已知:如图,MN⊥AB,垂足为点C,AC=BC,点P是直线MN上的任意一点.求证:PA=PB.分析:图中有两个直角三角形APC和BPC,只要证明这两个三角形全等,便可证明PA=PB.
定理证明:请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程.
定理应用:
(1)如图②,在△ABC中,直线m、n分别是边BC、AC的垂直平分线,直线m、n的交点为O.过点O作OH⊥AB于点H.求证:AH=BH.
(2)如图③,在△ABC中,AB=BC,边AB的垂直平分线l交AC于点D,边BC的垂直平分线k交AC于点E.若∠ABC=120°,AC=15,则DE的长为.
【答案】(1)见解析;(2)5
【解析】
【分析】
定理证明:先证明△PAC≌△PBC,然后再运用三角形全等的性质进行解答即可;
(1)连结AO、BO、CO利用线段的垂直平分线的判定和性质即可解答;
(2)连接BD,BE,证明△BDE是等边三角形即可解答.
【详解】
解:定理证明:
∵MN⊥AB,
∴∠PCA=∠PCB=90°.
又∵AC=BC,PC=PC,
∴△PAC≌△PBC(SAS),
∴PA=PB.
定理应用:(1)如图2,连结OA、OB、OC.
∵直线m是边BC的垂直平分线,
∴OB=OC,
∵直线n是边AC的垂直平分线,
∴OA=OC,
∴OA=OB
∵OH⊥AB,
∴AH=BH;
(2)如图③中,连接BD,BE.
∵BA=BC,∠ABC=120°,
∴∠A=∠C=30°,
∵边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,
∴DA=DB,EB=EC,
∴∠A=∠DBA=30°,∠C=∠EBC=30°,
∴∠BDE=∠A+∠DBA=60°,∠BED=∠C+∠EBC=60°,
∴△BDE是等边三角形,
∴AD=BD=DE=BE=EC,
∵AC=15=AD+DE+EC=3DE,
∴DE=5,
故答案为:5.
【点睛】
本题考查了线段的垂直平分线的性质、全等三角形的判定和性质、等边三角形的判定和性质等知识,掌握并灵活运用数学基本知识是解答本题的关键.
3.(1)已知△ABC中,∠A=90°,∠B=67.5°,请画一条直线,把这个三角形分割成两个等腰三角形.(请你选用下面给出的备用图,把所有不同的分割方法都画出来.只需画图,不必说明理由,但要在图中标出相等两角的度数)
(2)已知△ABC中,∠C是其最小的内角,过顶点B的一条直线把这个三角形分割成了两
个等腰三角形,请探求∠ABC与∠C之间的关系.
【答案】(1)图形见解析(2) ∠ABC与∠C之间的关系是∠ABC=135°-3
4
∠C或∠ABC=3∠C
或∠ABC=180°-3∠C或∠ABC=90°,∠C是小于45°的任意锐角.
【解析】
试题分析:(1)已知角度,要分割成两个等腰三角形,可以运用直角三角形、等腰三角形性质结合三角形内角和定理,先计算出可能的角度,或者先从草图中确认可能的情况,及角度,然后画上.
(2)在(1)的基础上,由“特殊”到“一般”,需要把直角三角形分成两个等腰三角形的各种情形列方程,可得出角与角之间的关系.
试题解析:(1)如图①②(共有2种不同的分割法).
(2)设∠ABC=y,∠C=x,过点B的直线交边AC于点D.
在△DBC中,
①若∠C是顶角,如图,则∠CBD=∠CDB=90°-1
2
x,∠A=180°-x-y.
故∠ADB=180°-∠CDB=90°+1
2
x>90°,此时只能有∠A=∠ABD,
即180°-x-y=y-
1
90
2
x
⎛⎫
-
⎪⎝⎭

∴3x+4y=540°,∴∠ABC=135°-3
4
∠C.
②若∠C是底角,
第一种情况:如图,当DB =DC 时,∠DB C =x.在△ABD 中,∠ADB =2x ,∠ABD =y -x.
若AB =AD ,则2x =y -x ,此时有y =3x ,
∴∠ABC =3∠C.
若AB =BD ,则180°-x -y =2x ,此时有3x +y =180°,∴∠ABC =180°-3∠C.
若AD =BD ,则180°-x -y =y -x ,此时有y =90°,即∠ABC=90°,∠C 为小于45°的任意锐角.
第二种情况:如图,
当BD =BC 时,∠BDC =x ,∠ADB =180°-x >90°,此时只能有AD =
BD ,∴∠A =∠ABD =12∠BDC =12
∠C <∠C ,这与题设∠C 是最小角矛盾. ∴当∠C 是底角时,BD =BC 不成立.
综上所述,∠ABC 与∠C 之间的关系是∠ABC=135°-34
∠C 或∠ABC=3∠C 或∠ABC=180°-3∠C 或∠ABC=90°,∠C 是小于45°的任意锐角.
点睛:本题考查了等腰三角形的性质;第(1)问是计算与作图相结合的探索.本问对学生运用作图工具的能力,以及运用直角三角形、等腰三角形性质等基础知识解决问题的能力都有较高的要求.第(2)问在第(1)问的基础上,由“特殊”到“一般”,“分类讨论”把直角三角形分成两个等腰三角形的各种情形并结合“方程思想”探究角与角之间的关系.本题不仅趣味性强,创造性强,而且渗透了由“特殊”到“一般”、“分类讨论”、“方程思想”、“转化思想”等数学思想,是一道不可多得的好题.
4.(1)问题发现.
如图1,ACB ∆和DCE ∆均为等边三角形,点A 、D 、E 均在同一直线上,连接BE .
①求证:ADC BEC ∆∆≌.
②求AEB ∠的度数.
③线段AD 、BE 之间的数量关系为__________.
(2)拓展探究.
如图2,ACB ∆和DCE ∆均为等腰直角三角形,90ACB DCE ∠=∠=︒,点A 、D 、E 在同一直线上,CM 为DCE ∆中DE 边上的高,连接BE .
①请判断AEB ∠的度数为____________.
②线段CM 、AE 、BE 之间的数量关系为________.(直接写出结论,不需证明)
【答案】(1)①详见解析;②60°;③AD BE =;(2)①90°;②2AE BE CM =+
【解析】
【分析】
(1)易证∠ACD =∠BCE ,即可求证△ACD ≌△BCE ,根据全等三角形对应边相等可求得AD =BE ,根据全等三角形对应角相等即可求得∠AEB 的大小;
(2)易证△ACD ≌△BCE ,可得∠ADC =∠BEC ,进而可以求得∠AEB =90°,即可求得DM =ME =CM ,即可解题.
【详解】
解:(1)①证明:∵ACB ∆和DCE ∆均为等边三角形,
∴AC CB =,CD CE =,
又∵60ACD DCB ECB DCB ∠+∠=∠+∠=︒,
∴ACD ECB ∠=∠,
∴()ADC BEC SAS ∆∆≌.
②∵CDE ∆为等边三角形,
∴60CDE ∠=︒.
∵点A 、D 、E 在同一直线上,
∴180120ADC CDE ∠=︒-∠=︒,
又∵ADC BEC ∆∆≌,
∴120ADC BEC ∠=∠=︒,
∴1206060AEB ∠=︒-︒=︒.
③AD BE =
ADC BEC ∆∆≌,
∴AD BE =.
故填:AD BE =;
(2)①∵ACB ∆和DCE ∆均为等腰直角三角形,
∴AC CB =,CD CE =,
又∵90ACB DCE ∠=∠=︒,
∴ACD DCB ECB DCB ∠+∠=∠+∠,
∴ACD ECB ∠=∠,
在ACD ∆和BCE ∆中,
AC CB ACD ECB CD CE =⎧⎪∠=∠⎨⎪=⎩

∴E ACD BC ∆∆≌,

ADC BEC ∠∠=.
∵点A 、D 、E 在同一直线上, ∴180********ADC BEC CDE ∠=∠=︒-∠=︒-︒=︒,
∴1351354590AEB CED ∠=︒-∠=︒-︒=︒.
②∵CDA CEB ∆∆≌,
∴BE AD =.
∵CD CE =,CM DE ⊥,
∴DM ME =.
又∵90DCE ∠=︒,
∴2DE CM =,
∴2AE AD DE BE CM =+=+.
故填:①90°;②2AE BE CM =+.
【点睛】
本题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,本题中求证△ACD ≌△BCE 是解题的关键.
5.数学课上,同学们探究下面命题的正确性,顶角为36°的等腰三角形我们称之为黄金三角形,“黄金三角形“具有一种特性,即经过它某一顶点的一条直线可以把它分成两个小等腰三角形,为此,请你,解答问题:
(1)已知如图1:黄金三角形△ABC 中,∠A=36°,直线BD 平分∠ABC 交AC 于点D ,求证:△ABD 和△DBC 都是等腰三角形;
(2)如图,在△ABC中,AB=AC,∠A=36°,请你设计三种不同的方法,将△ABC分割成三个等腰三角形,不要求写出画法,不要求证明,但是要标出所分得的每个三角形的各内角的度数.
(3)已知一个三角形可以被分成两个等腰三角形,若原三角形的一个内角为36°,求原三角形的最大内角的所有可能值.
【答案】(1)见解析;(2)见解析;(3)最大角的可能值为72°,90°,108°,126°,132°
【解析】
【分析】
(1)通过角度转换得到∠ABD=∠BAD,和∠BDC=72°=∠C,即可判断;
(2)根据等腰三角形的两底角相等及三角形内角和定理进行解答即可;
(3)设原△ABD中有一个角为36°,可分成两个等腰三角形,逐个讨论:①当分割的直线过顶点B时②当分割三角形的直线过点D时情况和过点B一样的,③当分割三角形的直线过点A时,在分别求出最大角的度数即可.
【详解】
解:(1)证明:∵∠ABC=(180-36)÷2=72;BD平分∠ABC,∠ABD=72÷2=36°,
∴∠ABD=∠BAD,
∴△ABD为等腰三角形,
∴∠BDC=72°=∠C,
∴△BCD为等腰三角形;
(2)根据等腰三角形的两底角相等及三角形内角和定理作出,如图所示:
(3)设原△ABD中有一个角为36°,可分成两个等腰三角形,逐个讨论:
①当分割的直线过顶点B时,
【1】:第一个等腰三角形ABC以A为顶点:则第二个等腰三角形BCD只可能以C为顶点
此时∠A=36°,∠D=36°,∠B=72+36=108°,最大角的值为108°;
【2】:第一个等腰三角形ABC以B为顶点:第二个等腰三角形BCD只可能以C为顶点
此时:∠A=36°,∠D=18°,∠B=108+18=126°,最大角的值为126°;
【3】第一个等腰三角形ABC以C为顶点:第二个等腰三角形BCD有三种情况
△BCD以B为顶点:∠A=36°,∠D=72°,
∴∠ABD=72°,最大角的值为72°;
△BCD以C为顶点:∠A=36°,∠D=54°,
∴∠ABD=90°,最大角的值为90°;
△BCD以D为顶点:∠A=36°,∠D=36°
∴∠ABD=108°,最大角的值为108°;
②当分割三角形的直线过点D时情况和过点B一样的;
③当分割三角形的直线过点A时,
此时∠A=36°,∠D=12°,∠B=132°,
最大角的值为132°;
综上所述:最大角的可能值为72°,90°,108°,126°,132°.
【点睛】
本题是对三角形知识的综合考查,熟练掌握等腰三角形的性质和角度转换是解决本题的关键,难度较大,分类讨论是解决本题的关键.
6.如图,在等边△ABC中,线段AM为BC边上的中线.动点D在直线AM上时,以CD为一边在CD的下方作等边△CDE,连结BE.
(1)求∠CAM的度数;
(2)若点D在线段AM上时,求证:△ADC≌△BEC;
(3)当动D在直线
..AM上时,设直线BE与直线AM的交点为O,试判断∠AOB是否为定值?并说明理由.
【答案】(1)30°;(2)答案见解析;(3)∠AOB是定值,∠AOB=60°.
【解析】
【分析】
(1)根据等边三角形的性质可以直接得出结论;
(2)根据等边三角形的性质就可以得出AC=BC,DC=EC,∠ACB=∠DCE=60°,由等式的性质就可以∠BCE=∠ACD,根据SAS就可以得出△ADC≌△BEC;
(3)分情况讨论:当点D在线段AM上时,如图1,由(2)可知△ACD≌△BCE,就可以求出结论;当点D在线段AM的延长线上时,如图2,可以得出△ACD≌△BCE而有
∠CBE=∠CAD=30°而得出结论;当点D在线段MA的延长线上时,如图3,通过得出
△ACD ≌△BCE 同样可以得出结论. 【详解】
(1)∵△ABC 是等边三角形,∴∠BAC =60°. ∵线段AM 为BC 边上的中线,∴∠CAM 1
2
=∠BAC ,∴∠CAM =∠BAM =30°. (2)∵△ABC 与△DEC 都是等边三角
形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACD +∠DCB =∠DCB +∠BCE ,∴∠ACD =∠BCE .
在△ADC 和△BEC 中,∵AC BC ACD BCE CD CE =⎧⎪
∠=∠⎨⎪=⎩
,∴△ACD ≌△BCE (SAS );
(3)∠AOB 是定值,∠AOB =60°.理由如下:
①当点D 在线段AM 上时,如图1,由(2)可知△ACD ≌△BCE ,则∠CBE =∠CAD =30°,又∠ABC =60°,∴∠CBE +∠ABC =60°+30°=90°.
∵△ABC 是等边三角形,线段AM 为BC 边上的中线,∴AM 平分∠BAC ,即
11603022
BAM BAC ∠∠==⨯︒=︒,∴∠BOA =90°﹣30°=60°.
②当点D 在线段AM 的延长线上时,如图2. ∵△ABC 与△DEC 都是等边三角
形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACB +∠DCB =∠DCB +∠DCE ,∴∠ACD =∠BCE .
在△ACD 和△BCE 中,∵AC BC ACD BCE CD CE =⎧⎪
∠=∠⎨⎪=⎩

∴△ACD ≌△BCE (SAS ),∴∠CBE =∠CAD =30°. 由(1)得:∠BAM =30°,∴∠BOA =90°﹣30°=60°. ③当点D 在线段MA 的延长线上时. ∵△ABC 与△DEC 都是等边三角
形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACD +∠ACE =∠BCE +∠ACE =60°,∴∠ACD =∠BCE .
在△ACD 和△BCE 中,∵AC BC ACD BCE CD CE =⎧⎪
∠=∠⎨⎪=⎩

∴△ACD ≌△BCE (SAS ),∴∠CBE =∠CAD . 由(1)
得:∠CAM =30°,∴∠CBE =∠CAD =150°,∴∠CBO =30°,∠BAM =30°,∴∠BOA =90°﹣30°=60°.
综上所述:当动点D 在直线AM 上时,∠AOB 是定值,∠AOB =60°.
【点睛】
本题考查了等边三角形的性质的运用,直角三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.
7.如图,在平面直角坐标系中,A(﹣3,0),点 B是 y轴正半轴上一动点,点C、D在 x 正半轴上.
(1)如图,若∠BAO=60°,∠BCO=40°,BD、CE 是△ABC的两条角平分线,且BD、CE交于点F,直接写出CF的长_____.
(2)如图,△ABD是等边三角形,以线段BC为边在第一象限内作等边△BCQ,连接 QD并
延长,交 y轴于点 P,当点 C运动到什么位置时,满足 PD=2
3
DC?请求出点C的坐标;
(3)如图,以AB为边在AB的下方作等边△ABP,点B在 y轴上运动时,求OP的最小值.
【答案】(1)6;(2)C的坐标为(12,0);(3)3 2 .
【解析】
【分析】
(1)作∠DCH=10°,CH 交BD 的延长线于H,分别证明△OBD≌△HCD 和△AOB≌△FHC,根据全等三角形的对应边相等解答;
(2)证明△CBA≌△QBD,根据全等三角形的性质得到∠BDQ=∠BAC=60°,求出CD,得
到答案;
(3)以 OA 为对称轴作等边△ADE ,连接 EP ,并延长 EP 交 x 轴于点 F .证明点 P 在直线 EF 上运动,根据垂线段最短解答. 【详解】
解:(1)作∠DCH =10°,CH 交 BD 的延长线于 H , ∵∠BAO =60°, ∴∠ABO =30°, ∴AB =2OA =6,
∵∠BAO =60°,∠BCO =40°, ∴∠ABC =180°﹣60°﹣40°=80°, ∵BD 是△ABC 的角平分线, ∴∠ABD =∠CBD =40°,
∴∠CBD =∠DCB ,∠OBD =40°﹣30°=10°, ∴DB =DC , 在△OBD 和△HCD 中,
==OBD HCD DB DC ODC HDC ∠∠⎧⎪
=⎨⎪∠∠⎩
∴△OBD ≌△HCD (ASA ), ∴OB =HC , 在△AOB 和△FHC 中,
==ABO FCH OB HC AOB FHC ∠∠⎧⎪
=⎨⎪∠∠⎩
∴△AOB ≌△FHC (ASA ), ∴CF=AB=6, 故答案为6;
(2)∵△ABD 和△BCQ 是等边三角形, ∴∠ABD =∠CBQ =60°, ∴∠ABC =∠DBQ ,
在△
CBA 和
△QBD 中,
BA BD ABC DBQ BC BQ =⎧⎪
∠=∠⎨⎪=⎩
∴△CBA ≌△QBD (SAS ), ∴∠BDQ =∠BAC =60°, ∴∠PDO =60°, ∴PD =2DO =6, ∵PD =
2
3
DC , ∴DC =9,即 OC =OD+CD =12, ∴点 C 的坐标为(12,0);
(3)如图3,以 OA 为对称轴作等边△ADE ,连接 EP ,并延长 EP 交 x 轴于点F . 由(2)得,△AEP ≌△ADB , ∴∠AEP =∠ADB =120°, ∴∠OEF =60°, ∴OF =OA =3,
∴点P 在直线 EF 上运动,当 OP ⊥EF 时,OP 最小, ∴OP =
12OF =32
则OP 的最小值为
3
2

【点睛】
本题考查的是等边三角形的性质,全等三角形的判定和性质,垂线段最短,掌握全等三角形的判定定理和性质定理是解题的关键.
8.如图,在平面直角坐标系中,点B 坐标为
()6,0-,点A 是y 轴正半轴上一点,且
10AB =,点P 是x 轴上位于点B 右侧的一个动点,设点P 的坐标为()0m ,
.
(1)点A 的坐标为___________;
(2)当ABP △是等腰三角形时,求P 点的坐标;
(3)如图2,过点P 作PE AB ⊥交线段AB 于点E ,连接OE ,若点A 关于直线OE 的对称点为A ',当点A '恰好落在直线PE 上时,BE =_____________.(直接写出答案) 【答案】(1)()0,8;(2)()4,0或()6,0或7
,03⎛⎫ ⎪⎝⎭
;(3)425
【解析】 【分析】
(1)根据勾股定理可以求出AO 的长,则可得出A 的坐标; (2)分三种情况讨论等腰三角形的情况,得出点P 的坐标; (3)根据PE AB ⊥,点A '在直线PE 上,得到EAG
OPG ,利用点A ,A '关于直线
OE 对称点,根据对称性,可证
'
OPG EAO ,可得'
8OP OA ,82AP

设BE x =,则有6AE x ,根据勾股定理,有:2222
2BP BE EP AP AE
解之即可. 【详解】
解:(1)∵点B 坐标为6,0,点A 是y 轴正半轴上一点,且10AB =,
∴ABO 是直角三角形,根据勾股定理有:
2
2
2
2
1068AO
AB BO ,
∴点A 的坐标为()0,8; (2)∵ABP △是等腰三角形, 当BP
AB 时,如图一所示:
OP BP BO,∴1064∴P点的坐标是()4,0;
=时,如图二所示:当AP AB
OP BO
∴6
∴P点的坐标是()6,0;
=时,如图三所示:当AP BP
设OP x =,则有6AP x
∴根据勾股定理有:222OP AO AP += 即:2
2
2
86
x x
解之得:73
x =
∴P 点的坐标是
7
,03
; (3)当ABP △是钝角三角形时,点A '不存在; 当ABP △是锐角三角形时,如图四示:
连接'OA ,
∵PE AB ⊥,点A '在直线PE 上,
∴AEG △和GOP 是直角三角形,EGA
OGP

EAG
OPG ,
∵点A ,A '关于直线OE 对称点, 根据对称性,有'
8OA OA ,'EA
EA
∴'
FAO FAO
,'
FAE FAE

'
EAG
EAO
则有:'OPG EAO
∴'
AOP 是等腰三角形,则有'8OP OA ,
∴2222
8882AP
AO OP ,
设BE x =,则有6AE x ,
根据勾股定理,有:
22
222BP BE EP AP AE 即:2
2
2
2
68
82
10
x x
解之得:42
5
BE x
【点睛】
本题考查了三角形的综合问题,涉及的知识点有:解方程,等腰三角形的判定与性质,对称等知识点,能分类讨论,熟练运用各性质定理,是解题的关键.
9.如图,已知DCE ∠与AOB ∠,OC 平分AOB ∠.
(1)如图1,DCE ∠与AOB ∠的两边分别相交于点 D 、E ,90AOB DCE ∠=∠=︒,试判断线段CD 与CE 的数量关系,并说明理由. 以下是小宇同学给出如下正确的解法: 解:CD CE =.
理由如下:如图1,过点 C 作 C F OC ⊥,交 O B 于点 F ,则90OCF ∠=︒, …
请根据小宇同学的证明思路,写出该证明的剩余部分. (2)你有与小宇不同的思考方法吗?请写出你的证明过程. (3)若120AOB ∠=︒,60DCE ∠=︒.
①如图3,DCE ∠与AOB ∠的两边分别相交于点 D 、E 时,(1)中的结论成立吗?为什么?线段 O D 、OE 、OC 有什么数量关系?说明理由.
②如图4,DCE ∠的一边与 AO 的延长线相交时,请回答(1)中的结论是否成立,并请直接写出线段 O D 、OE 、OC 有什么数量关系;如图5,DCE ∠的一边与 BO 的延长线相交时,请回答(1)中的结论是否成立,并请直接写出线段 O D 、OE 、OC 有什么数量关系.
【答案】(1)见解析;(2)证明见解析;(3)①成立,理由见解析;②在图4中,(1)中的结论成立,OE OD OC
-=.在图5中,(1)中的结论成立,OD OE OC
-=
【解析】
【分析】
(1)通过ASA证明CDO CEF
∆∆
≌即可得到CD=CE;(2)过点C作CM OA
⊥,
CN OB
⊥,垂足分别为M,N,通过AAS证明CMD CNE
∆∆
≌同样可得到CD=CE;(3)①方法一:过点C作C M OA
⊥,CN OB
⊥垂足分别为M,N,通过AAS得到CMD CNE
∆∆
≌,进而得到,
CD CE DM EN
==,利用等量代换得到
=
OE OD ON OM
++,在Rt CMO
∆中,利用30°角所对的边是斜边的一半得1
2
OM OC
=,同理得到
1
2
ON OC
=,所以OE OD OC
+=;方法二:以CO为一边作60
FCO
∠=︒,交O B于点F,通过ASA证明CDO CEF
∆∆
≌,得到
,
CD CE OD EF
==,所以OE OD OE EF OF OC
+=+==;②图4:以OC为一边,作∠OCF=60°与OB交于F点,利用ASA证得△COD≌△CFE,即有CD=CE,OD=EF
得到OE=OF+EF=OC+OD;图5:以OC为一边,作∠OCG=60°与OA交于G点,利用ASA证得△CGD≌△COE,即有CD=CE,OD=EF,得到OE=OF+EF=OC+OD.
【详解】
解:(1)OC平分AOB
∠,145
∠=∠2=︒
∴,
390245,123
︒︒
∴∠=-∠=∴∠=∠=∠
OC FC
∴=
又456590︒
∠+∠=∠+∠=
在CDO
∆与CEF
∆中,
13
46
OC FC
∠=∠


=

⎪∠=∠

()
CDO CEF ASA
∴∆∆

CD CE
∴=
(2)如图2,过点 C 作CM OA ⊥,CN OB ⊥,垂足分别为 M ,N ,
∴90CMD CNE ∠=∠=︒,
又∵OC 平分AOB ∠,
∴CM CN =,
在四边形 O DCE 中,
12360AOB DCE ∠+∠+∠+∠=︒,
又∵90AOB DCE ∠=∠=︒,
∴12180∠+∠=︒,
又∵13180∠+∠=︒,
∴32∠=∠,
在CMD ∆与CNE ∆中,
32CMD CNE CM CN ∠=∠⎧⎪∠=∠⎨⎪=⎩
∴()CMD CNE AAS ∆∆≌,
∴CD CE
=.
(3)①(1)中的结论仍成立.OE OD OC +=.
理由如下:
方法一:如图3(1),过点 C 作 C M OA ⊥,CN OB ⊥,
垂足分别为 M ,N ,
∴90CMD CNE ∠=∠=︒,
又∵OC 平分AOB ∠,
∴CM CN =,
在四边形ODCE 中,
12360AOB DCE ∠+∠+∠+∠=︒,
又∵60120180AOB DCE ∠+∠=︒+︒=︒,
∴12180∠+∠=︒,
又∵23180∠+∠=︒,
∴13∠=∠,
在CMD ∆与CNE ∆中,
13CMD CNE CM CN ∠=∠⎧⎪∠=∠⎨⎪=⎩

∴()CMD CNE AAS ∆∆≌,
∴,CD CE DM EN ==.
∴OE OD OE OM DM OE OM EN ON OM +=++=++=+.
在 Rt CMO ∆中,
1490590302
AOB ∠=︒-∠=︒-∠=︒, ∴12OM OC =,同理1 2
ON OC =, ∴1122
OE OD OC OC OC +=+=. 方法二:如图3(2),以CO 为一边作60FCO ∠=︒,交 O B 于点 F ,
∵OC 平分AOB ∠,∴1260∠=∠=︒,
∴3180260FCO ∠=︒-∠-∠=︒,
∴13∠=∠,32FCO ∠=∠=∠,
∴COF ∆是等边三角形,
∴CO CF =,
∵4560DCE ∠=∠+∠=︒,
6560
FCO
∠=∠+∠=︒,
∴46
∠=∠,
在CDO
∆与CEF
∆中,
13
46
CO CF
∠=∠


=

⎪∠=∠

∴()
CDO CEF ASA
∆∆
≌,
∴,
CD CE OD EF
==.
∴OE OD OE EF OF OC
+=+==.
②在图4中,(1)中的结论成立,OE OD OC
-=.
如图,以OC为一边,作∠OCF=60°与OB交于F点
∵∠AOB=120°,OC为∠AOB的角平分线
∴∠COB=∠COA=60°
又∵∠OCF=60°
∴△COF为等边三角形
∴OC=OF
∵∠COF=∠OCD+∠DCF=60°,∠DCE=∠DCF+∠FCB=60°∴∠OCD=∠FCB
又∵∠COD=180°-∠COA=180°-60°=120°
∠CFE=180°-∠CFO=180°-60°=120°
∴∠COD=∠CFE
∴△COD≌△CFE(ASA)
∴CD=CE,OD=EF
∴OE=OF+EF=OC+OD
即OE-OD=OC
在图5中,(1)中的结论成立,OD OE OC -=.
如图,以OC 为一边,作∠OCG=60°与OA 交于G 点
∵∠AOB=120°,OC 为∠AOB 的角平分线
∴∠COB=∠COA=60°
又∵∠OCG=60°
∴△COG 为等边三角形
∴OC=OG
∵∠COG=∠OCE+∠ECG=60°,∠DCE=∠DCG+∠GCE=60°
∴∠DCG=∠OCE
又∵∠COE=180°-∠COB=180°-60°=120°
∠CGD=180°-∠CGO=180°-60°=120°
∴∠CGD=∠COE
∴△CGD ≌△COE (ASA )
∴CD=CE ,OE=DG
∴OD=OG+DG=OC+OE
即OD-OE=OC
【点睛】
本题主要考查全等三角形的综合应用,有一定难度,解题关键在于能够做出辅助线证全等.
10.如图,已知ABC ∆()AB AC BC <<,请用无刻度直尺和圆规,完成下列作图(不要求写作法,保留作图痕迹):
∆沿着过点M的某一条直线折叠,点B与点(1)在边BC上找一点M,使得:将ABC
C能重合,请在图①中作出点M;
∆沿着过点N的某一条直线折叠,点B能落在(2)在边BC上找一点N,使得:将ABC
⊥,请在图②中作出点N.
边AC上的点D处,且ND AC
【答案】(1)见详解;(2)见详解.
【解析】
【分析】
(1)作线段BC的垂直平分线,交BC于点M,即可;
(2)过点B作BO⊥BC,交CA的延长线于点O,作∠BOC的平分线交BC于点N,即可.
【详解】
(1)作线段BC的垂直平分线,交BC于点M,即为所求.点M如图①所示:
(2)过点B作BO⊥BC,交CA的延长线于点O,作∠BOC的平分线交BC于点N,即为所求.点N如图②所示:
【点睛】
本题主要考查尺规作图,掌握尺规作线段的中垂线和角平分线,是解题的关键.。

相关文档
最新文档