明光市第一中学校2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

明光市第一中学校2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1.如右图,在长方体中,=11,=7,=12,一质点从顶点A射向点,遇长方体的面反射(反射服从光的反射原理),将次到第次反射点之间的线
段记为,,将线段竖直放置在同一水平线上,则大致的图形是()
A
B
C
D
2.如图是某几何体的三视图,则该几何体任意两个顶点间的距离的最大值为()
A.4 B.5 C.32D.33
3.一个椭圆的半焦距为2,离心率e=,则它的短轴长是()
A.3 B.C.2D.6
4.在△ABC中,C=60°,AB=,AB边上的高为,则AC+BC等于()
A. B.5 C.3 D.
5.如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()
A.B.C.D.
6.若复数z=2﹣i (i为虚数单位),则=()
A.4+2i B.20+10i C.4﹣2i D.
7.抛物线E:y2=2px(p>0)的焦点为F,点A(0,2),若线段AF的中点B在抛物线上,则|BF|=()
A.B.C.D.
8.如图,已知双曲线﹣=1(a>0,b>0)的左右焦点分别为F1,F2,|F1F2|=4,P是双曲线右支上一点,直线PF2交y轴于点A,△AF1P的内切圆切边PF1于点Q,若|PQ|=1,则双曲线的渐近线方程为()
A.y=±x B.y=±3x C.y=±x D.y=±x
9.已知直线x+ay﹣1=0是圆C:x2+y2﹣4x﹣2y+1=0的对称轴,过点A(﹣4,a)作圆C的一条切线,切点为B,则|AB|=()
A.2 B.6 C.4D.2
10.平面α与平面β平行的条件可以是()
A.α内有无穷多条直线与β平行
B.直线a∥α,a∥β
C .直线a ⊂α,直线b ⊂β,且a ∥β,b ∥α
D .α内的任何直线都与β平行
11.拋物线E :y 2=2px (p >0)的焦点与双曲线C :x 2-y 2=2的焦点重合,C 的渐近线与拋物线E 交于非原点的P 点,则点P 到E 的准线的距离为( ) A .4 B .6 C .8
D .10
12.利用计算机在区间(0,1)上产生随机数a ,则不等式ln (3a ﹣1)<0成立的概率是( )
A .
B .
C .
D .
二、填空题
13.如图是一个正方体的展开图,在原正方体中直线AB 与CD 的位置关系是 .
14.设x ∈(0,π),则f (x )=cos 2x+sinx 的最大值是 .
15.已知直线l :ax ﹣by ﹣1=0(a >0,b >0)过点(1,﹣1),则ab 的最大值是 . 16.若正数m 、n 满足mn ﹣m ﹣n=3,则点(m ,0)到直线x ﹣y+n=0的距离最小值是 .
17.已知,a b 为常数,若()()22
4+3a 1024f x x x f x b x x =++=++,,则5a b -=_________.
18.设f (x )是(x 2+)6
展开式的中间项,若f (x )≤mx 在区间[
,]上恒成立,则实数m 的取值范
围是 .
三、解答题
19.已知数列{a n }共有2k (k ≥2,k ∈Z )项,a 1=1,前n 项和为S n ,前n 项乘积为T n ,且a n+1=(a ﹣1)S n +2(n=1,
2,…,2k ﹣1),其中a=2,数列{b n }满足b n =log 2

(Ⅰ)求数列{b n }的通项公式;
(Ⅱ)若|b 1﹣|+|b 2﹣|+…+|b 2k ﹣1﹣|+|b 2k ﹣|≤,求k 的值.
20.设函数f(x)=x2e x.
(1)求f(x)的单调区间;
(2)若当x∈[﹣2,2]时,不等式f(x)>m恒成立,求实数m的取值范围.
21.已知a>0,b>0,a+b=1,求证:
(Ⅰ)++≥8;
(Ⅱ)(1+)(1+)≥9.
22.已知函数.
(Ⅰ)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂直,求函数y=f(x)的单调区间;
(Ⅱ)若对于∀x∈(0,+∞)都有f(x)>2(a﹣1)成立,试求a的取值范围;
(Ⅲ)记g(x)=f(x)+x﹣b(b∈R).当a=1时,函数g(x)在区间[e﹣1,e]上有两个零点,求实数b的取值范围.
23.【无锡市2018届高三上期中基础性检测】已知函数()()2ln 1.f x x m x m R =--∈ (1)当1m =时,求()f x 的单调区间;
(2)令()()g x xf x =,区间1
5
22
,D e e -⎛⎫
= ⎪⎝⎭
,e 为自然对数的底数。

(ⅰ)若函数()g x 在区间D 上有两个极值,求实数m 的取值范围; (ⅱ)设函数()g x 在区间D 上的两个极值分别为()1g x 和()2g x , 求证:12x x e ⋅>.
24.化简:
(1).
(2)+.
明光市第一中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】C 【解析】根据题意有:
A 的坐标为:(0,0,0),
B 的坐标为(11,0,0),
C 的坐标为(11,7,0),
D 的坐标为(0,7,0); A 1的坐标为:(0,0,12),B 1的坐标为(11,0,12),C 1的坐标为(11,7,12),D 1的坐标为(0,7,12);
E 的坐标为(4,3,12) (1)l 1长度计算 所以:l 1=|AE|==13。

(2)l 2长度计算
将平面A 1B 1C 1D 1沿Z 轴正向平移AA 1个单位,得到平面A 2B 2C 2D 2;显然有:
A 2的坐标为:(0,0,24),
B 2的坐标为(11,0,24),
C 2的坐标为(11,7,24),
D 2的坐标为(0,7,24);
显然平面A 2B 2C 2D 2和平面ABCD 关于平面A 1B 1C 1D 1对称。

设AE 与的延长线与平面A 2B 2C 2D 2相交于:E 2(x E2,y E2,24) 根据相识三角形易知: x E2=2x E =2×4=8, y E2=2y E =2×3=6, 即:E 2(8,6,24)
根据坐标可知,E 2在长方形A 2B 2C 2D 2内。

2. 【答案】D 【解析】
试题分析:因为根据几何体的三视图可得,几何体为下图,,A D A B A G 相互垂直,面A E F G ⊥面
,//,3,1A B C D E B C A E A B A D A G D E ====,根据几何体的性质得:2
2
3
2,3(3
2)
A C G C ==+
22
2733,345G E ===
+=,3
2,4,10,10
B G A D E F
C E ====,所以最长为33G C =.
考点:几何体的三视图及几何体的结构特征.
3.【答案】C
【解析】解:∵椭圆的半焦距为2,离心率e=,
∴c=2,a=3,
∴b=
∴2b=2.
故选:C.
【点评】本题主要考查了椭圆的简单性质.属基础题.
4.【答案】D
【解析】解:由题意可知三角形的面积为S===AC•BCsin60°,
∴AC•BC=.由余弦定理AB2=AC2+BC2﹣2AC•BCcos60°=(AC+BC)2﹣3AC•BC,
∴(AC+BC)2﹣3AC•BC=3,
∴(AC+BC)2=11.
∴AC+BC=
故选:D
【点评】本题考查解三角形,三角形的面积与余弦定理的应用,整体法是解决问题的关键,属中档题.5.【答案】D
【解析】解:设|AF1|=x,|AF2|=y,∵点A为椭圆C1:+y2=1上的点,
∴2a=4,b=1,c=;
∴|AF1|+|AF2|=2a=4,即x+y=4;①
又四边形AF1BF2为矩形,
∴+=,即x2+y2=(2c)2==12,②
由①②得:,解得x=2﹣,y=2+,设双曲线C
的实轴长为2m,焦距为2n,
2
则2m=|AF
|﹣|AF1|=y﹣x=2,2n=2c=2,
2
∴双曲线C2的离心率e===.
故选D.
【点评】本题考查椭圆与双曲线的简单性质,求得|AF1|与|AF2|是关键,考查分析与运算能力,属于中档题.
6. 【答案】A
【解析】解:∵z=2﹣i ,
∴==
=
=


=10•
=4+2i ,
故选:A .
【点评】本题考查复数的运算,注意解题方法的积累,属于基础题.
7. 【答案】D
【解析】解:依题意可知F 坐标为(,0)
∴B 的坐标为(,1)代入抛物线方程得=1,解得p=

∴抛物线准线方程为x=﹣

所以点B 到抛物线准线的距离为=,
则B 到该抛物线焦点的距离为.
故选D .
8. 【答案】D
【解析】解:设内切圆与AP 切于点M ,与AF 1切于点N , |PF 1|=m ,|QF 1|=n ,
由双曲线的定义可得|PF 1|﹣|PF 2|=2a ,即有m ﹣(n ﹣1)=2a ,① 由切线的性质可得|AM|=|AN|,|NF 1|=|QF 1|=n ,|MP|=|PQ|=1, |MF 2|=|NF 1|=n , 即有m ﹣1=n ,② 由①②解得a=1, 由|F 1F 2|=4,则c=2,
b==,
由双曲线

=1的渐近线方程为y=±x ,
即有渐近线方程为y=x .
故选D .
【点评】本题考查双曲线的方程和性质,考查切线的性质,运用对称性和双曲线的定义是解题的关键.
9. 【答案】B
【解析】解:∵圆C :x 2+y 2﹣4x ﹣2y+1=0,即(x ﹣2)2+(y ﹣1)2
=4,
表示以C (2,1)为圆心、半径等于2的圆.
由题意可得,直线l :x+ay ﹣1=0经过圆C 的圆心(2,1), 故有2+a ﹣1=0,∴a=﹣1,点A (﹣4,﹣1).
∵AC=
=2,CB=R=2,
∴切线的长|AB|==
=6.
故选:B .
【点评】本题主要考查圆的切线长的求法,解题时要注意圆的标准方程,直线和圆相切的性质的合理运用,属于基础题.
10.【答案】D
【解析】解:当α内有无穷多条直线与β平行时,a 与β可能平行,也可能相交,故不选A .
当直线a ∥α,a ∥β时,a 与β可能平行,也可能相交,故不选 B .
当直线a ⊂α,直线b ⊂β,且a ∥β 时,直线a 和直线 b 可能平行,也可能是异面直线,故不选 C .
当α内的任何直线都与β 平行时,由两个平面平行的定义可得,这两个平面平行, 故选 D .
【点评】本题考查两个平面平行的判定和性质得应用,注意考虑特殊情况.
11.【答案】
【解析】解析:选D.双曲线C 的方程为x 22-y 22=1,其焦点为(±2,0),由题意得p
2=2,
∴p =4,即拋物线方程为y 2=8x , 双曲线C 的渐近线方程为y =±x ,
由⎩
⎪⎨⎪⎧y 2
=8x y =±x ,解得 x =0(舍去)或x =8,则P 到E 的准线的距离为8+2=10,故选D.
12.【答案】C
【解析】解:由ln(3a﹣1)<0得<a<,
则用计算机在区间(0,1)上产生随机数a,不等式ln(3a﹣1)<0成立的概率是P=,故选:C.
二、填空题
13.【答案】异面.
【解析】解:把展开图还原原正方体如图,
在原正方体中直线AB与CD的位置关系是异面.
故答案为:异面.
14.【答案】.
【解析】解:∵f(x)=cos2x+sinx=1﹣sin2x+sinx=﹣+,
故当sinx=时,函数f(x)取得最大值为,
故答案为:.
【点评】本题主要考查三角函数的最值,二次函数的性质,属于基础题.
15.【答案】.
【解析】解:∵直线l:ax﹣by﹣1=0(a>0,b>0)过点(1,﹣1),
∴a+b﹣1=0,即a+b=1,
∴ab

=
当且仅当
a=b=时取等号, 故ab
的最大值是
故答案为:
【点评】本题考查基本不等式求最值,属基础题.
16.【答案】

【解析】解:点(m ,0)到直线x ﹣y+n=0的距离为
d=,
∵mn ﹣m ﹣n=3,
∴(m ﹣1)(n ﹣1)=4,(m ﹣1>0,n ﹣1>0), ∴(m ﹣1)+(n ﹣1)≥
2,
∴m+n ≥6, 则
d=≥3

故答案为:

【点评】本题考查了的到直线的距离公式,考查了利用基本不等式求最值,是基础题.
17.【答案】 【解析】
试题分析:由()()22
4+3a 1024f x x x f x b x x =++=++,,得2
2
()4()31024a x b a x b x x ++++=++,
即2222
24431024a x a b x b a x b x x +++++=++,比较系数得2
2
124104324
a a
b a b b ⎧=⎪+=⎨⎪++=⎩,解得1,7a b =-=-或
1,3a b ==,则5a b -=.
考点:函数的性质及其应用.
【方法点晴】本题主要考查了函数的性质及其应用,其中解答中涉及到函数解析式的化简与运算,求解解析式中的代入法的应用和多项式相等问题等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,试题有一定难度,属于中档试题,本题的解答中化简()f a x b +的解析式是解答的关键. 18.【答案】 [5,+∞) .
【解析】二项式定理.
【专题】概率与统计;二项式定理.
【分析】由题意可得f(x)=x3,再由条件可得m≥x2在区间[,]上恒成立,求得x2在区间[,]上的最大值,可得m的范围.
【解答】解:由题意可得f(x)=x6=x3.
由f(x)≤mx在区间[,]上恒成立,可得m≥x2
在区间[,]上恒成立,
由于x2在区间[,]上的最大值为5,故m≥5,
即m的范围为[5,+∞),
故答案为:[5,+∞).
【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,函数的恒成立问题,属于中档题.
三、解答题
19.【答案】
【解析】(本小题满分13分)
解:(1)当n=1时,a2=2a,则;
当2≤n≤2k﹣1时,a n+1=(a﹣1)S n+2,a n=(a﹣1)S n﹣1+2,
所以a n+1﹣a n=(a﹣1)a n,故=a,即数列{a n}是等比数列,,
∴T n=a1×a2×…×a n=2n a1+2+…+(n﹣1)=,
b n==.…
(2)令,则n≤k+,又n∈N*,故当n≤k时,,
当n≥k+1时,.…
|b1﹣|+|b2﹣|+…+|b2k﹣1﹣|+|b2k﹣|
=+()+…+()…
=(k+1+…+b2k)﹣(b1+…+b k)
=[+k]﹣[]
=,
由,得2k2﹣6k+3≤0,解得,…
又k≥2,且k∈N*,所以k=2.…
【点评】本题考查数列的通项公式的求法,考查满足条件的实数值的求法,是中档题,解题时要认真审题,注意等比数列的性质和构造法的合理运用.
20.【答案】
【解析】解:(1)…

∴f(x)的单增区间为(﹣∞,﹣2)和(0,+∞);
单减区间为(﹣2,0).…
(2)令
∴x=0和x=﹣2,…

∴f(x)∈[0,2e2]…
∴m<0…
21.【答案】
【解析】证明:(Ⅰ)∵a+b=1,a>0,b>0,
∴++==2()=2()
=2()+4≥4+4=8,(当且仅当a=b时,取等号),
∴++≥8;
(Ⅱ)∵(1+)(1+)=1+++,
由(Ⅰ)知,++≥8,
∴1+++≥9,
∴(1+)(1+)≥9.
22.【答案】
【解析】解:(Ⅰ)直线y=x+2的斜率为1,函数f(x)的定义域为(0,+∞),
因为,所以,,所以,a=1.
所以,,.由f'(x)>0解得x>2;由f'(x)<0,解得0<x<2.所以f(x)的单调增区间是(2,+∞),单调减区间是(0,2).
(Ⅱ),由f'(x)>0解得;由f'(x)<0解得.
所以,f(x)在区间上单调递增,在区间上单调递减.
所以,当时,函数f(x)取得最小值,.因为对于∀x∈(0,+∞)都有f(x)>2(a﹣1)成立,
所以,即可.则.由解得.
所以,a的取值范围是.
(Ⅲ)依题得,则.
由g'(x)>0解得x>1;由g'(x)<0解得0<x<1.
所以函数g(x)在区间(0,1)为减函数,在区间(1,+∞)为增函数.
又因为函数g(x)在区间[e﹣1,e]上有两个零点,所以,
解得.所以,b的取值范围是.
【点评】本题考查导数与曲线上某点的切线斜率的关系,利用导数求函数的单调区间以及函数的最值.23.【答案】(1)增区间()
0,2,减区间()
2,+∞,(2)详见解析
【解析】试题分析:(1)求导写出单调区间;(2)(ⅰ)函数()g x 在区间D 上有两个极值,等价于
()2ln 21g x x m x -'=+在1
5
22
,e e -⎛⎫ ⎪⎝⎭上有两个不同的零点,令()0g x '=,得2ln 12x m x +=
,通过求导分析 得m 的范围为51
22
31
,e e ⎛


⎪⎝⎭
;(ⅱ)2ln 1
2x m x +=,得12122ln 12ln 12x x m x x ++==,由分式恒等变换得 121212
12
212ln 1
2ln 12ln 1
ln x x x x x x x x ++++--=
+-,得1
1212112112
2
2
2
1
ln ln 1ln
ln 1
x x x x x x x x x x x x x x ++++=
⋅=
⋅--,要证明
12x x e >,只需证12ln ln 12x x ++>,即证
1
2112
2
1
ln 21
x x x x x x +⋅>-,
令3
12
1x e
t x -<
=<,()()21ln 1
t p t t t -=-
+,通过求导得到()0p t <恒成立,得证。

试题解析:
(2)(ⅰ)因为()2
2ln g x x x m x x =--,
所以()2ln 2212ln 21g x x m x x m x =+--=-+',1
5
22
,x e e -⎛⎫
∈ ⎪⎝⎭

若函数()g x 在区间D 上有两个极值,等价于()2ln 21g x x m x -'=+在15
22,e e -⎛⎫
⎪⎝⎭
上有两个不同的零点,
令()0g x '=,得2ln 1
2x m x
+=,
设()()2
2ln 1
12ln ,x x
t x t x x
x
'+-=
=
,令(
)0,t x x ='=
所以m 的范围为51
22
31
,e e ⎛
⎫ ⎪
⎪⎝⎭
(ⅱ)由(ⅰ)知,若函数()g x 在区间D 上有两个极值分别为()1g x 和()2g x ,不妨设12x x <,则
121
2
2ln 1
2ln 1
2x x m x x ++=
=

所以
121212
12
212ln 1
2ln 12ln 1
ln x x x x x x x x ++++--=
+-
即1
1212112112
2
2
2
1
ln ln 1ln
ln 1
x x x x x x x x x x x x x x ++++=
⋅=
⋅--,
要证12x x e >,只需证12ln ln 12x x ++>,即证
1
2112
2
1
ln 21x x x x
x x
+⋅>-,
令3
12
1x e
t x -<
=<,即证
1ln 21
t t t +⋅>-,即证1ln 21
t t t -<⋅
+,
令()()21ln 1
t p t t t -=-
+,因为()()
()
()
2
2
2
114
011t p t t
t t t -=
-
=
+'>+,
所以()p t 在()3,1e -上单调增,()10p =,所以()0p t <, 即()21ln 0,1
t t t --
<+所以1ln 2
1
t t t -<+,得证。

24.【答案】
【解析】解 (1)原式==
==
===﹣1.
(2)∵tan(﹣α)=﹣tanα,sin(﹣α)=cosα,cos(α﹣π)=cos(π﹣α)=﹣sinα,
tan(π+α)=tanα,
∴原式=+=+==﹣=﹣1.【点评】本题考查二倍角公式的应用,诱导公式的应用,三角函数化简求值,考查计算能力.。

相关文档
最新文档