甘肃省金昌市2019-2020学年中考第五次模拟数学试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

甘肃省金昌市2019-2020学年中考第五次模拟数学试题
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.在平面直角坐标系中,若点A(a,-b)在第一象限内,则点B(a,b)所在的象限是()
A.第一象限B.第二象限C.第三象限D.第四象限
2.已知二次函数y=﹣(x﹣h)2+1(为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y 的最大值为﹣5,则h的值为( )
A.3﹣6或1+6B.3﹣6或3+6
C.3+6或1﹣6D.1﹣6或1+6
3.如图,在平行四边形ABCD中,AB=4,BC=6,分别以A,C为圆心,以大于1
2
AC的长为半径作弧,
两弧相交于M,N两点,作直线MN交AD于点E,则△CDE的周长是()
A.7 B.10 C.11 D.12
4.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC、∠BCD,则∠P的度数是( )
A.60°B.65°C.55°D.50°
5.最小的正整数是()
A.0 B.1 C.﹣1 D.不存在
6.下列计算正确的是()
A325B.1233C3×2 6 D 8
2
4
7.用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是()
A.2cm B.32cm C.42cm D.4cm
8.小丽只带2元和5元的两种面额的钞票(数量足够多),她要买27元的商品,而商店不找零钱,要她刚好付27元,她的付款方式有()种.
A.1 B.2 C.3 D.4
9.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()
A.4个B.5个C.6个D.7个
10.下列美丽的壮锦图案是中心对称图形的是()
A.B.C.D.
11.已知二次函数y=ax1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc>0;②b1﹣4ac
=0;③a>1;④ax1+bx+c=﹣1的根为x1=x1=﹣1;⑤若点B(﹣1
4
,y1)、C(﹣
1
2
,y1)为函数图象
上的两点,则y1>y1.其中正确的个数是()
A.1 B.3 C.4 D.5
12.二次函数y=ax1+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=1,下列
结论:(1)4a+b=0;(1)9a+c>﹣3b;(3)7a﹣3b+1c>0;(4)若点A(﹣3,y1)、点B(﹣1
2
,y1)、
点C(7,y3)在该函数图象上,则y1<y3<y1;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x1,且x1<x1,则x1<﹣1<5<x1.其中正确的结论有()
A .1个
B .3个
C .4个
D .5个
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.已知抛物线y=x 2﹣x+3与y 轴相交于点M ,其顶点为N ,平移该抛物线,使点M 平移后的对应点M′与点N 重合,则平移后的抛物线的解析式为_____.
14.如图,△ABC 中,DE 垂直平分AC 交AB 于E ,∠A=30°,∠ACB=80°,则∠BCE=_____ °.
15.如图,在Rt △ABC 中,∠ACB =90°,AB =5,AC =3,点D 是BC 上一动点,连接AD ,将△ACD 沿AD 折叠,点C 落在点E 处,连接DE 交AB 于点F ,当△DEB 是直角三角形时,DF 的长为_____.
16.若关于x 的不等式组><2x a x ⎧⎨⎩
恰有3个整数解,则字母a 的取值范围是_____.
17.已知抛物线23y x mx =--与直线25y x m =-在22x -<…之间有且只有一个公共点,则m 的取值范围是__.
18.如图,在△ABC 中,AB =AC ,D 、E 、F 分别为AB 、BC 、AC 的中点,则下列结论:①△ADF ≌△FEC ;②四边形ADEF 为菱形;③:1:4ADF ABC S S ∆∆=.其中正确的结论是____________.(填写所有正确结论的序号)
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级(2)班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图: 八年级(2)班参加球类活动人数情况统计表 项目 篮球 足球 乒乓球 排球 羽毛球 人数
a
6
5
7
6
八年级(2)班学生参加球类活动人数情况扇形统计图
根据图中提供的信息,解答下列问题:a = ,b = .该校八年级学生共有600人,则该年级参加足球活动的人数约 人;该班参加乒乓球活动的5位同学中,有3位男同学(A ,B ,C)和2位女同学(D ,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.
20.(6分)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD .小明在山坡的坡脚A 处测得宣传牌底部D 的仰角为60°,沿山坡向上走到B 处测得宣传牌顶部C 的仰角为45°.已知山坡AB 的坡度i =1:,AB =10米,AE =15米,求这块宣传牌CD 的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)
21.(6分)为响应“植树造林、造福后人”的号召,某班组织部分同学义务植树180棵,由于同学们的积极参与,实际参加的人数比原计划增加了50%,结果每人比原计划少栽了2棵,问实际有多少人参加了这次植树活动?
22.(8分)如图,已知一次函数12y kx =-的图象与反比例函数()20m
y x x
=
>的图象交于A 点,与x 轴、y 轴交于,C D 两点,过A 作AB 垂直于x 轴于B 点.已知1,2AB BC ==.
(1)求一次函数12y kx =-和反比例函数()20m
y x x
=>的表达式; (2)观察图象:当0x >时,比较12,y y .
23.(8分)近年来,共享单车服务的推出(如图1),极大的方便了城市公民绿色出行,图2是某品牌某型号单车的车架新投放时的示意图(车轮半径约为30cm),其中BC∥直线l,∠BCE=71°,CE=54cm.(1)求单车车座E到地面的高度;(结果精确到1cm)
(2)根据经验,当车座E到CB的距离调整至等于人体胯高(腿长)的0.85时,坐骑比较舒适.小明的胯高为70cm,现将车座E调整至座椅舒适高度位置E′,求EE′的长.(结果精确到0.1cm)(参考数据:sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)
24.(10分)某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:
(1)这四个班参与大赛的学生共__________人;
(2)请你补全两幅统计图;
(3)求图1中甲班所对应的扇形圆心角的度数;
(4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多
少人.
25.(10分)已知AB 是⊙O 的直径,弦CD 与AB 相交,∠BAC =40°. (1)如图1,若D 为弧AB 的中点,求∠ABC 和∠ABD 的度数;
(2)如图2,过点D 作⊙O 的切线,与AB 的延长线交于点P ,若DP ∥AC ,求∠OCD 的度数.
26.(12分)把0,1,2三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下数字.放回后洗匀,再从中抽取一张卡片,记录下数字.请用列表法或树状图法求两次抽取的卡片上的数字都是偶数的概率. 27.(12分) (1)计算:)
1
201631(1)2384π
-⎛⎫
---+ ⎪⎝⎭
(2)先化简,再求值:2214
(
)244
x x x x x x x +---÷--+,其中x 是不等式371x +>的负整数解. 参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合
题目要求的.) 1.D 【解析】
先根据第一象限内的点的坐标特征判断出a、b的符号,进而判断点B所在的象限即可.
【详解】
∵点A(a,-b)在第一象限内,
∴a>0,-b>0,
∴b<0,
∴点B((a,b)在第四象限,
故选D.
【点睛】
本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.
2.C
【解析】
【详解】
∵当x<h时,y随x的增大而增大,当x>h时,y随x的增大而减小,
∴①若h<1≤x≤3,x=1时,y取得最大值-5,
可得:-(1-h)2+1=-5,
解得:或(舍);
②若1≤x≤3<h,当x=3时,y取得最大值-5,
可得:-(3-h)2+1=-5,
解得:或(舍).
综上,h的值为或,
故选C.
点睛:本题主要考查二次函数的性质和最值,根据二次函数的增减性和最值分两种情况讨论是解题的关键.3.B
【解析】
∵四边形ABCD是平行四边形,
∴AD=BC=4,CD=AB=6,
∵由作法可知,直线MN是线段AC的垂直平分线,
∴AE=CE,
∴AE+DE=CE+DE=AD,
∴△CDE的周长=CE+DE+CD=AD+CD=4+6=1.
故选B.
4.A
【解析】
试题分析:根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠P的度数.
解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,
∴∠BCD+∠CDE=540°﹣300°=240°,
∵∠BCD、∠CDE的平分线在五边形内相交于点O,
∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,
∴∠P=180°﹣120°=60°.
故选A.
考点:多边形内角与外角;三角形内角和定理.
5.B
【解析】
【分析】
根据最小的正整数是1解答即可.
【详解】
最小的正整数是1.
故选B.
【点睛】
本题考查了有理数的认识,关键是根据最小的正整数是1解答.
6.B
【解析】
【分析】
根据同类二次根式才能合并可对A进行判断;根据二次根式的乘法对B进行判断;12化为最简二次根式,然后进行合并,即可对C进行判断;根据二次根式的除法对D进行判断.
【详解】
解:A32不能合并,所以A选项不正确;
B123333B选项正确;
C3×26,所以C选项不正确;
D 8
2
8÷22÷2=2,所以D选项不正确.
【点睛】
此题考查二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.
7.C
【解析】
【分析】
利用扇形的弧长公式可得扇形的弧长;让扇形的弧长除以2π即为圆锥的底面半径,利用勾股定理可得圆锥形筒的高.
【详解】
L=1206
180
π⨯
=4π(cm);
圆锥的底面半径为4π÷2π=2(cm),
=cm).故选C.
【点睛】
此题考查了圆锥的计算,用到的知识点为:圆锥侧面展开图的弧长=
2
n r
180
π
;圆锥的底面周长等于侧面展
开图的弧长;圆锥的底面半径,母线长,高组成以母线长为斜边的直角三角形.8.C
【解析】
分析:先根据题意列出二元一次方程,再根据x,y都是非负整数可求得x,y的值.详解:解:设2元的共有x张,5元的共有y张,
由题意,2x+5y=27
∴x=1
2
(27-5y)
∵x,y是非负整数,

1
5
x
y






11
1
x
y






6
3
x
y






∴付款的方式共有3种.
故选C.
点睛:本题考查二元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再根据实际意义求解.
9.B
【解析】
由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.
【详解】由主视图和左视图可确定所需正方体个数最少时俯视图(数字为该位置小正方体的个数)为:
则搭成这个几何体的小正方体最少有5个, 故选B .
【点睛】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键. 【详解】
请在此输入详解! 【点睛】 请在此输入点睛! 10.A 【解析】
【分析】根据中心对称图形的定义逐项进行判断即可得. 【详解】A 、是中心对称图形,故此选项正确;
B 、不是中心对称图形,故此选项错误;
C 、不是中心对称图形,故此选项错误;
D 、不是中心对称图形,故此选项错误, 故选A .
【点睛】本题主要考查了中心对称图形,熟练掌握中心对称图形的定义是解题的关键;把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形. 11.D 【解析】 【分析】
根据二次函数的图象与性质即可求出答案. 【详解】
解:①由抛物线的对称轴可知:02b
a
-<, ∴0ab >,
∴0c >,
∴0abc >,故①正确;
②抛物线与x 轴只有一个交点,
∴0∆=,
∴240b ac -=,故②正确;
③令1x =-,
∴20y a b c =-++=, ∵12b a
-=-, ∴2b a =,
∴220a a c -++=,
∴2a c =+,
∵22c +>,
∴2a >,故③正确;
④由图象可知:令0y =,
即202ax bx c =+++的解为121x x ==-,
∴22ax bx c ++=-的根为121x x ==-,故④正确; ⑤∵11124
-<-<-, ∴12y y >,故⑤正确;
故选D .
【点睛】
考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.
12.B
【解析】
根据题意和函数的图像,可知抛物线的对称轴为直线x=-
2b a
=1,即b=-4a ,变形为4a+b=0,所以(1)正确;
由x=-3时,y >0,可得9a+3b+c >0,可得9a+c >-3c ,故(1)正确;
因为抛物线与x 轴的一个交点为(-1,0)可知a-b+c=0,而由对称轴知b=-4a ,可得a+4a+c=0,即c=-5a.代入可得7a ﹣3b+1c=7a+11a-5a=14a ,由函数的图像开口向下,可知a <0,因此7a ﹣3b+1c <0,故(3)不正确;
根据图像可知当x <1时,y 随x 增大而增大,当x >1时,y 随x 增大而减小,可知若点A (﹣3,y 1)、
点B(﹣1
2
,y1)、点C(7,y3)在该函数图象上,则y1=y3<y1,故(4)不正确;
根据函数的对称性可知函数与x轴的另一交点坐标为(5,0),所以若方程a(x+1)(x﹣5)=﹣3的两根为x1和x1,且x1<x1,则x1<﹣1<x1,故(5)正确.
正确的共有3个.
故选B.
点睛:本题考查了二次函数图象与系数的关系:二次函数y=ax1+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab <0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b1﹣4ac>0时,抛物线与x轴有1个交点;△=b1﹣4ac=0时,抛物线与x轴有1个交点;△=b1﹣4ac<0时,抛物线与x轴没有交点.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.y=(x﹣1)2+5 2
【解析】
【分析】
直接利用抛物线与坐标轴交点求法结合顶点坐标求法分别得出M、N点坐标,进而得出平移方向和距离,即可得出平移后解析式.
【详解】
解:y=x2-x+3=(x-1
2
)2+
11
4

∴N点坐标为:(1
2

11
4
),
令x=0,则y=3,
∴M点的坐标是(0,3).
∵平移该抛物线,使点M平移后的对应点M′与点N重合,
∴抛物线向下平移1
4
个单位长度,再向右平移
1
2
个单位长度即可,
∴平移后的解析式为:y=(x-1)2+5
2

故答案是:y=(x-1)2+5
2

【点睛】
此题主要考查了抛物线与坐标轴交点求法以及二次函数的平移,正确得出平移方向和距离是解题关键.14.1
【解析】
【分析】
根据△ABC中DE垂直平分AC,可求出AE=CE,再根据等腰三角形的性质求出∠ACE=∠A=30°,再根据∠ACB=80°即可解答.
【详解】
∵DE垂直平分AC,∠A=30°,
∴AE=CE,∠ACE=∠A=30°,
∵∠ACB=80°,
∴∠BCE=80°-30°=1°.
故答案为:1.
15.3
2

3
4
【解析】
试题分析:如图4所示;点E与点C′重合时.在Rt△ABC中,BC=22
AB AC
-=4.由翻折的性质可知;AE=AC=3、DC=DE.则EB=2.设DC=ED=x,则BD=4﹣x.在Rt△DBE中,DE2+BE2=DB2,即
x2+22=(4﹣x)2.解得:x=3
2
.∴DE=
3
2
.如图2所示:∠EDB=90时.由翻折的性质可知:AC=AC′,
∠C=∠C′=90°.∵∠C=∠C′=∠CDC′=90°,∴四边形ACDC′为矩形.又∵AC=AC′,∴四边形ACDC′
为正方形.∴CD=AC=3.∴DB=BC﹣DC=4﹣3=4.∵DE∥AC,∴△BDE∽△BCA.∴
1
4 DE DB
AC CB
==,

1
34
ED
=.解得:DE=
3
4
.点D在CB上运动,∠DBC′<90°,故∠DBC′不可能为直角.
考点:翻折变换(折叠问题).
16.﹣2≤a<﹣1.
【解析】
【分析】
先确定不等式组的整数解,再求出a的范围即可.【详解】
∵关于x 的不等式组><2
x a x ⎧⎨⎩恰有3个整数解, ∴整数解为1,0,﹣1,
∴﹣2≤a <﹣1,
故答案为:﹣2≤a <﹣1.
【点睛】
本题考查了一元一次不等式组的整数解的应用,能根据已知不等式组的解集和整数解确定a 的取值范围是解此题的关键.
17.517
m -<„或8m =-
【解析】
【分析】
联立方程可得2(2)530x m x m -++-=,设2(2)53y x m x m =-++-,从而得出2(2)53y x m x m =-++-的图象在22x -<„上与x 轴只有一个交点,当△0=时,求出此时m 的值;当△0>时,要使在22x -<„之间有且只有一个公共点,则当x=-2时和x=2时y 的值异号,从而求出m 的取值范围;
【详解】
联立2325y x mx y x m
⎧=--⎨=-⎩ 可得:2
(2)530x m x m -++-=,
令2(2)53y x m x m =-++-, ∴抛物线23y x mx =--与直线25y x m =-在22x -<„之间有且只有一个公共点,
即2(2)53y x m x m =-++-的图象在22x -<„上与x 轴只有一个交点,
当△0=时,
即△2
(2)4(53)0m m =+--=
解得:8m =±
当8m =+ 2
522
m x +==+>
当8m =-
2
52
m x +==-
当△0>时,
∴令2x =-,75y m =+,
令2x =,33y m =-,
(75)(33)0m m ∴+-<, ∴517
m -<< 令2x =-代入20(2)53x m x m =-++- 解得:57
m =-, 此方程的另外一个根为:237-
, 故57
m =-也满足题意, 故m 的取值范围为:517
m -<„
或8m =- 故答案为: 517
m -<„
或8m =-【点睛】
此题考查的是根据二次函数与一次函数的交点问题,求函数中参数的取值范围,掌握把函数的交点问题转化为一元二次方程解的问题是解决此题的关键.
18.①②③
【解析】
【分析】
①根据三角形的中位线定理可得出AD=FE 、AF=FC 、DF=EC ,进而可证出△ADF ≌△FEC (SSS ),结论①正确;
②根据三角形中位线定理可得出EF ∥AB 、EF=AD ,进而可证出四边形ADEF 为平行四边形,由AB=AC 结合D 、F 分别为AB 、AC 的中点可得出AD=AF ,进而可得出四边形ADEF 为菱形,结论②正确; ③根据三角形中位线定理可得出DF ∥BC 、DF=12
BC ,进而可得出△ADF ∽△ABC ,再利用相似三角形的性质可得出
14
ADF ABC S S =V V ,结论③正确.此题得解. 【详解】 解:①∵D 、E 、F 分别为AB 、BC 、AC 的中点,
∴DE 、DF 、EF 为△ABC 的中位线,
∴AD=12AB=FE ,AF=12AC=FC ,DF=12
BC=EC . 在△ADF 和△FEC 中,
AD FE AF FC DF EC ⎧⎪⎨⎪⎩
===,
∴△ADF ≌△FEC (SSS ),结论①正确;
②∵E 、F 分别为BC 、AC 的中点,
∴EF 为△ABC 的中位线,
∴EF ∥AB ,EF=12
AB=AD , ∴四边形ADEF 为平行四边形.
∵AB=AC ,D 、F 分别为AB 、AC 的中点,
∴AD=AF ,
∴四边形ADEF 为菱形,结论②正确;
③∵D 、F 分别为AB 、AC 的中点,
∴DF 为△ABC 的中位线,
∴DF ∥BC ,DF=12
BC , ∴△ADF ∽△ABC , ∴214
ADF ABC S DF S BC ==V V (),结论③正确. 故答案为①②③.
【点睛】
本题考查了菱形的判定与性质、全等三角形的判定与性质、相似三角形的判定与性质以及三角形中位线定理,逐一分析三条结论的正误是解题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19. (1)a =16,b =17.5(2)90(3)
35 【解析】
试题分析:(1)首先求得总人数,然后根据百分比的定义求解;
(2)利用总数乘以对应的百分比即可求解;
(3)利用列举法,根据概率公式即可求解.
试题解析:(1)a=5÷
12.5%×40%=16,5÷12.5%=7÷b%,∴b=17.5,故答案为16,17.5; (2)600×[6÷(5÷12.5%)]=90(人),故答案为90;
(3)如图,∵共有20种等可能的结果,两名主持人恰为一男一女的有12种情况,∴则P (恰好选到一男一女)=1220=35

考点:列表法与树状图法;用样本估计总体;扇形统计图.20.2.7米
【解析】
解:作BF⊥DE于点F,BG⊥AE于点G
在Rt△ADE中
∵tan∠ADE=,
∴DE="AE" ·tan∠ADE=15
∵山坡AB的坡度i=1:,AB=10
∴BG=5,AG=,
∴EF=BG=5,BF=AG+AE=+15
∵∠CBF=45°
∴CF=BF=+15
∴CD=CF+EF—DE=20—10≈20—10×1.732=2.68≈2.7答:这块宣传牌CD的高度为2.7米.
21.45人
【解析】
【详解】
解:设原计划有x人参加了这次植树活动
依题意得:180180
2
1.5
x x
=+
解得x=30人
经检验x=30是原方程式的根
实际参加了这次植树活动1.5x=45人
答实际有45人参加了这次植树活动.
22.(1)()12162,02y x y x x =
-=>;(2)12121206,;6,;6,x y y x y y x y y <== 【解析】
【分析】
(1)由一次函数的解析式可得出D 点坐标,从而得出OD 长度,再由△ODC 与△BAC 相似及AB 与BC 的长度得出C 、B 、A 的坐标,进而算出一次函数与反比例函数的解析式;
(2)以A 点为分界点,直接观察函数图象的高低即可知道答案.
【详解】
解:(1)对于一次函数y=kx-2,令x=0,则y=-2,即D (0,-2),
∴OD=2,
∵AB ⊥x 轴于B , ∴AB OD BC OC
= , ∵AB=1,BC=2,
∴OC=4,OB=6,
∴C (4,0),A (6,1)
将C 点坐标代入y=kx-2得4k-2=0,
∴k=12
, ∴一次函数解析式为y=12
x-2; 将A 点坐标代入反比例函数解析式得m=6, ∴反比例函数解析式为y=
6x ; (2)由函数图象可知:
当0<x <6时,y 1<y 2;
当x=6时,y 1=y 2;
当x >6时,y 1>y 2;
【点睛】
本题考查了反比例函数与一次函数的交点问题.熟悉函数图象上点的坐标特征和待定系数法解函数解析式的方法是解答本题的关键,同时注意对数形结合思想的认识和掌握.
23.(1)81cm ;(2)8.6cm ;
【解析】
【分析】
(1)作EM ⊥BC 于点M ,由EM=ECsin ∠BCE 可得答案;
(2)作E′H⊥BC于点H,先根据E′C=
'E H
sin ECB

求得E′C的长度,再根据EE′=CE′﹣CE可得答案.
【详解】
(1)如图1,过点E作EM⊥BC于点M.
由题意知∠BCE=71°、EC=54,∴EM=ECsin∠BCE=54sin71°≈51.3,则单车车座E到地面的高度为51.3+30≈81c m;
(2)如图2所示,过点E′作E′H⊥BC于点H.
由题意知E′H=70×0.85=59.5,则E′C=
'E H
sin ECB

=
59.5
71
sin︒
≈62.6,∴EE′=CE′﹣CE=62.6﹣54=8.6(cm).
【点睛】
本题考查了解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答.
24.(1)100;(2)见解析;(3)108°;(4)1250.
【解析】
试题分析:(1)根据乙班参赛30人,所占比为20%,即可求出这四个班总人数;
(2)根据丁班参赛35人,总人数是100,即可求出丁班所占的百分比,再用整体1减去其它所占的百分比,即可得出丙所占的百分比,再乘以参赛得总人数,即可得出丙班参赛得人数,从而补全统计图;(3)根据甲班级所占的百分比,再乘以360°,即可得出答案;
(4)根据样本估计总体,可得答案.
试题解析:(1)这四个班参与大赛的学生数是:
30÷30%=100(人);
故答案为100;
(2)丁所占的百分比是:×100%=35%,
丙所占的百分比是:1﹣30%﹣20%﹣35%=15%,
则丙班得人数是:100×15%=15(人);
如图:
(3)甲班级所对应的扇形圆心角的度数是:30%×360°=108°;
(4)根据题意得:2000×=1250(人).
答:全校的学生中参与这次活动的大约有1250人.
考点:条形统计图;扇形统计图;样本估计总体.
25.(1)45°;(2)26°.
【解析】
【分析】
(1)根据圆周角和圆心角的关系和图形可以求得∠ABC和∠ABD的大小;(2)根据题意和平行线的性质、切线的性质可以求得∠OCD的大小.
【详解】
(1)∵AB是⊙O的直径,∠BAC=38°,∴∠ACB=90°,
∴∠ABC=∠ACB﹣∠BAC=90°﹣38°=52°,
∵D为弧AB的中点,∠AOB=180°,∴∠AOD=90°,
∴∠ABD=45°;
(2)连接OD,
∵DP切⊙O于点D,∴OD⊥DP,即∠ODP=90°,
∵DP∥AC,∠BAC=38°,∴∠P=∠BAC=38°,
∵∠AOD是△ODP的一个外角,
∴∠AOD=∠P+∠ODP=128°,∴∠ACD=64°,
∵OC=OA,∠BAC=38°,∴∠OCA=∠BAC=38°,
∴∠OCD=∠ACD﹣∠OCA=64°﹣38°=26°.
【点睛】
本题考查切线的性质、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
26.见解析,4 9 .
【解析】
【分析】
画树状图展示所有9种等可能的结果数,找出两次抽取的卡片上的数字都是偶数的结果数,然后根据概率公式求解.
【详解】
解:画树状图为:
共有9种等可能的结果数,其中两次抽取的卡片上的数字都是偶数的结果数为4,
所以两次抽取的卡片上的数字都是偶数的概率=4
9

【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
27.(1)5;(2)
2
x
x
-
,3.
【解析】
试题分析:(1) 原式先计算乘方运算,再计算乘运算,最后算加减运算即可得到结果;(2)先化简,再求得x的值,代入计算即可.
试题解析:
(1)原式=1-2+1×2+4=5;
(2)原式=()()()
()
221
2
x x x x
x x
+---
-
×
()22
4
x
x
-
-

2
x
x
-

当3x+7>1,即x>-2时的负整数时,(x=-1)时,原式=
12
1
--
-
=3..。

相关文档
最新文档