酞菁金属配合物的合成及其光物理性质测定

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

福州大学化学化工学院
本科实验报告
课程名称:综合化学实验
酞菁金属配合物的合成及其光物理实验项目名称:
性质测定
实验室名称:怡山校区科学楼
学生姓名:林健怡
学号:040802221
学生所在学院:化学化工学院
年级、专业:08级化学类
实验指导教师:刘见永
2011年11月11日
引言
酞菁是一个大环化合物,环内有一个空穴,可以容纳铁、铜、钴、铝、镍、钙、钠、镁、锌等金属元素,并结合生成金属配合物,金属原子取代了位于该平面分子中心的两个氢原子。

由于与金属元素生成配位化合物,所以在金属酞菁分子中只有16个π电子.又由于分子的共轭作用,与金属原子相连的共价键和配位键在本质上是等同的。

迄今为止,已有5000多种的酞菁化合物被制备出来。

酞菁不仅仅是一种着色剂,更重要的是它是一种多功能材料。

衍生物的应用已涉及到化学传感器中的灵敏器件、电子发光器件、太阳能电池材料、光盘信息记录材料、电子照相材料、液晶显示材料、非线性光学材料、燃料电池中的电催化材料、合成金属和导电的聚合物,其金属络合物也有催化性能【1】。

酞菁金属配合物可由不同的方法制备,主要分为插入配位合成法(简称插入法)和“模板”反应合成法。

插入法先合成无金属酞菁,再与金属盐反应,这类方法的缺点是产率较低(一般仅为20-30%),而且产物中常混有无金属酞菁,不易分离纯化,近年来已较少采用。

“模板”反应合成法(简称“模板”法)是以中心金属作为“模板剂”与可形成酞菁环的“分子碎片”直接发生“模板反应”制得金属酞菁配合物的方法。

这种方法合成步骤较少,产率较高(一般在30%以上),产物中无金属酞菁含量较低,较易提纯。

近年来被广泛采用。

常见的“模板”反应合成金属酞菁配合物的方法有钼酸铵催化法,惰性溶剂法和DBU 液相催化法。

目前常用的模板反应合成方法如图1。

图1 “模板”反应合成法示意图
其中,R1、R2、R3、R4可以是氢原子或其它取代基,如羧基、酰氨基、腈基、硝基、
磺酸基、卤素、烷氧基等。

R 1
R 2
R 3
R 4
CN
CN
R 1
R 2
R 3
R 4
N
H N
H N
H R 1
R 2
R 3
R 4
NC
H 2NOC
R 1
R 2
R 3
R 4
H 2NOC
H 2NOC
R 1
R 2
R 3
R 4
COO H
COO H
R 1
R 2
R 3
R 4
NH
O
O
R 1
R 2
R 3
R 4
O
O
O
N
N
N
N N
N
N
N
M R
R
R
R
N H 3
M
n +
M
n +
M
n +
M
n +
M
n +
M
n +
M
n +
方案设计
本实验按照DBU液相催化法制备无取代酞菁锌和硝基取代酞菁锌,所用原料为金属盐
(无水Zn(CH
3COO)
2
)、邻苯二甲腈,4-硝基邻苯二甲腈和正戊醇,并以DBU(1.8-二氮杂
二环[5.4.0]十-碳烯-7,简称DBU)为催化剂。

无取代酞菁金属配合物的溶解性相对较差,而它们的前驱物邻苯二甲腈的溶解性则较好,因此,可以通过适当的溶剂洗涤所合成的产物可达到提纯无取代酞菁金属配合物的目的。

经纯化的金属酞菁配合物可通过电子光谱、红外光谱等确认其组成和结构以及进行光物理性质的测定。

实验内容
仪器与药品:
无水Zn(CH
3COO)
2
、邻苯二甲腈、4-硝基邻苯二甲腈、正戊醇、DBU、甲醇、丙酮、三
氯甲烷
实验步骤:
(1)无取代酞菁锌的制备与纯化
在带有磁力搅拌装置、回流装置、氮气保护装置的100ml圆底烧瓶中加入15ml无水正戊烷和0.62g(4.8mmoL)的邻苯二甲腈,搅拌至溶解,再加入0.44g(2.4mmoL)无水
Zn(CH
3COO)
2
和0.6mlDBU。

氮气保护下恒温150℃回流反应5小时。

反应结束后,冷却至室
温,往混合物中加入60ml甲醇,静置过夜,抽滤,依次用甲醇,丙酮,三氯甲烷洗涤至滤液基本无色。

105℃恒温干燥,称量(固体记为ZnPc)。

(2)硝基取代酞菁锌的制备与纯化
在带有磁力搅拌装置、回流装置、氮气保护装置的100ml圆底烧瓶中加入15ml无水正戊烷和0.84g(4.8mmoL)的4-硝基邻苯二甲腈,搅拌至溶解,再加入0.44g(2.4mmoL)
无水Zn(CH
3COO)
2
和0.6mlDBU。

氮气保护下恒温150℃回流反应5小时。

反应结束后,冷
却至室温,往混合物中加入60ml甲醇,静置过夜,抽滤,依次用甲醇,丙酮,三氯甲烷洗涤至滤液基本无色。

105℃恒温干燥,称量(固体记为ZnPcNO
2
)。

(3)酞菁金属配合物的表征及光谱测定
分别以DMF和DMSO为溶剂测定样品的紫外-可见吸收光谱以及荧光光谱。

以KBr压片法,测定样品在4000-400cm-1范围内的红外谱图。

相关数据及分析
红外光谱分析
图2.1、2.2分别给出了酞菁锌和硝基取代酞菁锌的红外谱图(KBr压片)。

配合物在1409cm-1、1333cm-1、1164cm-1、1060cm-1、752cm-1处出现了金属酞菁环的骨架振动【2-4】。

在1607cm-1以及1483cm-1处出现的吸收峰主要是酞菁环上的C=C及C=N的伸缩振动引起的【6】。

根据文献报道【4,5】,在酞菁配合物的红外吸收低频区850-950cm-1有吸收峰出现,从图2.1可以看到在887cm-1和图2.2中的927cm-1处有吸收,这可以归结为金属-配体(M-N)振动吸收峰。

而在硝基取代酞菁锌红外谱图中,还可以看到硝基特征峰,1521cm-1处为硝基不对称伸缩振动峰,1137cm-1处为硝基对称伸缩振动峰。

本实验结果与文献值一致,说明金属与酞菁环内氮原子配位形成金属酞菁。

图2.1 ZnPc
图2.2 ZnPcNO 2
UV-Vis 电子吸收光谱分析
图3为ZnPc 与ZnPcNO 2在DMF 与DMSO 中的紫外可见光谱。

从图中可见,在300-400nm 和600-700nm 范围内有两个酞菁类化合物所具有的特征吸收带。

通常的紫外可见吸收光谱观测到的是Q 带与B 带两特征吸收峰,Q 带在可见光区600-700nm ,B 带在近紫外区300-400nm 【7】。

对比同一溶剂中ZnPc 与ZnPcNO 2可以发现,ZnPcNO 2的Q 带较ZnPc 在DMF 中有约30nm 的红移,在DMSO 中约有13nm 的红移。

由于Q 带的位置与中心金属及周环取代基团种类、位置、数目以及分子间聚集形态等因素密切相关,其形成是由酞菁π电子的π→π*的跃迁,
300
400
500
600
700
800
0.00
0.05
0.10
0.15
0.20
0.25
0.30
A b s
Wave/nm
1mmol/L 2mmol/L 3mmol/L 4mmol/L 5mmol/L
5mmol/L 4mmol/L
3mmol/L
2mmol/L
1mmol/L
300400500600700800
0.0
0.1
0.2
0.3
0.4
A b s
Wave/nm
1mmol/L 2mmol/L 3mmol/L 4mmol/L 5mmol/L
5mmol/L 4mmol/L 3mmol/L 2mmol/L 1mmol/L
其最大吸收峰为电子从最高已占轨道HOMO 向最低空轨道LOMO 所贡献【8】。

在化合物中HOMO 轨道有环内碳原子提供,LUMO 由碳原子和氮原子提供;而在苯环上引入硝基吸电子基团后,降低了酞菁环电子云密度,使得HOMO 与LUMO 间能级变大,增加电子跃迁所需能量。

图3.1 DMF-ZnPc
图3.2 DMF-ZnPcNO 2
在对比不同浓度下的配合物吸收光谱可以发现,对于DMF-ZnPc 与DMSO-ZnPc ,随着浓度的下降,600-700nm 间的峰强度不断减弱,由于在603nm 附近的峰远小于670nm 处的峰,推测此时ZnPc 主要以单体存在,可能存在少量聚集体;对于DMSO-ZnPcNO 2,峰值同样随浓度下降而下降,但是600-700nm 之间的两个峰值基本相近,推测其主要以聚集体(二聚体)存在,而在DMF-ZnPcNO 2中出现的3个峰则推测为可能是三聚体的存在,由此主要是由于硝基的存在使酞菁环上电荷密度分散, 降低了分子间的静电排斥, 促使分子相互聚合【7】。

对比DMF-ZnPc 与DMSO-ZnPc 电子谱图,可以发现其差别不是很大,虽然DMSO 极性大于DMF ,但是由于酞菁环结构的稳定性而导致其吸收峰变化不大;相对的在DMF-ZnPcNO 2与DMSO-ZnPcNO 2电子谱图中,DMSO 中各峰值均高于DMF 中的峰,且略有红移现象,这可以归结为在强极性溶剂DMSO 中,其对配合物基态与激发态的作用强于DMF ,使得π→π*轨道能级变小所致。

图3.3 DMSO-ZnPc
300
400500600700800
-0.05
0.00
0.050.100.150.200.25
0.300.350.40A b s
Wave/nm
1mmol/L 2mmol/L 3mmol/L 4mmol/L 5mmol/L
5mmol/L 4mmol/L 3mmol/L 2mmol/L 1mmol/L
图4分别为DMF-ZnPc 、DMF-ZnPcNO 2、DMSO-ZnPc 、DMSO-ZnPcNO 2的各个吸收峰的浓度与吸光度线性关系。

图4.1 DMF-ZnPc
300
400500600700800
-0.02
0.000.020.040.060.080.10
0.120.140.16A b s
Wave/nm
1mmol/L 2mmol/L 3mmol/L 4mmol/L 5mmol/L
5mmol/L 4mmol/L 3mmol/L 2mmol/L 1mmol/L
图4.3 DMSO-ZnPc 图4.4 DMSO-ZnPcNO
2
DMF-ZnPc DMF-ZnPcNO
2DMSO-ZnPc DMSO-ZnPcNO
2
Ɛ1338(0.0192) 702(0.0501) 345(0.0214) 353(0.0255) Ɛ2604(0.0119) 687(0.0528) 606(0.0126) 647(0.0326) Ɛ3669(0.0815) 647(0.0247) 673(0.0782) 685(0.0296)
荧光光谱分析
图5分别为DMF-ZnPc、DMF-ZnPcNO
2、DMSO-ZnPc、DMSO-ZnPcNO
2
的荧光光谱。

图5.1
图5.2
620
640660680700720740760780800
-50050100150200250300350I n t e n s i t y
Wave/nm
DMF-ZnPc
620
640660680700720740760780800
-1001020304050
607080I n t e n s i t y
Wave/nm
DMF-ZnPcNO2
图5.3
图5.4
配合物浓度分别为0.04mmol/L 、0.05mmol/L 、0.04mmol/L 、0.04mmol/L 。

从测定结果看出:(1)相同溶剂下,ZnPcNO 2最大波长荧光峰位置均较ZnPc 发生红移30nm 左右;而且在同浓度情况下,ZnPcNO 2的荧光强度总小于ZnPc 。

这表明吸电子基团的引入对于荧光强度有着很大的影响,这是由于硝基的吸电子效应降低了酞菁环电子云密度,使得HOMO 与LUMO 间能级变大,引起荧光光谱红移。

(2)同种配合物,尤其是ZnPcNO2在不同溶剂中荧光强度变化有着很大的差异,其原因不仅可能是由溶剂性质引起的溶剂效应,而且可能存在溶剂配位引起的配位溶剂效应。

其具体表现为1.酞菁化合物分子与溶剂分子之间的色散力及酞菁化合物分子固有偶极与溶剂分子诱导偶极间相互作用导致其在溶液中的最大吸收峰波长发生红移;2.溶剂和酞菁分子的固有偶极相互作用使其最大吸收峰波长产生小的红移;3.溶剂分子的固有偶极与酞菁分子的诱导偶极的相互作用仅使最大吸收峰波长产生微弱的红移【9】。

620
640660680700720740760780800
-50050100150200250
300350I n t e n s i t y
Wave/nm
DMSO-ZnPc
620
640
660
680
700
720
740
760
780
800
05101520253035I n t e n s i t y
Wave/nm
DMSO-ZnPcNO2
利用ZnPc的荧光量子产率F
F
作为对比值,在同等条件下测得两者的荧光强度、吸光度
便可求出样品的F
F。

ФF=ФF(Std)FA Stdη2/F Std AηStd2
DMF-ZnPc
A
Std
F
Std DMF-ZnPcNO
2
A
F
DMSO-ZnPc
A
Std
F
Std
DMSO-ZnPcNO
2
A
F
610nm紫外吸收
峰值
0.040 0.048 0.047 0.048
荧光光谱积分面

10759.29868 3156.81417 11558.23037 1269.99974 溶剂折射率 1.42817 1.4795 ФF0.28 0.068 0.28 0.030 可以看到,硝基的引入很大幅度上降低了酞菁配合物的荧光量子产率,这是由于在芳香环上出现的吸电子基团,使得酞菁环平面π电子密度降低,降低了其共轭度,使荧光强度下降,即荧光量子效率的下降。

结论
本文对酞菁锌及硝基取代酞菁锌的合成、光谱分析进行了研究。

得出了以下结论:(1)硝基一类的吸电子基团的引入,削弱了酞菁环的π电子共轭度,是其紫外可见光吸收光谱以及荧光光谱出现红移的主要原因;
(2)酞菁配合物浓度的将影响到其聚合情况,对于形成多聚体的酞菁配合物来说,其吸收峰将下降,因此想要获取正常的谱图,其浓度不宜过高,尤其对于芳香环上有吸电子基团的酞菁配合物。

(3)溶剂对于酞菁配合物光谱的影响主要体现在溶剂效应上,具体体现为溶剂分子与酞菁配合物分子的偶极作用,由于本文所选取的都是非质子极性溶剂,而且在溶剂极性上仅有少许差别,但是不能代表性的反应其性质,仅作参考。

参考文献
【1】黄金陵.金属酞著配合物结构研究的一些谱学方法J.光谱学与光谱分析,2001,21(1):l-5.
【2】唐宁莉,彭德贤,范会钦.桂林冶金地质学院学报,1994,4(2):188-192.
【3】 Wohrle D,Hundorf V.Makromol.Chem.,1985,186(11):2177-2187.
【4】朱建国,朱晓红,焦锐等.西南民族大学学报,2006,32(2):238-240.
【5】 Kobayashi T,etal.Spectrochimica Acta.,1970,26A:1305-1311.
【6】 Kudrevich S.V.,Ali H.,van Lier E.,etal.J.Chem.Soc.1994,19(35):2767-2774.
【7】 Nevin W A, Liu w ei, Lever A B P. Dimerisat ion of mononuclear and binuclear cobalt phthalocyanines[ J] . Can J.Chem, 1987, 65: 855.
【8】 Claudia A.Caro,Fethi Bedioui,Jose H.Zagal.j.Electrochimica Acta.2002,47(9):1489-1494.
【9】包富荣,季春,卢珊,魏少华,周宁琳,李利,沈健.南京师大学报,Vol.30 No.3.Sep, 2007:58-63.。

相关文档
最新文档