福建省各市中考数学分类解析专题8平面几何基础

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

福建 9 市 2012 年中考数学试题分类分析汇编
专题 8:平面几何基础
一、选择题
1. ( 2012 福建龙岩 4 分)以下命题中,为真命题的是【】
A .对顶角相等B.同位角相等
C.若a2=b2,则a=b D.若a>b,则2a >2b
【答案】 A 。

【考点】真命题,对顶角的性质,同位角的定义,平方根的意义,不等式的性质。

【分析】依据对顶角的性质,同位角的定义,平方根的意义,不等式的性质分别作出判断:A.对顶角相等,命题正确,是真命题;
B.两平行线被第三条直线所截,同位角才相等,命题不正确,不是真命题;
C.若a2=b2,则a= b ,命题不正确,不是真命题;
D.若a>b,则 2a <2b,命题不正确,不是真命题。

应选 A。

2. ( 2012 福建龙岩 4 分)以下几何图形中,既是轴对称图形又是中心对称图形的是【】
A .等边三角形B.矩形C.平行四边形 D .等腰梯形
【答案】 B。

【考点】轴对称图形和中心对称图形。

【分析】依据轴对称图形与中心对称图形的看法,轴对称图形两部分沿对称轴折叠后可重合;
中心对称图形是图形沿对称中心旋转180 度后与原图重合。

所以,只有矩形既是轴对称图形
又是中心对称图形。

应选B。

3. ( 2012 福建南平 4 分)正多边形的一个外角等于30°.则这个多边形的边数为【】
A.6B. 9C.12D.15
【答案】 C。

【考点】多边形的外角性质。

【分析】正多边形的一个外角等于30°,而多边形的外角和为360°,则:多边形边数=多边形外角和÷一个外角度数=360°÷30°=12 。

应选 C。

4. ( 2012 福建宁德 4 分)以下两个电子数字成中心对称的是【】
【答案】 A 。

【考点】中心对称图形。

【分析】依据轴中心对称图形的看法,中心对称图形是图形沿对称中心旋转180 度后与原图重合。

所以,吻合条件的只有 A 。

应选 A。

5. ( 2012 福建宁德 4 分)已知正n 边形的一个内角为135o,则边数n 的值是【】
A .6B. 7C. 8 D .9
【答案】 C。

【考点】多边形内角和定理,解一元一次方程。

【分析】依据多边形内角和定理,得( n2)1800 =1350n ,解得n=8。

应选C。

6. (2012福建莆田 4 分)以下图形中,是中心对称图形,但不是轴对称图形的是【】
...
【答案】 B。

【考点】中心对称图形,轴对称图形。

【分析】依据轴对称图形与中心对称图形的看法,轴对称图形两部分沿对称轴折叠后可重合;
中心对称图形是图形沿对称中心旋转180 度后与原图重合。

所以,
A、不是中心对称图形,是轴对称图形,故本选项错误;
B、是中心对称图形,但不是轴对称图形,故本选项正确;
C、不是中心对称图形,是轴对称图形,故本选项错误;
D、是中心对称图形,也是轴对称图形,故本选项错误。

应选 B。

7. ( 2012 福建三明 4 分)如图,AB//CD,∠CDE=140,则∠A的度数为【】
A .140B.60C.50D.40
【答案】 D。

【考点】补角的定义,平行的性质。

【分析】∵∠ CDE=140 0,∴∠ CDA=40 0。

又∵ AB//CD ,∴∠ A= ∠CDA=40 0。

应选 D。

8. ( 2012福建三明 4 分)一个多边形的内角和是720 ,则这个多边形的边数为【】
A . 4B. 5C. 6D. 7
【答案】 C。

【考点】多边形的内角和定理。

【分析】由一个多边形的内角和是7200,依据多边形的内角和定理得(n- 2) 1800=7200。

解得 n=6 。

应选 C。

9. ( 2012 福建福州 4 分)如图,直线a∥ b,∠ 1= 70°,那么∠ 2 的度数是【】
A .50°B. 60°C. 70°D. 80°
【答案】 C。

【考点】平行线的性质。

【分析】依据两角的地点关系可知两角是同位角,利用两直线平行同位角相等即可求得结果:∵ a∥b,∴∠ 1=∠ 2。

∵ ∠ 1= 70°,∴ ∠ 2= 70°。

应选 C。

10.20123.
A . 正三角形 B.正方形 C. 圆 D. 菱形
【答案】D。

【考点】轴对称图形与中心对称图形的鉴别。

【分析】依据轴对称图形与中心对称图形的看法,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180 度后与原图重合。

所以,
A. 正三角形是轴对称图形,但不是中心对称图形;选项错误;
B.正方形既是轴对称图形,也是中心对称图形,但它有 4 条对称轴,选项错误;
C.圆既是轴对称图形,也是中心对称图形,但它有无数条对称轴,选项错误;
D.菱形既是轴对称图形,也是中心对称图形,且只有两条对称轴,选项正确。

应选 D。

二、填空题
1. ( 2012 福建厦门 4 分)已知∠A=40°,则∠A的余角的度数是▲.
【答案】 50°。

【考点】余角的看法。

【分析】设∠ A 的余角是∠ B,则∠ A+ ∠B=90°,∵∠ A=40°,∴∠ B=90°- 40°=50°。

2. ( 2012 福建厦门 4 分)五边形的内角和的度数是▲.
【答案】 540°。

【考点】多边形内角和定理。

【分析】依据 n 边形的内角和公式:180°( n-2),将 n=5 代入即可求得答案:五边形的内角和的度数为:180°×(5- 2)=180°×3=540°。

3.(2012福建莆田4 分)将一副三角尺按以以下图搁置,则1=▲度.
【答案】 105。

【考点】对顶角的性质,三角形的内角和定理。

【分析】如图,∵这是一副三角尺,
∴∠ BAE=30°,∠ ABE=45° 。

∴∠ 1=∠ AEB=180° - 30°- 45°
=105 °。

4. ( 2012 福建宁德 3 分)如图,直线a∥ b,∠ 1= 60o,则∠ 2=▲o.
【答案】 60。

【考点】平行线的性质,对顶角的性质。

【分析】∵直线 a∥ b,∴∠ 1= ∠ 3(两直线平行,同位角相等)。

又∵∠ 2= ∠3(对顶角相等),∴∠ 1=∠ 2。

又∵∠ 1=60°,∴∠ 3=60°。

5. ( 2012 福建龙岩 3 分)如图,a∥b,∠1=300,则∠2=▲°.
【答案】 150。

【考点】平行线的性质,对顶角的性质。

【分析】如图,∵ a∥ b,∠ 1=30°,∴∠ 3=180 0-300=1500。

∴∠ 2=∠ 3=1500。

6. ( 2012 福建泉州 4 分)n边形的内角和为900 °,则 n=▲.
【答案】 7。

【考点】多边形内角和定理。

【分析】依据多边形内角和定理,得(n 2)1800 =900 0,解得n=7。

7.( 2012 福建泉州 4 分)如图,在△ABC中,∠A=60°,∠B=40°,点D、E分别在BC、AC 的延长线上,则∠1=▲°.
【答案】 80。

【考点】三角形的内角和,对顶角的性质。

【分析】∵三角形的内角和为180°,∠ A=60°,∠ B=40°,∴∠ ACB=80° 。

又∵∠ 1 与∠ ACB 互为对顶角,∴∠1=∠ ACB=80° 。

8.(2012 福建泉州 5 分)如图,点A、O、B在同向来线上,已知∠BOC=50°,则∠AOC=▲°
【答案】 130。

【考点】平角的定义。

00
【分析】由∠ BOC +∠ AOC=180和∠ BOC=50° ,得∠ AOC=130。

1. ( 2012 福建漳州8 分)利用对称性可设计出漂亮的图案.在边长为 1 的方格纸中 ,犹如图
所示的四边
形( 极点都在格点上 ).
(1)先作出该四边形关于直线l 成轴对称的图形,再作出你所作的图形连同原四边形绕0点按顺时针方向旋转 90o后的图形;
(2)完成上述设计后,整个图案的面积等于 _________ .
..
【答案】解:( 1)作图以以下图:
先作出关于直线l 的对称图形;再作出所作的图形连同原四边形绕0 点
按顺时针方向
旋转 90°后的图形。

( 2) 20。

【考点】利用旋转设计图案,利用轴对称设计图案。

【分析】( 1)依据图形对称的性质先作出关于直线l 的对称图形,再作出所作的图形连同原
四边形绕0 点按顺时针方向旋转90°后的图形即可。

(2)先利用割补法求出原图形的面积,由图形旋转及对称的性质可知经过旋转与轴对
称所得图形与原图形全等即可得出结论。

∵边长为 1 的方格纸中一个方格的面积是1,∴原图形的面积为5。

∴整个图案的面积=4×5=20。

2. ( 2012 福建三明8 分)如图,已知△ABC三个极点的坐标分别为A(- 2,- 1),B(-3,- 3),
C(- 1,- 3) .
①画出△ ABC 关于 x 轴对称的△ A 1B1 C1,并写出点 A 1的坐标;( 4 分)
②画出△ ABC 关于原点O 对称的△ A2B 2C2,并写出点 A 2的坐标 .( 4 分)
【答案】解:①以以下图, A 1(- 2, 1)。

②以以下图, A 2( 2, 1)。

【考点】轴对称和中心对称作图。

【分析】依据轴对称和中心对称的性质作图,写出 A 1、 A 2的坐标。

3. ( 2012 福建福州7 分)如图,方格纸中的每个小方格是边长为 1 个单位长度的正方形.
①画出将 Rt△ ABC 向右平移 5 个单位长度后的Rt△ A 1B1C1;
②再将 Rt△A 1B 1C1绕点 C1顺时针旋转90°,画出旋转后的Rt△ A 2B2 C1,并求出旋
转过程中线段
A 1C1所扫过的面积 (结果保留π).
【答案】解:①以以下图;
② 以以下图;
2
90·π·4
在旋转过程中,线段 A 1C1所扫过的面积等于= 4π。

360
【考点】平移变换和旋转变换作图,扇形面积的计算。

【分析】依据图形平移的性质画出平移后的图形,再依据在旋转过程中,线段 A 1C1所扫过的面积等于以点 C1为圆心,以 A 1C1为半径,圆心角为 90 度的扇形的面积,再依据扇形的
面积公式进行解答即可。

4. ( 2012 福建泉州 9 分)如图,在方格纸中(小正方形的边长为
k
与1),反比率函数y
x
直线的交点 A 、B 均在格点上,依据所给的直角坐标系(点O是坐标原点),解答以下问题:
(1)分别写出点 A 、B 的坐标后,把直线AB 向右平移平移 5 个单位,再在向上平移.
单位,画出平移后的直线A′ ′
. B .
(2)若点 C 在函数y k
的图像上,△ ABC 是以 AB 为底边的等腰三角形,请写出点x
坐标 .5个C的。

相关文档
最新文档