尖山区实验中学2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

尖山区实验中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 已知数列{}n a 的首项为11a =,且满足111
22
n n n a a +=
+,则此数列的第4项是( ) A .1 B .12 C. 34 D .5
8
2. 若函数)1(+=x f y 是偶函数,则函数)(x f y =的图象的对称轴方程是( )]
A .1=x
B .1-=x
C .2=x
D .2-=x 3. 若直线l
的方向向量为=(1,0,2),平面α
的法向量为=(﹣2,0,﹣4),则( ) A .l ∥α B .l ⊥α
C .l ⊂α
D .l 与α相交但不垂直
4. 函数f (x )=xsinx 的图象大致是( )
A
. B

C
. D

5. 如图是某工厂对一批新产品长度(单位:mm )检测结果的频率分布直方图.估计这批产品的中位数为( )
A .20
B .25
C .22.5
D .22.75
6. 已知函数22
()32f x x ax a =+-,其中(0,3]a ∈,()0f x ≤对任意的[]1,1x ∈-都成立,在1 和两数间插入2015个数,使之与1,构成等比数列,设插入的这2015个数的成绩为T ,则T =( ) A .2015
2
B .2015
3
C .20152
3
D .20152
2
7. sin570°的值是( ) A

B
.﹣ C

D
.﹣
8. 函数f (x )
=﹣x 的图象关于( ) A .y 轴对称 B .直线y=﹣x 对称
C .坐标原点对称
D .直线y=x 对称
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
9. 已知函数f (x )
=是R 上的增函数,则a 的取值范围是( )
A .﹣3≤a <0
B .﹣3≤a ≤﹣2
C .a ≤﹣2
D .a <0
10.已知等比数列{a n }的公比为正数,且a 4•a 8=2a 52,a 2=1,则a 1=( ) A

B .2
C

D

11.已知函数f (x )是R 上的奇函数,且当x >0时,f (x )=x 3﹣2x 2,则x <0时,函数f (x )的表达式为f (x )=( ) A .x 3+2x 2
B .x 3﹣2x 2
C .﹣x 3+2x 2
D .﹣x 3﹣2x 2
12.设1m >,在约束条件,,1.y x y mx x y ≥⎧⎪
≤⎨⎪+≤⎩
下,目标函数z x my =+的最大值小于2,则m 的取值范围为( )
A
.(1,1 B
.(1)+∞ C. (1,3) D .(3,)+∞
二、填空题
13.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,点P 、Q 分别是B 1C 1、CC 1的中点,则直线A 1P 与DQ 的位置关系是 .(填“平行”、“相交”或“异面”)
14.如图,在矩形ABCD
中,AB = 3BC =, E 在AC 上,若BE AC ⊥, 则ED 的长=____________ 15.设
为单位向量,①

为平面内的某个向量,则
=||

;②


平行,则
=||

;③

与平行且
||=1
,则
=.上述命题中,假命题个数是 .
16.下列命题:
①集合{},,,a b c d 的子集个数有16个; ②定义在R 上的奇函数()f x 必满足(0)0f =;
③2
()(21)2(21)f x x x =+--既不是奇函数又不是偶函数; ④A R =,B R =,1
:||
f x x →,从集合A 到集合B 的对应关系f 是映射; ⑤1
()f x x
=
在定义域上是减函数. 其中真命题的序号是 .
17.一个总体分为A ,B ,C 三层,用分层抽样的方法从中抽取一个容量为15的样本,若B 层中每个个体被
抽到的概率都为
,则总体的个数为 .
18.宋元时期杰出的数学家朱世杰在其数学巨著《四元玉鉴》卷中“茭草形段”第一个问题“今有茭草六百八十束,欲令‘落一形’埵(同垛)之.问底子在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,M 是BC 的中点,BM=2,AM=c ﹣b ,△ABC 面积的最大值为 .
三、解答题
19.已知函数f (x )=log a (x 2+2),若f (5)=3; (1)求a 的值;
(2)求的值;
(3)解不等式f (x )<f (x+2).
20.已知全集U 为R ,集合A={x|0<x ≤2},B={x|x <﹣3,或x >1}
求:(I )A ∩B ;
(II )(C U A )∩(C U B );
(III )C U (A ∪B ).
21.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,且990S =,15240S =. (1)求{}n a 的通项公式n a 和前n 项和n S ;
(2)设(){}
1n
n n b a --是等比数列,且257,71b b ==,求数列{}n b 的前n 项和n T .
【命题意图】本题考查等差数列与等比数列的通项与前n 项和、数列求和等基础知识,意在考查逻辑思维能力、运算求解能力、代数变形能力,以及分类讨论思想、方程思想、分组求和法的应用.
22.某滨海旅游公司今年年初用49万元购进一艘游艇,并立即投入使用,预计每年的收入为25万元,此外每年都要花费一定的维护费用,计划第一年维护费用4万元,从第二年起,每年的维修费用比上一年多2万元,设使用x 年后游艇的盈利为y 万元. (1)写出y 与x 之间的函数关系式;
(2)此游艇使用多少年,可使年平均盈利额最大?
23.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=2,AD=1,A 1A=1,
(1)求证:直线BC 1∥平面D 1AC ; (2)求直线BC 1到平面D 1AC 的距离.
24.【启东中学2018届高三上学期第一次月考(10月)】设1a >,函数()()
21x
f x x e a =+-.
(1)证明在(上仅有一个零点;
(2)若曲线在点
处的切线与轴平行,且在点
处的切线与直线
平行,(O 是坐标原点),
证明:1m ≤
尖山区实验中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题
1. 【答案】B 【解析】
2. 【答案】A 【解析】
试题分析:∵函数)1(+=x f y 向右平移个单位得出)(x f y =的图象,又)1(+=x f y 是偶函数,对称轴方程为0=x ,∴)(x f y =的对称轴方程为1=x .故选A . 考点:函数的对称性. 3. 【答案】B
【解析】解:∵ =(1,0,2),=(﹣2,0,4),
∴=﹣2,
∴∥, 因此l ⊥α.
故选:B .
4. 【答案】A
【解析】解:函数f (x )=xsinx 满足f (﹣x )=﹣xsin (﹣x )=xsinx=f (x ),函数的偶函数,排除B 、C , 因为x ∈(π,2π)时,sinx <0,此时f (x )<0,所以排除D , 故选:A .
【点评】本题考查函数的图象的判断,函数的奇偶性以及函数值的应用,考查分析问题解决问题的能力.
5. 【答案】C
【解析】解:根据频率分布直方图,得; ∵0.02×5+0.04×5=0.3<0.5, 0.3+0.08×5=0.7>0.5; ∴中位数应在20~25内, 设中位数为x ,则 0.3+(x ﹣20)×0.08=0.5, 解得x=22.5;
∴这批产品的中位数是22.5. 故选:C .
【点评】本题考查了利用频率分布直方图求数据的中位数的应用问题,是基础题目.
6. 【答案】C 【解析】
试题分析:因为函数2
2
()32f x x ax a =+-,()0f x ≤对任意的[]1,1x ∈-都成立,所以()()
10
10f f -≤⎧⎪⎨≤⎪⎩,解得
3a ≥或1a ≤-,又因为(0,3]a ∈,所以3a =,在和两数间插入122015,...a a a 共2015个数,使之与,构成等
比数列,T 122015...a a a =,201521...T a a a =,
两式相乘,根据等比数列的性质得()()
2015
2015
2
1201513T a a ==⨯,
T =20152
3
,故选C.
考点:1、不等式恒成立问题;2、等比数列的性质及倒序相乘的应用. 7. 【答案】B
【解析】解:原式=sin (720°﹣150°)=﹣sin150°=
﹣. 故选B
【点评】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.
8. 【答案】C
【解析】解:∵f (﹣x )=
﹣+x=﹣f (x )

是奇函数,所以f (x )的图象关于原点对称
故选C .
9. 【答案】B
【解析】
解:∵函数
是R 上的增函数
设g (x )=﹣x 2
﹣ax ﹣5(x ≤1),h (x )
=(x >1)
由分段函数的性质可知,函数g (x )=﹣x 2
﹣ax ﹣5在(﹣∞,1]单调递增,函数h (x )
=在(1,+∞)单调
递增,且g (1)≤h (1)


解可得,﹣3≤a ≤﹣2 故选B
10.【答案】D
【解析】解:设等比数列{a n}的公比为q,则q>0,
∵a4•a8=2a52,∴a62=2a52,
∴q2
=2,∴q=,
∵a2=1,∴a1==.
故选:D
11.【答案】A
【解析】解:设x<0时,则﹣x>0,
因为当x>0时,f(x)=x3﹣2x2所以f(﹣x)=(﹣x)3﹣2(﹣x)2=﹣x3﹣2x2,又因为f(x)是定义在R上的奇函数,所以f(﹣x)=﹣f(x),
所以当x<0时,函数f(x)的表达式为f(x)=x3+2x2,故选A.
12.【答案】A
【解析】
考点:线性规划.
【方法点晴】本题是一道关于线性规划求最值的题目,采用线性规划的知识进行求解;关键是弄清楚的几何意义直线z x my =+截距为
z
m
,作0my x :L =+,向可行域内平移,越向上,则的值越大,从而可得当直线直线z x my =+过点A 时取最大值,⎩⎨
⎧==+00001m x y y x 可求得点A 的坐标可求的最大值,然后由z 2,>解不等式可求m
的范围.
二、填空题
13.【答案】 相交
【分析】由已知得PQ ∥A 1D ,PQ=A 1D ,从而四边形A 1DQP 是梯形,进而直线A 1P 与DQ 相交.
【解析】解:∵在正方体ABCD ﹣A 1B 1C 1D 1中,点P 、Q 分别是B 1C 1、CC 1的中点, ∴PQ ∥A 1D ,
∵直线A 1P 与DQ 共面,
∴PQ=A 1D ,∴四边形A 1DQP 是梯形, ∴直线A 1P 与DQ 相交. 故答案为:相交.
【点评】本题考查两直线位置关系的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.
14.【答案】21
2
【解析】在Rt △ABC 中,BC =3,AB =3,所以∠BAC =60°. 因为BE ⊥AC ,AB =3,所以AE =
3
2
,在△EAD 中,∠EAD =30°,AD =3,由余弦定理知,ED 2=AE 2+AD 2-2AE ·AD ·cos ∠EAD =34+9-2×32×3×32=214,故ED =21
2.
15.【答案】 3 .
【解析】解:对于①,向量是既有大小又有方向的量, =||•的模相同,但方向不一定相同,∴①是假
命题;
对于②,若与平行时,与方向有两种情况,一是同向,二是反向,反向时=﹣||•
,∴②是假命
题;
对于③,若与平行且||=1时,与方向有两种情况,一是同向,二是反向,反向时=﹣
,∴③是
假命题;
综上,上述命题中,假命题的个数是3. 故答案为:3.
【点评】本题考查了平面向量的概念以及应用的问题,解题时应把握向量的基本概念是什么,是基础题目.
16.【答案】①② 【解析】
试题分析:子集的个数是2n
,故①正确.根据奇函数的定义知②正确.对于③()2
41f x x =-为偶函数,故错误.
对于④0x =没有对应,故不是映射.对于⑤减区间要分成两段,故错误. 考点:子集,函数的奇偶性与单调性.
【思路点晴】集合子集的个数由集合的元素个数来决定,一个个元素的集合,它的子集的个数是2n
个;对于
奇函数来说,如果在0x =处有定义,那么一定有()00f =,偶函数没有这个性质;函数的奇偶性判断主要根据定义()()()(),f x f x f x f x -=-=-,注意判断定义域是否关于原点对称.映射必须集合A 中任意一个
元素在集合B 中都有唯一确定的数和它对应;函数的定义域和单调区间要区分清楚,不要随意写并集.1 17.【答案】 300 .
【解析】解:根据分层抽样的特征,每个个体被抽到的概率都相等,
所以总体中的个体的个数为15÷=300.
故答案为:300.
【点评】本题考查了样本容量与总体的关系以及抽样方法的应用问题,是基础题目.
18.【答案】 2 .
【解析】解:在△ABM 中,由余弦定理得:
cosB=
=

在△ABC 中,由余弦定理得:
cosB==.

=

即b 2+c 2
=4bc ﹣8.
∵cosA==,∴sinA=
=

∴S=
sinA=bc
=

∴当bc=8时,S 取得最大值2.
故答案为2

【点评】本题考查了余弦定理得应用,根据余弦定理得出bc 的关系是解题关键.
三、解答题
19.【答案】
【解析】解:(1)∵f (5)=3,


即log a 27=3 解锝:a=3…
(2)由(1)得函数,

=

(3)不等式f (x )<f (x+2),
即为
化简不等式得

∵函数y=log 3x 在(0,+∞
)上为增函数,且
的定义域为R .
∴x 2+2<x 2
+4x+6…
即4x >﹣4, 解得x >﹣1,
所以不等式的解集为:(﹣1,+∞)…
20.【答案】
【解析】
解:如图:
(I )A ∩B={x|1<x ≤2};
(II )C U A={x|x ≤0或x >2},C U B={x|﹣3≤x ≤1}
(C U A )∩(C U B )={x|﹣3≤x ≤0};
(III )A ∪B={x|x <﹣3或x >0},C U (A ∪B )={x|﹣3≤x ≤0}.
【点评】本题考查集合的运算问题,考查数形集合思想解题.属基本运算的考查.
21.【答案】
【解析】(1)设等差数列{}n a 的首项为1a ,公差为d , 则由990S =,15240S =,得1193690
15105240
a d a d +=⎧⎨
+=⎩,解得12a d ==,……………3分
所以2(n 1)22n a n =+-⨯=,即2n a n =,
(1)
22(1)2
n n n S n n n -=+
⨯=+,即1n S n n =+().……………5分
22.【答案】
【解析】解:(1)(x∈N*) (6)
(2)盈利额为…
当且仅当即x=7时,上式取到等号 (11)
答:使用游艇平均7年的盈利额最大. (12)
【点评】本题考查函数模型的构建,考查利用基本不等式求函数的最值,属于中档题.23.【答案】
【解析】解:(1)因为ABCD﹣A1B1C1D1为长方体,故AB∥C1D1,AB=C1D1,
故ABC1D1为平行四边形,故BC1∥AD1,显然B不在平面D1AC上,
故直线BC1平行于平面DA1C;
(2)直线BC1到平面D1AC的距离即为点B到平面D1AC的距离(设为h)
以△ABC为底面的三棱锥D1﹣ABC的体积V,可得
而△AD1C中,,故
所以以△AD1C为底面的三棱锥B﹣﹣AD1C的体积,
即直线BC1到平面D1AC的距离为.
【点评】本题考查了线面平行的判定定理,考查线面的距离以及数形结合思想,是一道中档题.
24.【答案】(1)f x ()在∞+∞(﹣,)上有且只有一个零点(2)证明见解析 【解析】试题分析:
试题解析:
(1)()()
()2
2211x
x f x e
x
x e x +='=++,()0f x ∴'≥,
()(
)2
1x
f x x e
a ∴=+-在(),-∞+∞上为增函数.
1a >,()010f a ∴=-<,
又(
)
1f
a a =-=-,
10,1a ->∴>,即0f
>,
由零点存在性定理可知,()f x 在(),-∞+∞上为增函数,且()00f f
⋅<,
()
f x ∴在(上仅有一个零点。

(2)()()2
1x
f x e x ='+,设点()00,P x y ,则()()0
2
001x f x e
x '=+,
()y f x =在点P 处的切线与x 轴平行,()()0
2
0010x
f x e x ∴+'==,01x ∴=-,
21,P a e ⎛⎫
∴-- ⎪⎝⎭
,2OP k a e ∴=-,
点M 处切线与直线OP 平行,
∴点M 处切线的斜率()()2
21m k f m e m a e
=+'==-

又题目需证明1m ≤
,即()3
21m a e +≤-,
则只需证明()3211m m e m +≤+,即1m
m e +≤。

令()()1m
g m e m =-+,则()1m
g m e '=-,
易知,当(),0m ∈-∞时,()0g m '<,单调递减, 当()0,m ∈+∞时,()0g m '>,单调递增,
()()min 00g m g ∴==,即()()10m g m e m =-+≥,
1m m e ∴+≤,
1m ∴≤,得证。

相关文档
最新文档