极坐标下旋转体体积公式
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
极坐标下旋转体体积公式
极坐标绕极轴旋转体积公式:用一般函数图形绕x轴旋转的旋转体体积公式,换元x=rcosθ,y=rsinθ即可得到此公式。
对极坐标表示的面积绕轴旋转的体积计算问题分别从积分元素法P.Guldin 定理及球坐标下三重积分计算,给出三种计算方法。
一般高等数学教材中均给出了由直角坐标表出面积的旋转体体积计算公式,即面积a≤x≤b, 0≤у≤y(x)。
绕ox轴旋转所成旋转体的体积为如下图:
常见圆的极坐标方程:(1)、圆心在极点,半径为r的圆:p=r;(2)、圆心为M(a,0),半径为a的圆:p=2acosθ;(3)圆心为M(a,2/π),半径为a 的圆:p=2asinθ.
极坐标,属于二维坐标系统,创始人是牛顿,主要应用于数学领域。
极坐标是指在平面内取一个顶点O,叫极点,引一条射线Ox,叫作极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向)。
对于平面内任何一点M,用ρ表示线段OM的长度(有时也用r表示),θ表示从Ox到OM的角度,ρ叫作点M的极径,θ叫作点M的极角,有序数对(ρ,θ)就叫点M的极坐标,这样建立的坐标系叫作极坐标系。