江都区高中2018-2019学年上学期高三数学10月月考试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江都区高中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 已知双曲线C :22
221x y a b
-=(0a >,0b >),以双曲线C 的一个顶点为圆心,为半径的圆
被双曲线C 截得劣弧长为23
a π
,则双曲线C 的离心率为( )
A .6
5
B
C
D
2. 如图,在棱长为1的正方体1111ABCD A B C D -中,P 为棱11A B 中点,点Q 在侧面11DCC D 内运动,若1PBQ PBD ∠=∠,则动点Q 的轨迹所在曲线为( )
A.直线
B.圆
C.双曲线
D.抛物线
【命题意图】本题考查立体几何中的动态问题等基础知识,意在考查空间想象能力. 3. 已知全集R U =,集合{|||1,}A x x x R =≤∈,集合{|21,}x
B x x R =≤∈,则集合U A
C B 为( )
A.]1,1[-
B.]1,0[
C.]1,0(
D.)0,1[- 【命题意图】本题考查集合的运算等基础知识,意在考查运算求解能力.
4. 已知不等式组⎪⎩
⎪
⎨⎧≥+≤+≥-1210
y x y x y x 表示的平面区域为D ,若D 内存在一点00(,)P x y ,使001ax y +<,则a 的取值
范围为( )
A .(,2)-∞
B .(,1)-∞
C .(2,)+∞
D .(1,)+∞
5. (文科)要得到()2log 2g x x =的图象,只需将函数()2log f x x =的图象( )
A .向左平移1个单位
B .向右平移1个单位
C .向上平移1个单位
D .向下平移1个单位 6. 二进制数)(210101化为十进制数的结果为( )
A .15
B .21
C .33
D .41
7. 已知全集{}1,2,3,4,5,6,7U =,{}2,4,6A =,{}1,3,5,7B =,则()U A
B =ð( )
A .{}2,4,6
B .{}1,3,5
C .{}2,4,5
D .{}2,5
8. 若y x ,满足约束条件⎪⎪⎩
⎪
⎪⎨⎧≥≤-+≥+-0
033033y y x y x ,则当31++x y 取最大值时,y x +的值为( )
A .1-
B .
C .3-
D .3
9. 执行如图所示程序框图,若使输出的结果不大于50,则输入的整数k 的最大值为( ) A .4
B .5
C .6
D .7
10.数列1,3,6,10,…的一个通项公式是( )
A .2
1n a n n =-+ B .(1)2n n n a -=
C .(1)2
n n n a += D .2
1n a n =+ 11.已知集合23111
{1,(),,}122
i A i i i i -=-+-+(其中为虚数单位),2{1}B x x =<,则A B =( ) A .{1}- B .{1} C .{1,}2- D .{}2
12.集合{}{}
2
|ln 0,|9A x x B x x =≥=<,则A
B =( )
A .()1,3
B .[)1,3
C .[]1,+∞
D .[],3e
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.已知()212811f x x x -=-+,则函数()f x 的解析式为_________.
14.若执行如图3所示的框图,输入
,则输出的数等于 。
15.在极坐标系中,O
是极点,设点A ,B 的极坐标分别是(2,),(3,),则O 点到直线AB
的距离是 .
16.计算121
(lg lg 25)1004
--÷= ▲ .
三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)
17.(14分)已知函数1
()ln ,()e
x x f x mx a x m g x -=--=,其中m ,a 均为实数.
(1)求()g x 的极值; 3分
(2)设1,0m a =<,若对任意的12,[3,4]x x ∈12()x x ≠,212111
()()()()
f x f x
g x g x -<-恒成立,求a 的最小值; 5分
(3)设2a =,若对任意给定的0(0,e]x ∈,在区间(0,e]上总存在1212,()t t t t ≠,使得120()()()f t f t g x == 成立,求m 的取值范围. 6分
18.(1)求与椭圆有相同的焦点,且经过点(4,3)的椭圆的标准方程.
(2)求与双曲线有相同的渐近线,且焦距为
的双曲线的标准方程.
19.(本小题满分12分)△ABC 的三内角A ,B ,C 的对边分别为a ,b ,c ,AD 是BC 边上的中线.
(1)求证:AD =1
2
2b 2+2c 2-a 2;
(2)若A =120°,AD =192,sin B sin C =3
5,求△ABC 的面积.
20.如图所示,在四棱锥P ABCD -中,底面ABCD 为菱形,E 为AC 与BD 的交点,PA ⊥平 面ABCD ,M 为PA 中点,N 为BC 中点. (1)证明:直线//MN 平面ABCD ;
(2)若点Q 为PC 中点,120BAD ∠=︒,3PA =
,1AB =,求三棱锥A QCD -的体积.
21.24.(本小题满分10分)选修4-5:不等式选讲. 已知函数f (x )=|x +1|+2|x -a 2|(a ∈R ). (1)若函数f (x )的最小值为3,求a 的值;
(2)在(1)的条件下,若直线y =m 与函数y =f (x )的图象围成一个三角形,求m 的范围,并求围成的三角形面积的最大值.
22.(本小题满分12分)如图,四棱柱1111ABCD A B C D -中,侧棱1A A ^底面ABCD ,//AB DC ,
AB AD ^,1AD CD ==,12AA AB ==,E 为棱1AA 的中点.
(Ⅰ)证明:11B C ^面1CEC ;
(II )设点M 在线段1C E 上,且直线AM 与平面11ADD A
所成角的正弦值为
6
,求线段AM 的长.
1
1
1
江都区高中2018-2019学年上学期高三数学10月月考试题(参考答案)
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 【答案】
B
考点:双曲线的性质. 2. 【答案】C.
【解析】易得//BP 平面11CC D D ,所有满足1PBD PBX ∠=∠的所有点X 在以BP 为轴线,以1BD 所在直线为母线的圆锥面上,∴点Q 的轨迹为该圆锥面与平面11CC D D 的交线,而已知平行于圆锥面轴线的平面截圆锥面得到的图形是双曲线,∴点Q 的轨迹是双曲线,故选C. 3. 【答案】C.
【解析】由题意得,[11]
A =-,,(,0]
B =-∞,∴(0,1]U A
C B =,故选C.
4. 【答案】A
【解析】解析:本题考查线性规划中最值的求法.平面区域D 如图所示,先求z ax y =+的最小值,当1
2
a ≤时,12a -≥-
,z ax y =+在点1,0A ()取得最小值a ;当12a >时,12a -<-,z ax y =+在点11
,33
B ()取
得最小值1133a +.若D 内存在一点00(,)P x y ,使001ax y +<,则有z ax y =+的最小值小于1,∴121
a a ⎧
≤
⎪⎨⎪<⎩或
121
113
3a a ⎧>⎪⎪⎨
⎪+<⎪⎩,∴2a <,选A . 5. 【答案】C 【解析】
试题分析:()2222log 2log 2log 1log g x x x x ==+=+,故向上平移个单位. 考点:图象平移.
6. 【答案】B 【解析】
试题分析:()21212121101010242=⨯+⨯+⨯=,故选B. 考点:进位制 7. 【答案】A
考点:集合交集,并集和补集.
【易错点晴】集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系. 在求交集时注意区间端点的取舍. 熟练画数轴来解交集、并集和补集的题目. 8. 【答案】D 【
解
析
】
O
x
y
(1,0)A 11
(,)33
B
考
点:简单线性规划. 9. 【答案】A
解析:模拟执行程序框图,可得 S=0,n=0
满足条,0≤k ,S=3,n=1 满足条件1≤k ,S=7,n=2 满足条件2≤k ,S=13,n=3 满足条件3≤k ,S=23,n=4 满足条件4≤k ,S=41,n=5
满足条件5≤k ,S=75,n=6 …
若使输出的结果S 不大于50,则输入的整数k 不满足条件5≤k ,即k <5, 则输入的整数k 的最大值为4. 故选: 10.【答案】C 【解析】
试题分析:可采用排除法,令1n =和2n =,验证选项,只有(1)
2
n n n a +=,使得121,3a a ==,故选C . 考点:数列的通项公式. 11.【答案】D
【解析】
考点:1.复数的相关概念;2.集合的运算 12.【答案】B
【解析】
试题分析:因为{}{}|ln 0|1A x x A x x =≥==≥,{}
{}2|9|33B x x B x x =<==-<<,所以
A B ={}|13x x ≤<,故选B.
考点:1、对数函数的性质及不等式的解法;2、集合交集的应用.
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.【答案】()2245f x x x =-+ 【解析】
试题分析:由题意得,令1t x =-,则1x t =+,则()222(1)8(1)11245f t t t t t =+-++=-+,所以函数()f x 的解析式为()2
245f x x x =-+.
考点:函数的解析式. 14.【答案】
【解析】由框图的算法功能可知,输出的数为三个数的方差,
则。
15.【答案】 .
【解析】解:根据点A ,B 的极坐标分别是(2,
),(3,
),可得A 、B 的直角坐标分别是(3,
)、(﹣,),
故AB 的斜率为﹣
,故直线AB 的方程为 y ﹣
=﹣
(x ﹣3),即x+3
y ﹣12=0,
所以O 点到直线AB 的距离是=
,
故答案为:
.
【点评】本题主要考查把点的极坐标化为直角坐标的方法,点到直线的距离公式的应用,属于基础题.
16.【答案】-20
【解析】
考点:对数式运算
三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)
17.【答案】解:(1)e(1)
()e x
x g x -'=,令()0g x '=,得x = 1. 列表如下:
∵g (1) = 1,∴y =()g x 的极大值为1,无极小值. 3
分
(2)当1,0m a =<时,()ln 1f x x a x =--,(0,)x ∈+∞.
∵()0x a
f x x
-'=>在[3,4]恒成立,∴()f x 在[3,4]上为增函数. 设1e ()()e x h x g x x =
=,∵12e (1)()x x h x x --'=> 0在[3,4]恒成立,
∴()h x 在[3,4]上为增函数. 设21x x >,则212111
()()()()
f x f x
g x g x -<-等价于2121()()()()f x f x
h x h x -<-, 即2211()()()()f x h x f x h x -<-.
设1e ()()()ln 1e x
u x f x h x x a x x
=-=---⋅,则u (x )在[3,4]为减函数.
∴21e (1)()10e x a x u x x x -'=--⋅≤在(3,4)上恒成立. ∴11
e e x x a x x
---+
≥恒成立. 设11e ()e x x v x x x --=-+,∵11
2
e (1)()1e x x x v x x ---'=-+=121131e [()]24
x x ---+,x ∈[3,4], ∴1221133
e [()]e 1244
x x --+>>,∴()v x '< 0,()v x 为减函数.
∴()v x 在[3,4]上的最大值为v (3) = 3 -22
e 3
.
∴a ≥3 -22e 3,∴a 的最小值为3 -22
e 3
. 8分
(3)由(1)知()g x 在(0,e]上的值域为(0,1]. ∵()2ln f x mx x m =--,(0,)x ∈+∞,
当0m =时,()2ln f x x =-在(0,e]为减函数,不合题意.
当0m ≠时,2()
()m x m f x x
-'=
,由题意知()f x 在(0,e]不单调, 所以20e m <<,即2
e
m >.①
此时()f x 在2(0,)m 上递减,在2
(,e)m
上递增,
∴(e)1f ≥,即(e)e 21f m m =--≥,解得3
e 1
m -≥.②
由①②,得3
e 1
m -≥.
∵1(0,e]∈,∴2
()(1)0f f m =≤成立.
下证存在2
(0,]t m
∈,使得()f t ≥1.
取e m t -=,先证e 2
m m
-<,即证2e 0m m ->.③
设()2e x w x x =-,则()2e 10x w x '=->在3
[,)e 1
+∞-时恒成立.
∴()w x 在3[,)e 1+∞-时为增函数.∴3
e ))01
((w x w ->≥,∴③成立.
再证()e m f -≥1.
∵e e 3()1e 1m m f m m m --+=>>-≥,∴3
e 1
m -≥
时,命题成立. 综上所述,m 的取值范围为3
[,)e 1
+∞-. 14分
18.【答案】
【解析】解:(1
)由所求椭圆与椭圆有相同的焦点,
设椭圆方程
,
由(4,3
)在椭圆上得,
则椭圆方程为;
(2
)由双曲线
有相同的渐近线,
设所求双曲线的方程为﹣=1(λ≠0),
由题意可得c 2
=4|λ|+9|λ|=13,
解得λ=±1.
即有双曲线的方程为﹣
=1或
﹣
=1.
19.【答案】 【解析】解:
(1)证明:∵D 是BC 的中点,
∴BD =DC =a
2
.
法一:在△ABD 与△ACD 中分别由余弦定理得c 2
=AD 2
+a 2
4
-2AD ·
a
2
cos ∠ADB ,① b 2=AD 2+a 2
4-2AD ·a 2
·cos ∠ADC ,②
①+②得c 2+b 2=2AD 2+a 2
2
,
即4AD 2=2b 2+2c 2-a 2,
∴AD =1
2
2b 2+2c 2-a 2.
法二:在△ABD 中,由余弦定理得
AD 2=c 2
+a 24-2c ·a 2
cos B
=c 2+a
24-ac ·a 2+c 2-b 22ac
=2b 2+2c 2-a 2
4,
∴AD =1
2
2b 2+2c 2-a 2.
(2)∵A =120°,AD =1219,sin B sin C =3
5,
由余弦定理和正弦定理与(1)可得 a 2=b 2+c 2+bc ,① 2b 2+2c 2-a 2=19,②
b c =3
5
,③ 联立①②③解得b =3,c =5,a =7,
∴△ABC 的面积为S =12bc sin A =12×3×5×sin 120°=153
4.
即△ABC 的面积为15
4 3.
20.【答案】(1)证明见解析;(2)18
. 【解析】
试题解析:(1)证明:取PD 中点R ,连结MR ,RC , ∵//MR AD ,//NC AD ,1
2
MR NC AD ==, ∴//MR NC ,MR AC =, ∴四边形MNCR 为平行四边形,
∴//MN RC ,又∵RC ⊂平面PCD ,MN ⊄平面PCD , ∴//MN 平面PCD .
(2)由已知条件得1AC AD CD ===,所以4
ACD S ∆=, 所以111328
A QCD Q ACD ACD V V S PA --∆==
⨯⨯=.
考点:1、直线与平面平行的判定;2、等积变换及棱锥的体积公式. 21.【答案】
【解析】解:(1)f (x )=|x +1|+2|x -a 2|
=⎩⎪⎨⎪
⎧-3x +2a 2-1,x ≤-1,
-x +2a 2
+1,-1<x <a 2
,3x -2a 2
+1,x ≥a 2
,
当x ≤-1时,f (x )≥f (-1)=2a 2+2, -1<x <a 2,f (a 2)<f (x )<f (-1), 即a 2+1<f (x )<2a 2+2, 当x ≥a 2,f (x )≥f (a 2)=a 2+1,
所以当x =a 2时,f (x )min =a 2+1,由题意得a 2+1=3,∴a =±2. (2)当a =±2时,由(1)知f (x )= ⎩⎪⎨⎪
⎧-3x +3,x ≤-1,-x +5,-1<x <2,3x -3,x ≥2,
由y =f (x )与y =m 的图象知,当它们围成三角形时,m 的范围为(3,6],当m =6时,围成的三角形面积
最大,此时面积为1
2
×|3-(-1)|×|6-3|=
6.
22.【答案】
【解析】【命题意图】本题考查直线和平面垂直的判定和性质、直线和平面所成的角、两点之间的距离等基础知识,意在考查空间想象能力和基本运算能力。