河南中考数学模拟试题
2024年河南省九年级中考数学模拟试题(二)
![2024年河南省九年级中考数学模拟试题(二)](https://img.taocdn.com/s3/m/f567e4b1b9f67c1cfad6195f312b3169a451eab7.png)
2024年河南省九年级中考数学模拟试题(二)一、单选题1.2023-的相反数是()A.12023-B.2023-C.2023D.120232.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“学”字一面的相对面上的字是()A.核B.心C.数D.养3.如图,直线m∥n,AC⊥BC于点C,∠1=30°,则∠2的度数为()A.140°B.130°C.120°D.110°4.下列运算正确的是( )A.222()x y x y-=-B.246x x x∙=C.3=-D.236(2)6x x=5.如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边的中点,连接EF.若EF4BD=,则菱形ABCD的周长为()C.D.28 A.4 B.126.若关于x的方程220x x a++=有两个不相等的实数根,则a的值可以是()A.3 B.2 C.1 D.07.申报某个项目时,某7个区域提交的申报表数量的前5名的数据统计如图所示,则这7个区域提交该项目的申报表数量的中位数是()A.8 B.7 C.6 D.58.第七次人口普查数据显示:河北省常住人口中,男性人口约为0.377亿人,女性人口约为0.369亿人,则用科学记数法表示男性人口比女性人口大约多()A.50.810⨯人D.5810⨯人⨯人C.68100.810⨯人B.4A,C在直线y=x上,且点A的坐9.如图,在菱形ABCD中,∠BAD=60°,AB).将菱形ABCD绕原点O逆时针旋转,每次旋转45°,则第85次旋转结束时,点C的坐标为()A.0)B.(0,2)C.(0D.(2,0)10.根据研究,人体内血乳酸浓度升高是运动后感觉疲劳的重要原因,运动员未运动时,体内血乳酸浓度水平通常在40mg/L以下;如果血乳酸浓度降到50mg/L以下,运动员就基本消除了疲劳,体育科研工作者根据实验数据,绘制了一副图象,它反映了运动员进行高强度运动后,体内血乳酸浓度随时间变化而变化的函数关系.下列叙述正确的是()A .运动后40min 时,采用慢跑活动方式放松时的血乳酸浓度与采用静坐方式休息时的血乳酸浓度相同B .运动员高强度运动后,最高血乳酸浓度大约为250mg /LC .采用慢跑活动方式放松时,运动员必须慢跑70min 后才能基本消除疲劳D .运动员进行完剧烈运动,为了更快达到消除疲劳的效果,应该采用慢跑活动方式来放松二、填空题11.请写出一个过点()21,且y 随x 的增大而减小的函数的解析式 . 12.不等式组24331103x x x -≤-⎧⎪⎨-<⎪⎩的解集为. 13.老师为帮助学生正确理解物理变化和化学变化,将四种生活现象:“滴水成冰”“酒精燃烧”“百炼成钢”“木已成舟”制作成无差别卡片,置于暗箱中摇匀,随机抽取两张均为物理变化的概率是.14.如图,在边长为4的正方形ABCD 中,以AB 为直径的半圆交对角线AC 于点E ,以C 为圆心、BC 长为半径画弧交AC 于点F ,则图中阴影部分的面积是.15.如图,已知△ABC 中,∠C =90°,AC =4,BC =3,将△ABC 绕点B 逆时针旋转一定的角度α,若0°<α<90°,直线A 1C 1分别交AB ,AC 于点G ,H ,当△AGH 为等腰三角形时,则CH 的长为.三、解答题16.(1)计算:2011220233-⎛⎫+-- ⎪⎝⎭; (2)化简:2623193a a a a -⎛⎫÷+ ⎪-+⎝⎭. 17.实施乡村振兴计划以来,我市农村经济发展进入了快车道,为了解某村今年一季度经济发展状况,李老师的课题研究小组从该村300户家庭中随机抽取了20户,收集到他们一季度家庭人均收入的数据如下(单位:万元):0.69 0.73 0.74 0.80 0.81 0.98 0.93 0.81 0.89 0.690.74 0.99 0.98 0.78 0.80 0.89 0.83 0.89 0.94 0.89研究小组的同学对以上数据进行了整理分析,得到下表:(1)表格中:=a ______,b =______,c =______;(2)请估计今年一季度该村家庭人均收入不低于0.8万元的户数;(3)该村小强家今年一季度人均收入为0.83万元,能否超过村里一半以上的家庭?请说明理由.18.如图,在正方形OABC 中,2AB =,点M 是AB 的中点,反比例函数()0ky x x=>的图象经过点M 和点12N n ⎛⎫ ⎪⎝⎭,.(1)求反比例函数的解析式.(2)请用无刻度的直尺和圆规过点N 作出x 轴的垂线,(要求:不写作法,保留作图痕迹,使用2B 铅笔作图);若所作垂线交AB 于点P ,请直接写出NP 的长.19.第31届世界大学生运动会于 2023年7月28日在成都举行,主火炬塔位于东安湖体育公园,亮灯之夜,塔身通体透亮,10余道象征太阳光芒的螺旋线全部点亮,璀璨绚丽,流光溢彩(如图1).小杰同学想要通过测量及计算了解火炬塔CD 的大致高度,当他步行至点A 处,测得此时塔顶C 的仰角为42︒,再步行20米至点B 处,测得此时塔顶C 的仰角为65︒(如图2所示,点A ,B ,D 在同一条直线上),请帮小杰计算火炬塔CD 的高.(sin650.91︒≈,cos650.42︒≈,tan 65 2.14︒≈,sin 420.67︒≈,cos420.74︒≈,tan 420.90︒≈,结果保留整数)20.随着2022年北京冬奥会拉开帷幕,冬奥吉祥物“冰墩墩”“雪容融”备受消费者追捧,屡上热搜.某网店第一次用9000元购进冰墩墩钥匙扣,用9000元购进雪容融钥匙扣,其中冰墩墩钥匙扣的进价是雪容融钥匙扣进价的1.5倍,此次购买的雪容融钥匙扣比冰墩墩钥匙扣的个数多100个.其中,该网店雪容融钥匙扣售价为50元,冰墩墩钥匙扣售价为68元.(1)求这两种钥匙扣的进价;(2)第一次进货很快销售一空,该网店在第二次进货时购进这两种钥匙扣共1000个,其中雪容融钥匙扣的购货数量不少于冰墩墩钥匙扣数量的3倍,如何进货能在第二次进货中获得最大利润?并求出最大利润.21.根据心理学研究表明,学生上课对概念的接受能力y 与讲授概念的时间x 之间的关系是二次函数,如图是y 与x 的函数图象,点A 是该抛物线的顶点,且43OC .(1)求y 与x 的函数关系式;(2)研究表明,当学生的接受能力在55及以上时,视为学生接受能力的黄金期.①在学生接受能力的黄金期讲授重点内容,学习效果会更好.请问,张老师在哪个时间段内讲授重点内容合适?②若讲授某个概念的重点内容需要用时12分钟,请你判断其能否在学生接受能力的黄金期内讲完?说明理由.22.古代纺纱工具——手摇纺车,据推测出现在战国时期,常见由木架、锭子、绳轮和手柄四部分组成,常见的手摇纺车是锭子在左,绳轮和手柄在右,中间用绳弦传动,称为卧式(如图1).另一种手摇纺车,则是把锭子安装在绳轮之上,也是用绳弦传动,称为立式(如图2).卧式由一人操作,而立式需要两人同时配合操作,因卧式更适合一家一户的农村副业之用,故一直沿习流传至今.某数学实践小组对卧式手摇铲车纺线时的场景进行了探究:纺线时(如图3),木架水平放置.即绳轮O e 与水平面DE 相切于点E ,线绳绕过绳轮汇聚于点D 处放置的锭子上,即线绳CD 与O e 相切于点C ,过切点E 的直径与O e 交于点A (图中点O A E D C 、、、、在同一平面内).(1)求证:AOC CDE ∠=∠.(2)该小组在实践过程中发现,当纺车的绳轮半径OE 为40cm ,且圆心O 与D 处锭子之间的水平距离DE 在70~120cm 之间时,纺线较为舒适.若30∠=︒CDE ,40cm OE =,请判断该纺车纺线时是否舒适并说明理由. 1.7)23.综合与实践:折纸中的数学折纸是我国传统的民间艺术,也是同学们喜欢的手工活动之一,幸运星、纸飞机、千纸鹤、密信等折纸活动在生活中都是广为流传的,通过折纸我们可以得到许多美丽的图形,同时折纸的过程还蕴含着丰富的数学知识,折纸往往从矩形纸片开始,下面就让我们带着数学的眼光来探究一下有关矩形纸片的折叠问题,看看折叠矩形纸片蕴含着哪些丰富的数学知识.(1)折纸1:如图1,在一张矩形纸片上任意画一条线段AB ,将纸片沿线段AB 折叠(如图2) 问题1:重叠部分的ABC V 的形状______(是、不是)等腰三角形.问题2:若4cm AB =,5cm =BC ,则重叠部分ABC V 的面积为______2cm(2)折纸2:如图3,矩形纸片ABCD ,点E 为边CD 上一点,将BCE V 沿着直线BE 折叠,使点C 的对应点F 落在边AD 上,请仅用无刻度的尺子和圆规在图3中找出点E 的位置(保留作图痕迹,不写作法).(3)折纸3:如图4,矩形纸片ABCD ,5AB =,6BC =,若点M 为射线BC 上一点,将ABM V 沿着直线AM 折叠,折叠后点B 的对应点为B ',当点B '恰好落在BC 的垂直平分线上时,求BM的长.。
2024年河南省驻马店市第四中学中考模拟预测数学试题
![2024年河南省驻马店市第四中学中考模拟预测数学试题](https://img.taocdn.com/s3/m/fcb1f2b3e109581b6bd97f19227916888586b901.png)
2024年河南省驻马店市第四中学中考模拟预测数学试题一、单选题1.2-的绝对值是( )A .2B .2-C .12 D .12- 2.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其扰.据测定,杨絮纤维的直径约为0.0000105m ,该数用科学记数法表示为( )A .51.0510⨯B .41.0510-⨯C .410.510-⨯D .51.0510-⨯ 3.如图所示是由4个相同的小正方体组成的几何体,有关其三视图说法正确的是( )A .主视图和左视图完全相同B .主视图和俯视图完全相同C .左视图和俯视图完全相同D .三视图完全相同4.如图,把一块含30︒角的直角三角板的直角顶点放在直尺的一边上,如果∠1=20°,那么∠2的度数为( ).A .20°B .50°C .60°D .70°5.下列运算正确的是( )A .347a a a ⋅=B .34a a a ÷=C .()437a a =D .()22ab a b = 6.某学校规定学生的数学学期总评成绩由三部分组成,期末考试成绩占50%,期中考试成绩占40%,平时作业成绩占10%,某人上述三项成绩分别为90分,85分,80分,则他的数学学期总评成绩是( ).A .85分B .86分C .87分D .88分7.如图,⊙O 是ABC V 的外接圆,AC 是O e 的直径,点P 在O e 上,若35ACB ∠=︒,则BPC ∠的度数是( )A .35︒B .45︒C .55︒D .65︒8.关于x 的方程220x mx +-=的根的情况判断正确的是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .视m 的取值而定9.如图所示,在OAB V 中,60AOB ∠=︒,边OB 在x 轴上,4AB OB ==.将AOB V 绕点O 顺时针旋转,每次旋转90︒,第2024次旋转结束时,点A 的落点2024A 的坐标为( )A .(2,--B .()2-C .(D .(- 10.杆秤是人类发明的各种衡器中历史最悠久的一种,是利用杠杆原理来测定物体质量的简易衡器.如图1所示是兴趣小组自制的一个无刻度简易杆秤,其使用原理:将待测物挂于秤钩A 处,提起提纽B ,在秤杆上移动金属秤锤C (质量为1.5kg ),当秤杆水平时,金属秤锤C 所在的位置对应的刻度就是待测物的质量(量程范围内).为了给秤杆标上刻度,兴趣小组做了如下试验,用m (单位:kg )表示待测物的质量,l (单位:cm )表示秤杆水平时秤锤C 与提纽B 之间的水平距离,则水平距离l 与待测物质量m 之间的关系如图2所示.根据以上信息,下列说法正确的是()A.待测物的质量越大(量程范围内),秤杆水平时秤锤C与提纽B之间的水平距离越小B.当待测物的质量3kg时,测得的距离l为8cmC.若秤锤C在水平距离l为15cm的位置,则秤杆在此处的刻度应为5kgD.若秤杆长为80cm,则杆秤的最大称重质量为40kg二、填空题11.请写出一个y随x增大而增大的一次函数表达式.12.直接写出不等式组>23xx-⎧⎨≤⎩的一个整数解是.13.用图中两个可以自由转动的转盘做“配紫色”游戏,分别转动两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,则配成紫色的概率是.14.七巧板起源于我国先秦时期,古算书《周髀算经》中有关于正方形的分割术,经过历代演变而成七巧板.用边长为8的正方形,做了如图①所示的七巧板.将这个七巧板拼成如图②所示的图形,则图②中阴影部分的面积为.15.在Rt ABC △中,90B ??,8AB =,6BC =,BD 是AC 边上的中线,把BD 绕点D 旋转,旋转角为()090a a ︒<≤︒,对应点为点B '.如果DB '与直角边平行,则点B '到点C 的距离为.三、解答题16.(101(2023)2--+.(2)以下是欣欣解方程:221132x x +--=的解答过程: 解:去分母,得()()223211x x +--=; ①去括号:22631x x +-+=; ②移项,合并同类项得:44x -=-; ③解得:1x =. ④欣欣的解答过程在第________步开始出错?请你完成正确的解答过程.17.为了解中学生的视力情况,某区卫健部门决定随机抽取本区部分初、高中学生进行调查,并对他们的视力数据进行整理,得到如下统计表和统计图.整理描述初中学生视力情况统计表高中学生视力情况统计图(1)m=_______,n=_______;(2)被调查的高中学生视力情况的样本容量为_______;(3)分析处理:①小胡说:“初中学生的视力水平比高中学生的好.”请你对小胡的说法进行判断,并选择一个能反映总体的统计量...说明理由:②约定:视力未达到1.0为视力不良.若该区有26000名中学生,估计该区有多少名中学生视力不良?并对视力保护提出一条合理化建议.18.如图,在平面直角坐标系中,以反比例函数kyx=图象上的点A和点()1,2B-为顶点,分别作矩形ACOD和矩形BEOF,点C,E在x轴上,点D,F在y轴上,以点O为圆心,OF的长为半径作»FG交BE于点G,连接AO OG,.(1)求k的值;(2)求FOG ∠的度数;(3)求图中阴影部分的面积.19.桑梯是我国古代发明的一种采桑工具.图1是明朝科学家徐光启在《农政全书》中用图画描绘的桑梯,其示意图如图2所示,已知 1.5AB AC ==米, 1.2AD =米,AC 与AB 的张角为α,为保证安全,α的调整范围是3060a ≤≤o o ,BC 为固定张角α大小的绳索.(1)求绳索BC 长的最大值.(2)若40o α=时,求桑梯顶端D 到地面BC 的距离.(参考数据:sin700.94≈o ,cos700.34≈o ,tan70 2.75≈o ,最后结果精确到0.01米) 20.随着端午节的临近,A ,B 两家超市开展促销活动,各自推出不同的购物优惠方案,如下表:(1)当购物金额为80元时,选择超市______(填“A ”或“B ”)更省钱;当购物金额为130元时,选择超市______(填“A ”或“B ”)更省钱;(2)若购物金额为x (0200x <<)元时,请分别写出它们的实付金额y (元)与购物金额x (元)之间的函数解析式,并说明促销期间如何选择这两家超市去购物更省钱?(3)对于A 超市的优惠方案,随着购物金额的增大,顾客享受的优惠率不变,均为20%(注:100%-=⨯购物金额实付金额优惠率购物金额).若在B 超市购物,购物金额越大,享受的优惠率一定越大吗?请举例说明.21.课本改编:(1)如图1,四边形ABCD 为O e 的内接四边形,AC 为O e 的直径,则B D ∠=∠=______度,BAD BCD ∠+∠=______度.(2)如果O e 的内接四边形ABCD 的对角线AC 不是O e 的直径,如图2,求证:圆内接四边形的对角互补.知识运用(3)如图3,等腰三角形ABC 的腰AB 是O e 的直径,底边和另一条腰分别与O e 交于点D ,E ,F 是线段AC 上一点,连接DF ,DF 是O e 的切线.求证EF CF =.22.数形结合是解决数学问题的重要方法.小爱同学学习二次函数后,对函数()21y x =--进行了探究.在经历列表、描点、连线步骤后,得到如图的函数图象.请根据函数图象,回答下列问题:(1)观察探究:①写出该函数的一条性质:______;②方程()211x --=-的解为:______;③若方程()21x a --=有四个实数根,则a 的取值范围是______.(2)延伸思考.①将函数()21y x =--的图象经过怎样的平移可得到函数()21213y x =---+的图象?画出平移后的图象并写出平移过程:②观察平移后的图像,当123y ≤≤时,直接写出自变量x 的取值范围______.23.综合与实践:折纸中的数学折纸是我国传统的民间艺术,也是同学们喜欢的手工活动之一,幸运星、纸飞机、千纸鹤、密信等折纸活动在生活中都是广为流传的,通过折纸我们可以得到许多美丽的图形,同时折纸的过程还蕴含着丰富的数学知识,折纸往往从矩形纸片开始,下面就让我们带着数学的眼光来探究一下有关矩形纸片的折叠问题,看看折叠矩形纸片蕴含着哪些丰富的数学知识.(1)折纸1:如图1,在一张矩形纸片上任意画一条线段AB ,将纸片沿线段AB 折叠(如图2) 问题1:重叠部分的ABC V 的形状______(是、不是)等腰三角形.问题2:若4cm AB =,5cm =BC ,则重叠部分ABC V 的面积为______2cm(2)折纸2:如图3,矩形纸片ABCD ,点E 为边CD 上一点,将BCE V 沿着直线BE 折叠,使点C 的对应点F 落在边AD 上,请仅用无刻度的尺子和圆规在图3中找出点E 的位置(保留作图痕迹,不写作法).(3)折纸3:如图4,矩形纸片ABCD ,5AB =,6BC =,若点M 为射线BC 上一点,将ABM V 沿着直线AM 折叠,折叠后点B 的对应点为B ',当点B '恰好落在BC 的垂直平分线上时,求BM 的长.。
2024年河南省中考数学模拟卷 含答案
![2024年河南省中考数学模拟卷 含答案](https://img.taocdn.com/s3/m/27eeb1a67d1cfad6195f312b3169a4517723e507.png)
2024年河南省模拟卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)在﹣3,2,﹣2,0四个数中,最小的数是( )A .﹣3B .2C .﹣2D .02.(3分)“两岸猿声啼不住,轻舟已过万重山”.2023年8月29日,华为搭载自研麒麟芯片的mate 60系列低调开售.据统计,截至2023年10月21日,华为mate 60系列手机共售出约160万台,将数据1600000用科学记数法表示应为( )A .0.16×107B .1.6×106C .1.6×107D .16×1063.(3分)一个长方体被截去一部分后,得到的几何体如图水平放置,其俯视图是( )A .B .C .D .4.(3分)计算mm 2―1―11―m 2的结果为( )A .m ﹣1B .m +1C .1m +1D .1m ―15.(3分)如图,直线AB 、CD 相交于点O ,若∠1=30°,则∠2的度数是( )A .30°B .40°C .60°D .150°6.(3分)已知不等式组{3x -2<1―2x ≤4,其解集在数轴上表示正确的是( )A .B .C .D .7.(3分)一元二次方程(a ﹣2)x 2+ax +1=0(a ≠2)的实数根的情况是( )A .有两个不同实数根B .有两个相同实数根C .没有实数根D .不能确定8.(3分)如图所示的四个点分别描述甲、乙、丙、丁四个电阻在不同电路中通过该电阻的电流I 与该电阻阻值R 的情况,其中描述甲、丙两个电阻的情况的点恰好在同一个反比例函数的图象上,则这四个电阻两端的电压最小的是( )A .甲B .乙C .丙D .丁9.(3分)在同一平面直角坐标系中,二次函数y =ax 2与一次函数y =bx +c 的图象如图所示,则二次函数y =ax 2+bx ﹣c 的图象可能是( )A .B .C .D .10.(3分)如图,已知矩形纸片ABCD ,其中AB =3,BC =4,现将纸片进行如下操作:第一步,如图①将纸片对折,使AB 与DC 重合,折痕为EF ,展开后如图②;第二步,再将图②中的纸片沿对角线BD 折叠,展开后如图③;第三步,将图③中的纸片沿过点E 的直线折叠,使点C 落在对角线BD 上的点H 处,如图④.则DH 的长为( )A .32B .85C .53D .95二.填空题(共5小题,满分15分,每小题3分)11.(3分)若a ,b 都是实数,b =1―2a +2a -1―2,则a b 的值为 .12.(3分)为积极响应“助力旅发大会,唱响美丽郴州”的号召,某校在各年级开展合唱比赛,规定每支参赛队伍的最终成绩按歌曲内容占30%,演唱技巧占50%,精神面貌占20%考评.某参赛队歌曲内容获得90分,演唱技巧获得94分,精神面貌获得95分.则该参赛队的最终成绩是 分.13.(3分)已知方程组{2x +y =3x ―2y =5,则2x +6y 的值是 .14.(3分)如图所示的是90° 的扇形纸片OAB ,半径为2.将这张扇形纸片沿CD 折叠,使点B 与点O 恰好重合,折痕为CD ,则阴影部分的面积为 .15.(3分)如图,在△ABC 中,∠BAC =120°,AB =AC =3,点D 为边AB 的中点,点E 是边BC 上的一个动点,连接DE ,将△BDE 沿DE 翻折得到△B ′DE ,线段B ′D 交边BC 于点F .当△DEF 为直角三角形时,BE 的长为 .三.解答题(共8小题,满分75分)16.(10分)(1)计算:38+|-32|+2﹣1﹣(﹣1)2022.(2)化简:(2a +1)(2a ﹣1)﹣a (4a ﹣2).17.(9分)为响应“带动三亿人参与冰雪运动”的号召,某校七、八年级举行了“冰雪运动知识竞赛”.为了解学生对冰雪运动知识的掌握情况,学校从两个年级分别随机抽取了20名学生的竞赛成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息:a .七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.b .八年级20名学生的测试成绩条形统计图如图所示:c .七、八年级抽取的学生的测试成绩的平均数、众数、中位数如下表所示:年级平均数众数中位数七年级7.5n 7八年级m8p请你根据以上提供的信息,解答下列问题:(1)上表中m = ,n = ,p = ;(2)根据以上数据,你认为该校七、八年级中哪个年级学生对冰雪运动知识掌握较好?请说明理由(写出一条理由即可);(3)该校八年级共400名学生参加了此次测试活动,估计八年级参加此次测试活动成绩合格的学生人数.18.(9分)如图,在平面直角坐标系中,平行四边形OABC 的边OC 在x 轴上,对角线AC ,OB 交于点M ,点B (12,4).若反比例函数y =kx (k ≠0,x >0)的图象经过A ,M 两点,求:(1)点M 的坐标及反比例函数的解析式;(2)△AOM的面积;(3)平行四边形OABC的周长.19.(9分)如图,某无人机爱好者在一小区外放飞无人机,当无人机飞行到一定高度D点处时,无人机测得操控者A的俯角为75°,测得小区楼房BC顶端点C处的俯角为45°.已知操控者A和小区楼房BC之间的距离为45米,无人机的高度为(30+153)米.(假定点A,B,C,D都在同一平面内.参考数据:tan75°=2+3,tan15°=2-3.计算结果保留根号)(1)求此时小区楼房BC的高度;(2)在(1)条件下,若无人机保持现有高度沿平行于AB的方向,并以5米/秒的速度继续向右匀速飞行.问:经过多少秒时,无人机刚好离开了操控者的视线?20.(9分)一名生物学家在研究两种不同的物种A和B在同一生态环境中的资源消耗时发现:50个物种A和100个物种B共消耗了200单位资源;100个物种A和50个物种B共消耗了250单位资源.(1)求1个物种A和1个物种B各消耗多少单位资源;(2)已知物种A,B共有200个且A的数量不少于100个.设物种A有a个,物种A,B共消耗的单位资源W.①求W与a的函数关系式;②当物种A的数量为何值时,物种A、B共消耗的单位资源最少,最小值是多少?21.(9分)如图,在Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,动点M从点A出发,以2cm/s 的速度沿AB向点B运动,同时动点N从点C出发,以3cm/s的速度沿CA向点A运动,当一点停止运动时,另一点也随即停止运动.以AM为直径作⊙O,连接MN,设运动时间为t(s)(t>0).(1)试用含t的代数式表示出AM及AN的长度,并直接写出t的取值范围;(2)当t为何值时,MN与⊙O相切?(3)若线段MN 与⊙O 有两个交点.求t 的取值范围.22.(10分)如图,在平面直角坐标系中,抛物线y =ax 2+bx +2(a ≠0)与x 轴分别交于A ,B 两点,点A 的坐标是(﹣4,0),点B 的坐标是(1,0),与y 轴交于点C ,P 是抛物线上一动点,且位于第二象限,过点P 作PD ⊥x 轴,垂足为D ,线段PD 与直线AC 相交于点E .(1)求该抛物线的解析式;(2)连接OP ,是否存在点P ,使得∠OPD =2∠CAO ?若存在,求出点P 的横坐标;若不存在,请说明理由.23.(10分)(1)特殊发现如图1,正方形BEFG 与正方形ABCD 的顶点B 重合,BE 、BG 分别在BC 、BA 边上,连接DF ,则有:①DF AG= ; ②直线DF 与直线AG 所夹的锐角等于 度;(2)理解运用将图1中的正方形BEFG 绕点B 逆时针旋转,连接DF 、AG ,①如图2,(1)中的结论是否仍然成立?请说明理由;②如图3,若D 、F 、G 三点在同一直线上,且过AB 边的中点O ,BE =4,直接写出AB 的长 ;(3)拓展延伸如图4,点P 是正方形ABCD 的AB 边上一动点(不与A 、B 重合),连接PC ,沿PC 将△PBC 翻折到△PEC 位置,连接DE 并延长,与CP 的延长线交于点F ,连接AF ,若AB =4PB ,则DE EF的值是否是定值?请说明理由.参考答案一.选择题(共10小题,满分30分,每小题3分)1.A.2.B.3.A.4.D.5.A.6.B.7.A.8.B.9.C.10.D.二.填空题(共5小题,满分15分,每小题3分)11.4.12.93.13.﹣4.143―π3.15.32或334.三.解答题(共8小题,满分75分)16.解:(138+|-32|+2﹣1﹣(﹣1)2022.=2+32+12―1=3.(2)(2a+1)(2a﹣1)﹣a(4a﹣2)=4a2﹣1﹣4a2+2a=2a﹣1.17.解:(1)m=5×2+6×4+7×4+8×5+9×2+10×320=7.5(分),七年级20名学生成绩中出现次数最多的是7分,共出现6次,因此众数是7分,即n=7,将八年级20名学生成绩从小到大排列,处在中间位置的两个数的平均数为7+82=7.5(分),因此中位数是7.5分,即p=7.5,故答案为:7.5,7,7.5;(2)八年级的成绩较好,理由:八年级学生成绩的中位数是7.5分,众数是8分,都比七年级高;(3)400×20―220=360(名),答:该校八年级共400名学生中成绩合格的大约有360名.18.解:(1)∵四边形OABC是平行四边形,对角线AC,OB交于点M,点B(12,4),∴点M(6,2).将点M(6,2)代入y=kx(x>0)中,得k=6×2=12.∴反比例函数解析式为y=12x.(2)如图,过点A作AD⊥x轴于点D,∵四边形OABC是平行四边形,点B(12,4),∴点A的纵坐标为4,即AD=4.将y=4代入y=12x中,得x=3,即点A(3,4).∴AB=OC=12﹣3=9.∴S△OAC=12OC⋅AD=12×9×4=18.∵四边形OABC是平行四边形,∴AM=CM,∴S△AOM=12S△OAC=9.(3)∵点A(3,4),AD⊥OC,∴OD=3,AD=4.在Rt△ODA中,OA=OD2+AD2=32+42=5.∵四边形OABC是平行四边形,OC=9,∴平行四边形OABC的周长为(9+5)×2=28.19.解:(1)过点D作DE⊥AB于点E,过点C作CF⊥DE于点F,如图所示:则四边形BCFE是矩形,由题意得:AB=45米,∠DAE=75°,∠DCF=∠FDC=45°,∵∠DCF=∠FDC=45°,∴CF=DF,∵四边形BCFE是矩形,∴BE=CF=DF,在Rt△ADE中,∠AED=90°,∴tan∠DAE=DEAE=BE45―BE=2+3,∴BE=30,经检验,BE=30是原方程的解,∴EF=DH﹣DF=30+153―30=153(米),答:此时小区楼房BC的高度为153米.(2)∵DE=15(2+3)米,∴AE=DE2+3=15(2+3)2+3=15(米),过D点作DG∥AB,交AC的延长线于G,作GH⊥AB于H,在Rt△ABC中,∠ABC=90°,AB=45米,BC=153米,∴tan∠BAC=BCAB=15345=33,在Rt△AGH中,GH=DE=15(2+3)米,AH=GHtan∠GAH=15(2+3)33=(303+45)米,∴DG=EH=AH﹣AE=(303+45)﹣15=(303+30)米,(303+30)÷5=(63+6)(秒),答:经过(63+6)秒时,无人机刚好离开了操控者的视线.20.解:(1)设1个物种A消耗x单位资源,1个物种B各消耗y单位资源,根据题意得{50x+100y=200100x+50y=250,解得{x=2y=1,答:1个物种A消耗2单位资源,1个物种B各消耗1单位资源;(2)①根据题意得W=2a+(200﹣a)=a+200(100≤a<200),答:W与a的函数关系式为W=a+200(100≤a<200);②∵W=a+200,∴W随a的增大而增大,∵100≤a<200,∴当a=100时,物种A、B共消耗的单位资源最少,最小值是300.21.解:(1)由题意得,AM=2t cm,CN=3t cm,在Rt△ABC中,AC=AB2+BC2=62+82=10cm,∴AN=AC﹣CN=(10﹣3t)cm,∵AB=6cm,动点M的速度为2cm/s,∴动点M的最长运动时间为62=3s,∵AC=10cm,动点N的速度为3cm/s,∴动点N的最长运动时间为103 s,∴t的取值范围为0<t≤3;(2)若MN与⊙O相切,则AB⊥MN,即∠AMN=90°,∵∠ABC=90°,∴∠AMN=∠ABC,∴△AMN∽△ABC,∴MAAB=ANAC,即2t6=10―3t10,解得t=30 19,∴当t=3019时,MN与⊙O相切;(3)由(2)得,当t>3019时,直线MN与⊙O有两个交点,如图,当点N恰好在⊙O上时,线段MN与⊙O的两个交点恰好为M,N,∵AM为⊙O的直径,∴∠ANM=90°=∠B,∵∠MAN=∠CAB,∴△AMN∽△ACB,∴AMAC=ANAB,即2t10=10―3t6,解得t=50 21,∴若线段MN与⊙O有两个交点,则t的取值范围为3019<t≤5021.22.解:(1)设抛物线的表达式为:y=a(x+4)(x﹣1)=a(x2+3x﹣4),则﹣4a=2,解得:a =-12,∴抛物线的解析式为y =-12x 2-32x +2;(2)设存在点P ,使得∠OPD =2∠CAO ,理由如下:延长DP 到H ,设PH =OP ,连接OH ,如图:∵PH =OP ,∴∠H =∠POH ,∴∠OPD =∠H +∠POH =2∠H ,∵∠OPD =2∠CAO ,∴∠H =∠CAO ,∴tan H =tan ∠CAO ,∴OD DH=CO OA=24=12,∴DH =2OD ,设P (t ,-12t 2-32t +2),则OD =﹣t ,PD =-12t 2-32t +2,∴DH =2OD =﹣2t ,∴PH =DH ﹣PD =﹣2t ﹣(-12t 2-32t +2)=12t 2-12t ﹣2,∵PH =OP ,∴12t 2-12t ﹣2=t 2+(12t 2+32t ―2)2,解得t =0(舍去)或―3―734或―3+734(舍去),∴点P 的横坐标为―3―734.23.解:(1)①连接BF ,BD ,如图,∵四边形ABCD和四边形GBEF为正方形,∴∠ABF=∠ABD=45°,∴B,F,D三点在一条直线上.∵GF⊥AB,DA⊥AB,∴△BGF和△BAD为等腰直角三角形,∴BF=2BG,BD=2AB,∴DF=BD﹣BF=2(AB﹣BG)=2AG,∴DFAG=2;②∵B,F,D三点在一条直线上,∠ABF=∠ABD=45°,∴直线DF与直线AG所夹的锐角等于45°.故答案为:2;45;(2)①(1)中的结论仍然成立,理由:连接BF,BD,如图,∵四边形ABCD和四边形GBEF为正方形,∴∠ABD=∠GBF=45°,∠BGF=∠BAD=90°,∴△BGF和△BAD为等腰直角三角形,∴∠ABG+∠ABF=∠ABF+∠FBD=45°,BF=2BG,BD=2AB,∴∠ABG=∠DBF,BFBG =BDAB=2,∴△ABG∽△DBF,∴DFAG=BDAB=2;延长DF,交AB于点N,交AG于点M,∵△ABG∽△DBF,∴∠GAB=∠BDF.∵∠ANM=∠DNB,∴∠BAG+∠AMN=∠BDF+∠ADB.∴∠AMN=∠ABD=45°,即直线DF与直线AG所夹的锐角等于45°,∴(1)中的结论仍然成立;②连接BF,BD,如图,∵四边形GBEF为正方形,∴∠BFG=45°.由①知:∠AGD=45°,∴∠AGD=∠BFG.∵AB边的中点为O,∴AO=BO.在△AGO和△BFO中,{∠AOG=∠BOF∠AGO=∠BFO=45°AO=BO,∴△AGO≌△BFO(AAS),∴GO=FO=12GF=2,∴OB=BG2+OG2=42+22=25,∴AB=2OB=45.故答案为:45;(3)DEEF的值是定值,定值为3,理由:过点C作CQ⊥DF于点Q,连接BD,BE,BF,BE与CF交于点H,如图,∵四边形ABCD为正方形,∴BC=CD,由折叠的性质可得:BC=CE,EF=BF,PB=PE,∠BCF=∠ECF.∴CE=CD,∵CQ⊥DF,∴∠ECQ=∠DCQ.∵∠BCD=90°,∴∠ECF+∠ECQ=12∠BCD=45°.∴∠QFC=90°﹣∠QCF=45°,∴∠BFC=45°,∴∠EFB=∠EFC+∠BFC=90°.∴△BEF为等腰直角三角形,∴FH⊥BE,BH=HE=12BE,BE=2EF,∴∠PHB=90°.在FC截取FM=BE,可知四边形EFBM为正方形,由(2)②的结论可得:DE=2AF,∠AFD=45°,∴∠AFB=∠AFD+∠EFC=90°,∴∠AFP=∠PHB.∵∠APF=∠BPH,∴△APF∽△BPH,∴APPB=AFBH,∵PA=3PB,∴AF=3BH=32BE322EF,∴DE=2AF=2×322EF=3EF.∴DEEF=3,∴DEEF的值是定值,定值为3.。
2024年河南省九年级中考数学模拟试卷(六)
![2024年河南省九年级中考数学模拟试卷(六)](https://img.taocdn.com/s3/m/0df9533e9a6648d7c1c708a1284ac850ad0204d2.png)
2024年河南省九年级中考数学模拟试卷(六)一、单选题1.实数3-,2,12024,02024,)A.-3 B.12024C.20240D2.生活中有许多对称美的图形,下列是中心对称图形但不是轴对称图形的是()A.B.C.D.3.下列说法中错误的是()A.将油滴入水中,油会浮出水面是一个必然事件B.1、2、3、4这组数据的中位数是2.5C.一组数据的方差越小,这组数据的稳定性越差D.要了解某种灯管的使用寿命,一般采用抽样调查4.不等式组2111313412x xxx+≥⎧⎪-⎨-<⎪⎩的解集在数轴上表示正确的是()A.B.C.D.5.如图,直线AB∥CD,∠M=90°,∠CEF=120°,则∠MPB=()A .30°B .60°C .120°D .150°6.《孙子算经》是中国古代重要的数学著作,是《算经十书》之一.书中记载了这样一个题目:今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x 尺,则可列方程为( ) A .1( 4.5)12x x +=-B .1( 4.5)12x x +=+C .1(1) 4.52x x +=-D .1(1) 4.52x x -=+7.人体红细胞的直径约为0.0000077米,数据0.0000077用科学记数法表示为7.710n ⨯,则n 的值是( ) A .5B .5-C .6D .6-8.如图,在菱形ABCD 中,8AB =,120BAD ∠=︒,点O 是对角线BD 的中点,OE CD ⊥于点E ,则OE 的长为( )A .B C .4 D .29.已知二次函数2y ax bx c =++的y 与x 的部分对应值如表:下列结论错误的是( ) A .该函数有最大值B .该函数图象的对称轴为直线1x =C .当2x >时,函数值y 随x 增大而减小D .方程20ax bx c ++=有一个根大于310.如图,A 是平面直角坐标系中y 轴上的一点,AO =AO 为底构造等腰ABO V ,且120ABO ∠=︒,将ABO V 沿着射线OB 方向平移,每次平移的距离都等于线段OB 的长,则第2024次平移结束时,点B 的对应点2024B 的坐标为( )A .()B .()C .(D .(二、填空题11.分解因式:34x x -=.12.已知关于x 的一元二次方程240x x a --=有两个不相等的实数根,则a 的取值范围是. 13.从甲、乙、丙三人中选一人参加环保知识抢答赛,经过两轮初赛,他们的平均成绩都是89,方差分别是21.2S =甲,22.3S =乙,211.5S =丙,你认为适合选参加决赛.(填“甲”“乙”或“丙”)14.如图,B 、E 是以AD 为直接的半圆O 的三等分点,弧BE 的长为23π,作BC ⊥AE ,交AE 的延长线于点C ,则图中阴影部分的面积为.15.如图,在平行四边形ABCD 中,4AB =,6AD =,120A ∠=︒,点F ,N 分别为CD ,AB 的中点,点E 在边AD 上运动,将EDF V 沿EF 折叠,使得点D 落在D ¢处,连接BD ',点M 为BD '中点,则MN 的最小值是.三、解答题16.(1)计算:111245-⎛⎫⎛⎫÷--+ ⎪ ⎪⎝⎭⎝⎭;(2)化简: 11111a a a a ⎛⎫+÷ ⎪+--⎝⎭. 17.如图,一次函数y x b =+与反比例函数ky x=的图象相交于点A ,B 两点,点B 的坐标为()4,2--.(1)分别求出一次函数和反比例函数的解析式; (2)已知点C 坐标为()2,0,求ABC V 的面积.18.某校开展了以“不忘初心,牢记使命”为主题的知识竞赛,现从该校八、九年级各随机抽取10名学生的成绩进行整理、描述和分析(成绩用m 表示),共分成四个组:A . 8085m ≤<,B . 8590m ≤<, C . 9095m ≤<,D . 95100m ≤≤.另外给出了部分信息如下: 八年级10名学生的成绩: 99, 80,99,86, 99,96,90,100,89,82. 九年级10名学生的成绩在C 组的数据:94,90,94. 八、九年级抽取学生成绩统计表九年级抽取学生成绩扇形统计图根据以上信息,解答下列问题: (1)上面图表中的a =,b =, c =;(2)扇形统计图中“D 组”所对应的圆心角的度数为;(3)该校九年级共有840名学生参加了知识竞赛活动,估计九年级参加此次知识竞赛活动成绩为较好(90≤m <95)的学生有多少人?(4)现准备从九年级中D 组中的甲、乙、丙、丁四个学生中随机选取两个参加市区的比赛,请用树状图或列表法求出恰好选中甲和丁的概率.19.如图,某建筑物楼顶挂有广告牌BC ,张伟准备利用所学的三角函数知识估测该建筑CO的高度.由于场地有限,不便测量,所以张伟从点A 沿坡度为i =30米到达点P ,测得广告牌底部C 点的仰角为45︒,广告牌顶部B 点的仰角为53︒,张伟的身高忽略不计,已知广告牌12BC =米,求建筑物CO 的高度.(参考数据:sin530.8︒≈,cos530.6︒≈,tan53 1.3︒≈)20.重庆市涪陵区是中国规模最大、最集中的榨菜产区,享有中国“榨菜之乡”的美誉.已知3件鲜脆榨菜丝和4件麻辣萝卜干的进价共240元,5件鲜脆榨菜丝和2件麻辣萝卜干的进价共260元.(1)请分别求出每件鲜脆榨菜丝和麻辣萝卜干的进价.(2)某特产店计划用不超过5600元购进鲜脆榨菜丝和麻辣萝卜干共150件,且鲜脆榨菜丝的数量不少于麻辣萝卜干数量的32.在销售过程中,每件鲜脆榨菜丝的售价为50元,每件麻辣萝卜干的售价为42元.为了方便顾客选择喜欢的口味,特产店拿出一件鲜脆榨菜丝和一件麻辣萝卜干作为样品让顾客免费品尝(此样品不再销售给顾客).若剩下的特产全部都卖完,该特产店应如何进货,可使利润最大?最大利润为多少元? 21.阅读与思考下面是一位同学的数学学习笔记,请仔细阅读并完成相应任务.阿基米德折弦定理从圆上任意一点出发的两条弦所组成的折线,称为该圆的一条折弦,如图1.古希腊数学家阿基米德发现,若PA ,PB 是O e 的折弦.C 是»AB 的中点,CE PA ⊥于点E ,则AE PE PB =+.这就是著名的“阿基米德折弦定理”. 证明如下:如图2,在AE 上截取AF PB =,连接CA ,CF ,CP ,CB .则FAC PBC ∠=∠(依据1).∵C 是»AB 的中点,∴AC BC =n n,∴AC BC =. 在FAC V 和PBC V 中,AC BC = FAC PBC ∠=∠AF BP =∴()FAC PBC SAS V V ≌,∴CF CP =. ∵CE PA ⊥于点E ,∴FE PE =(依据2).∴AE FE AF PE PB =+=+.任务:(1)填空:材料中的依据1是指________________;依据2是指________________. (2)如图3,BC 是O e 的直径,D 是»AC 上一点,且满足45DAC ∠=︒,若12AB =,O e 的半径为10,求AD 的长.22.如图,已知抛物线 ²y x bx c =-++₁的顶点 D 的坐标为()14,,与x 轴的正半轴交于点 A ,与y 轴交于点B ,连接AB .(1)求b ,c 的值;(2)点(),P m n 在抛物线y 1上,当2m <时, 请根据图象直接写出n 的取值范围;(3)将抛物线1y 向右平移1个单位得到抛物线2y ,1y 与2y 交于点 C ,将点C 向下平移k 个单位,使得点C 落在线段AB 上,求k 的值.23.随着教育教学改革的不断深入,数学教学如何改革和发展,如何从“重教轻学”向自主学习探索为主的方向发展,是一个值得思考的问题.从数学的产生和发展历程来看分析,不外乎就是三个环节:【观察猜想】-【探究证明】-【拓展延伸】.下面同学们从这三个方面试看解决下列问题:已知:如图1所示将一块等腰三角板BMN 放置与正方形ABCD 的B ∠重含,连接 AN 、CM ,E 是AN 的中点,连接BE .【观察猜想】(1)CM 与 BE 的数量关系是________,CM 与BE 的位置关系是___________; 【探究证明】(2)如图2所示,把三角板 BMN 绕点B 逆时针旋转(090)αα<<,其他条件不变,线段CM与BE 的关系是否仍然成立,并说明理由; 【拓展延伸】(3)若旋转角45α=︒,且2NBE ABE ∠=∠,求BCBN的值.。
2023年河南省中考数学模拟试卷(经典三)及答案解析
![2023年河南省中考数学模拟试卷(经典三)及答案解析](https://img.taocdn.com/s3/m/a5eb272053d380eb6294dd88d0d233d4b14e3fe2.png)
2023年河南省中考数学模拟试卷(经典三)一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的。
1.(3分)﹣的绝对值是()A.﹣3B.3C.D.﹣2.(3分)如图是由4个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.3.(3分)下列运算正确的是()A.3a﹣a=2B.a2•a3=a6C.a6÷2a2=D.(2a2b)3=6a8b24.(3分)2022年11月2日,焦作市山阳区举办“学习二十大出彩组工人”主题演讲比赛.下表是5位评委对某参赛选手的打分情况,则该组数据的中位数是()评委甲乙丙丁戊打分9.59.69.6109.8 A.9.6B.9.7C.9.8D.105.(3分)如图为两直线m、n与△ABC相交的情形,其中m、n分别与BC、AB平行.根据图中标示的角度,∠A的度数为()A.75°B.60°C.55°D.50°6.(3分)若方程kx2﹣2x+1=0没有实数根,则k的值可以是()A.﹣1B.0C.1D.27.(3分)如图,在边长为5的菱形ABCD中,对角线BD=8,点O为菱形的中心,作OE ⊥BC,垂足为E,则sin∠COE的值为()A.B.C.D.8.(3分)在“河南美食简介”竞答活动中,第一题组共设置“河南烩面”“胡辣汤”“洛阳酸浆面条”“开封双麻火烧”四种美食,参赛的甲、乙二人从以上四种美食中随机选取一个进行简介,则两人恰好选中同一种美食的概率是()A.B.C.D.9.(3分)中国古代涌现包括“锝、钧、镒、铢”等在内的质量单位,而现代的质量单位有:吨(t)、千克(kg)、克(g)、毫克(mg)、微克(μg)等.其中1t=103kg,1kg=103g,1g=103mg,则1t等于()A.109mg B.1027mg C.3×103mg D.39mg10.(3分)血药浓度(PlasmaConcentration)指药物吸收后在血浆内的总浓度,已知药物在体内的浓度随着时间而变化.某成人患者在单次口服1单位某药后,体内血药浓度及相关信息如图所示,根据图中提供的信息,下列关于成人患者使用该药血药浓度(mg/L)5a最低中毒浓度(MTC)物的说法中正确的是()A.从t=0开始,随着时间逐渐延长,血药浓度逐渐增大B.当t=1时,血药浓度达到最大为5amg/LC.首次服用该药物1单位3.5小时后,立即再次服用该药物1单位,不会发生药物中毒D.每间隔4h服用该药物1单位,可以使药物持续发挥治疗作用二、填空题(每小题3分,共15分)11.(3分)请写出一个图象经过点(1,2)的函数的关系式.12.(3分)不等式组的解集是.13.(3分)如图,Rt△ABC中∠ACB=90°,线段CO为斜边AB的中线.分别以点A和点O为圆心,大于的长为半径作弧,两弧交于P,Q两点,作过P、Q两点的直线恰过点C,交AB于点D,若AD=1,则BC的长是.14.(3分)如图,在▱ABCD中,E为BC的中点,以E为圆心,CE长为半径画弧交对角线BD于点F,若∠BAD=116°,∠BDC=39°,BC=4,则扇形CEF的面积为.15.(3分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AB=4,E为斜边AB 的中点,点P是射线BC上的一个动点,连接AP、PE,将△AEP沿着边PE折叠,折叠后得到△EPA′,当折叠后△EPA′与△BEP的重叠部分的面积恰好为△ABP面积的四分之一,则此时BP的长为.三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:;(2)化简:.17.(9分)中国是世界上最早使用铸币的国家.距今3000年前殷商晚期墓葬出土了不少“无文铜贝”,为最原始的金属货币.下列装在相同的透明密封盒内的古钱币材质相同,其密封盒上分别标有古钱币的尺寸及质量(例如:钱币“状元及第”密封盒上所标“48.1*2.4mm,24.0g”是指该枚古钱币的直径为48.1mm,厚度为2.4mm,质量为24.0g).根据图中信息,解决下列问题.(1)这5枚古钱币,所标直径数据的平均数是,所标厚度数据的众数是;(2)由于古钱币无法从密封盒内取出,为判断密封盒上所标古钱币的质量是否有错,桐桐用电子秤测得每枚古钱币与其密封盒的总质量如下:名称文星高照状元及第鹿鹤同春顺风大吉连中三元总质量/g58.758.155.254.355.8盒标质量24.424.013.020.021.7盒子质量34.334.142.234.334.1请你应用所学的统计知识,判断哪枚古钱币所标的质量与实际质量差异较大,并计算该枚古钱币的实际质量约为多少克.18.(9分)如图,直线y=kx+b与双曲线相交于A(﹣3,1),B两点,与x 轴相交于点C(﹣4,0).(1)分别求一次函数与反比例函数的解析式;(2)连接OA,OB,求△AOB的面积;(3)直接写出当x<0时,关于x的不等式的解集.19.(9分)宝轮寺塔,为供奉舍利由尼姑道秀主持建筑,始建于隋文帝仁寿元年(601年),故又称仁寿建塔,位于河南省三门峡市陕州风景区.数学活动小组欲测量宝轮寺塔DE的高度,如图,在A处测得宝轮寺塔塔基C的仰角为15°,沿水平地面前进23米到达B处,测得宝轮寺塔塔顶E的仰角∠EBD为53°,测得塔基C的仰角∠CBD 为30°(图中各点均在同一平面内).(1)求宝轮寺塔DE的高度;(2)实际测量时会存在误差,请提出一条减小误差的合理化建议.(结果精确到0.1米,参考数据:20.(9分)当前我国约有十分之一的教师因为种种原因患上嗓音疾病.针对于此,某校工会计划为超课时任务的教师配备音频放大器.已知购买2个A型音频放大器和3个B型音频放大器共需352元;购买3个A型音频放大器和4个B型音频放大器共需496元.(1)求A、B两种类型音频放大器的单价;(2)该校准备采购A、B两种类型的音频放大器共30个,且A型音频放大器的数量不少于B型音频放大器数量的2倍,请给出最省钱的购买方案,并说明理由.21.(9分)某跳台滑雪运动员进行比赛,起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,已知标准台的高度OA为66m,当运动员在距标准台水平距离25m处达到最高,最高点距地面76m,建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x﹣h)2+k.其中x(m)是运动员距标准台的水平距离,y(m)是运动员距地面的高度.(2)已知着陆坡上有一基准点K,且K到标准台的水平距离为75m,高度为21m.判断该运动员的落地点能否超过K点,并说明理由.22.(10分)如图,△ABC为⊙O的内接三角形,其中AB为⊙O的直径,且AC=3,BC=4.(1)尺规作图:分别以B、C为圆心,大于长为半径画弧,在BC的两侧分别相交于P、Q两点,画直线PQ交BC于点D,交劣弧于点E,连接CE;(2)追根溯源:由所学知识可知,点O(填“在”或“在”)直线PQ上;(3)数据运算:在(1)所作的图形中,求点O到BC的距离及∠DCE的余弦值.23.(10分)在△ABC中,AB=AC,∠BAC=α,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,连接DB,DC.(1)如图1,当α=60°时;PA与DC的数量关系为;∠DCP的度数为;(2)如图2,当α=120°时,请问(1)中PA与DC的数量关系还成立吗?∠DCP的度数呢?说明你的理由.(3)当α=120°时,若,请直接写出点D到CP的距离.2023年河南省中考数学模拟试卷(经典三)参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的。
2024年河南省中考数学模拟试卷临考试题
![2024年河南省中考数学模拟试卷临考试题](https://img.taocdn.com/s3/m/5930fe15f6ec4afe04a1b0717fd5360cbb1a8d1f.png)
2024年河南省中考数学模拟试卷临考试题一、单选题1.下列式子的化简结果得5的是( )A .(5)-+B .(5)--C .(5)+-D .5--2.如图是某个几何体的左视图,则这个几何体不可能是( )A .B .C .D .3.华为Mate20系列搭载了麒麟980芯片,这个被华为称之为全球首个7纳米工艺的AI 芯片,拥有8个全球第一,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( )A .7710-⨯B .0.710⨯-8C .8710-⨯D .9710-⨯ 4.将一副三角板按如图放置,其中45B C ∠==︒∠,60D ∠=︒,30E ∠=︒,如果150CAD ∠=︒,则4∠=( )A .75︒B .80︒C .60︒D .65︒5.如图,已知直线12y x =+与221y x =--相交于点()1,1P -,则关于x 的不等式12y y >的解集在数轴上表示正确的是()A.B.C.D.6.如图是一块正方形草地,要在上面修建两条交叉的小路,使得这两条小路将草地分成的四部分面积相等,修路的方法有()A.1种B.2种C.4种D.无数种7.若关于x的一元二次方程220-+=没有实数根,则k的值可以是()x x kA.2 B.1 C.0 D.1-8.甲、乙两种物质的溶解度y(g)与温度t(℃)之间的对应关系如图所示,下列说法:①甲、乙两种物质的溶解度都随着温度的升高而增大;②当温度升高至t℃时,甲的溶解度2比乙的溶解度小;③当温度为0℃时,甲、乙的溶解度都小于20g;④当温度为30℃时,甲、乙的溶解度相同.其中正确结论的序号是()A.①②B.①③C.①③④D.②④9.如图,点),A a 是反比例函数k y x=的图象与O e 的一个交点,图中阴影部分的面积为4π,则反比例函数的解析式为( )A .2y x =B .yC .4y x =D .y =10.如图,在ABC V 中,90C ∠=︒,4cm BC =,5cm AB =,点 P 从点A 出发,沿AC 向点C 以1cm/s 的速度运动,同时点 Q 从点C 出发,沿CB 向点B 以2cm/s 的速度运动(当点 Q 运动到点 B 时,点 P ,Q 同时停止运动).在运动过程中,四边形PABQ 的面积最小为( )A .215cm 2B .29cm 2C .2154cmD .29cm 4二、填空题11.如果水位上升10米记作10+米,那么水位下降6米记作米.12.不等式组210353x x x x ≥-⎧⎨+>⎩的整数解个数为. 13.某居民小区共有300户家庭,有关部门对该小区的自来水管网系统进行改造,为此该部门通过随机抽样,调查了其中20户家庭,统计了这20户家庭的月用水量,如下表:根据上述数据,估计该小区300户家庭的月总用水量约为m 3.14.《九章算术》中有这样一个题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?”其译文是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱.现有30钱,买得2斗酒.问醇酒、行酒各能买得多少?设醇酒为x 斗,行酒为y 斗,则可列二元一次方程组为.15.如图所示,在ABC V 中,45A B ∠=∠=︒,16AB =,EF 是ABC V 的中位线,D 是边AB 上一点,2AD =,P 是线段DB 上的一个动点,连接EP ,DF 相交于点O .若DOP △是直角三角形,则OE 的长是.三、解答题16.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简. 过程如图所示:(1)接力中,自己负责的一步出现错误的同学是_________;(2)请你书写正确的化简过程,并在“1-,0,1”中选择一个合适的数代入求值.17.某校举行“汉字听写大赛”,九年级A ,B 两班学生的成绩情况如下:【信息一】九A 班40名学生成绩的频数直方图如下(每一组含前一个边界值,不含后一个边界值):【信息二】上图中,从左到右第4组成绩如下:【信息三】九年级A,B两班各40名学生成绩的平均数、中位数、众数、优秀率(135分及以上为优秀)、方差等数据如下(部分空缺):根据以上信息,回答下列问题:(1)九A班40名学生成绩的中位数为______分;(2)求从A,B两班共80人中随机抽取一人成绩为优秀的概率;(3)请你选择适合的统计量,尽量从多个角度,综合阐述哪个班级的整体水平较高.18.如图,△ABC内接于⊙O,AB是⊙O的直径,过点A作AD平分∠BAC,交⊙O于点D,过点D作DE∥BC交AC的延长线于点E.(1)依据题意,补全图形(尺规作图,保留痕迹);(2)判断并证明:直线DE与⊙O的位置关系;(3)若AB =10,BC =8,求CE 的长.19.水龙头关闭不严会造成滴水,为了调查漏水量与漏水时间的关系,某兴趣小组进行以下试验与探究:试验:在滴水的水龙头下放置一个能显示水量的容器量筒,每5min 记录一次容器中的水量,但由于操作延误,开始计时的时候量筒中已经有少量水,因而得到如下表中的一组数据.(1)探究:根据上表中的数据,请判断()110k y k t ≠=和 2y k t b =+(20k ≠,2k 为常数)哪个解析式能准确的反映水量y 与时间t 的函数关系?求出该解析式并写出漏记的a 值;(2)应用:①兴趣小组用100mL 量筒进行测量,请估计在第30分钟量筒是否滴满?②成年人每天大约需饮水1600mL ,请估算这个水龙头一个月(按30天计)的漏水量可供一位成年人饮用天数.20.桔槔俗称“吊杆”“称杆”(如图1),是我国古代农用工具,始见于《墨子•备城门》,是一种利用杠杆原理的取水机械.如图2所示的是桔槔示意图,OM 是垂直于水平地面的支撑杆,3OM =米,AB 是杠杆,且6AB =米,:2:1OA OB =.当点A 位于最高点时,127AOM ∠=︒.(1)求点A 位于最高点时到地面的距离;(2)当点A 从最高点逆时针旋转54.5︒到达最低点1A 时,求此时水桶B 上升的高度.(参考数据:sin370.6sin17.50.3tan370.8︒≈︒≈︒≈,,)21.为有效落实双减工作,切实做到减负提质,很多学校决定在课后看护中增加乒乓球项目.体育用品商店得知后,第一次用900元购进乒乓球若干盒,第二次又用900元购进该款乒乓球,但这次每盒的进价是第一次进价的1.2倍,购进数量比第一次少了30盒.(1)求第一次每盒乒乓球的进价是多少元?(2)若要求这两次购进的乒乓球按同一价格全部销售完后获利不低于510元,则每盒乒乓球的售价至少是多少元?22.如图,小静和小林在玩沙包游戏,沙包(看成点)抛出后,在空中的运动轨迹可看作抛物线的一部分,小静和小林分别站在点O 和点A 处,测得OA 距离为6m ,若以点O 为原点,OA 所在直线为x 轴,建立如图所示的平面直角坐标系,小林在距离地面1m 的B 处将沙包抛出,其运动轨迹为抛物线1C :()232y a x =-+的一部分,小静恰在点()0,C c 处接住,然后跳起将沙包回传,其运动轨迹为抛物线2C :21188n y x x c =-+++的一部分.(1)抛物线1C 的最高点坐标为______;(2)求a ,c 的值;(3)小林在x 轴上方1m 的高度上,且到点A 水平距离不超过1m 的范围内可以接到沙包,若小林成功接到小静的回传沙包,则n 的整数值可为______.23.问题探究:将几何图形按照某种法则或规则变换成另一种几何图形的过程叫做几何变换.旋转变换是几何变换的一种基本模型.经过旋转,往往能使图形的几何性质明白显现,题设和结论中的元素由分散变为集中,相互之间的关系清楚明了,从而将求解问题灵活转化.问题提出:如图1,ABC V 是边长为1的等边三角形,P 为ABC 内部一点,连接PA 、PB 、PC ,求PA PB PC ++的最小值.问题解决:如图2,将BPA △绕点B 逆时针旋转60︒至BP A ''△,连接PP '、A C ',记A C '与AB 交于点D ,易知1BA BA BC '===,120A BC A BA ABC ''∠=∠+∠=︒,由BP BP '=,60P BP '∠=︒,可知P BP '△为等边三角形,有PB P P '=.故PA PB PC PAPP PC AC ++=++'≥''',因此,当A '、P '、P 、C 共线时,PA PB PC ++有最小值是______. 学以致用:如图3,P 是边长为3的正方形ABCD 内一点,Q 为边BC 上一点,连接PA 、PD 、PO ,求PA PD PQ ++的最小值.。
2024年河南省中考数学模拟试题(八)
![2024年河南省中考数学模拟试题(八)](https://img.taocdn.com/s3/m/8540f851773231126edb6f1aff00bed5b9f373b9.png)
2024年河南省中考数学模拟试题(八)一、单选题1.有理数27-的绝对值是( )A .27B .72C .27-D .72-2.2012年11月23日飞行员戴明盟驾驶国产第一代舰载机歼-15(绰号:飞鲨)在辽宁号航空母舰甲板上首降成功.小明想了解该机的翼展长度(指机翼左右翼尖之间的距离),可以选择以下哪些视图进行测量( )A .主(或左)视图B .主(或俯)视图C .左(或俯)视图D .左视图3.如图,AB CD P ,CF 平分ACD ∠,交AB 于点E ,若150AEF ∠=︒,则A ∠的度数为( )A .120︒B .130︒C .140︒D .150︒4.下列计算正确的是( ) A .22(3)9x x -=- B .27512x x x +=C .22(3)69x x x -=-+D .22(2)(2)4x y x y x y -+=+5.如图,AB ,AC 是O e 的弦,OB ,OC 是O e 的半径,点P 为OB 上任意一点(点P 不与点B 重合),连接CP .若70BAC ∠=︒,则BPC ∠的度数可能是( )A .70︒B .105︒C .125︒D .155︒6.宋·苏轼《赤壁赋》:“寄蜉蝣于天地,渺沧海之一粟.”比喻非常渺小,据测量,200粒粟的重量大约为1克,用科学记数法表示一粒粟的重量约为( ) A .2210⨯克B .2210-⨯克C .2510-⨯克D .3510-⨯克7.关于x 的方程2441x x -=-的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .只有一个实数根D .无实数根8.春节是中华民族的传统节日,在春节期间,全国各地都会举行各种贺岁活动,有剪窗花、贴春联、挂灯笼放鞭炮包饺子等,种类丰富多样.今年春节临近,姐姐和妹妹计划在除夕这天帮爸爸妈妈一-起准备迎接新年的到来;姐姐在四张完全相同的纸条上分别写上剪窗花、贴春联、挂灯笼、包饺子,然后将四张纸条分别揉成团,装在一个不透明的袋子里,摇匀后,妹妹先从这四个纸团中随机抓取一个,不放回,再从剩下的三个纸团中随机抓取一个,妹妹抓取的纸团恰好是贴春联和包饺子的概率是( ) A .112 B .16C .14D .139.如图,在平面直角坐标系中,OAB V 的顶点为(0,0),(4,3),(3,0)O A B ,以点O 为位似中心,在第三象限内得到与OAB V的位似比为13的位似图形OCD V ,则点C 的坐标为( )A .()1,1--B .4,13⎛⎫-- ⎪⎝⎭C .41,3⎛⎫- ⎪⎝⎭D .()2,1--10.如图1,在矩形ABCD 中,点P 从点A 出发,沿折线A D C --向点C 匀速运动,过点P 作对角线AC 的垂线,交矩形ABCD 的边于点Q .设点P 运动的路程为x ,AQ 的长为y ,其中y 关于x 的函数图象大致如图2所示,则m 的值为( )A .4B .C .8D .二、填空题11.某地冬季一天的温差是15℃,这天最低气温是t ℃,则最高温度是℃.12.如图,数学课代表用折线统计图呈现了A 、B 两名同学最近5次的数学成绩,由统计图可知,同学的进步大.13.若关于x 的一元一次不等式组32(3)x x x a>+⎧⎨>⎩的解集为6x >,且关于y 的分式方程3133y a y y -=+--的解是非负整数,则所有满足条件的整数a 的值之和是. 14.如图,在Rt △ABC 中,∠A=90°,∠C=30°,AB=3,以点A 为圆心,AB 的长为半径画弧,分别交BC ,AC 于点E ,D ,则图中阴影部分的周长是.15.若一个三角形的三边长之比为3:4:5,则称这个三角形为“勾股三角形”,如图,在矩形ABCD 中,12AD =,点G 在边DC 上,将ADG △沿AG 所在直线折叠,得到AD G '△,再将AD G '△沿过点A 的直线折叠,使AD '与AG 重合,点D ¢的对应点为点E ,折痕与D G '交于点F ,若GEF △是“勾股三角形”,则AF 的长为.三、解答题16.(1)计算:(114cos3013-⎛⎫︒+ ⎪⎝⎭;(2)化简:21212a a a a a ++⎛⎫-÷ ⎪⎝⎭.17.跳绳是普及性很好的体育运动项目,在我国有着非常悠久的历史,这种运动唐朝称“透索”,宋称“跳索”,明称“跳百索”、“跳白索”、“跳马索”,清称“绳飞”,清末以后称作“跳绳”,某中学把跳绳作为学校特色体育运动项目之一.2023年4月份,为了了解八年级学生每分钟跳绳次数,该校随机抽取了八年级50名学生,进行一分钟跳绳测试,并将测试成绩(满分为10分)进行整理,绘制了如下统计表. 调查结果统计表①调查结果统计表②根据以上信息解答下列问题:(1)在这次测试中,成绩的众数是______分;(2)参与测试的学生中获得良好及以上等级的学生占测试人数的百分比是______; (3)王莉参加了这次跳绳测试,跳绳次数是155次,本次测试学生中比她的跳绳次数少的是_____人;(4)请对本次测试成绩进行合理的评价.18.某学校的教学楼选用一些简单大方的几何图案,对楼道拐角处墙壁进行了装饰,如图1就是一个简单案例.张老师对同学们说:图1中有一些有趣的几何关系.并在图1的基础上设计了如下的数学问题,请你完成作答:如图2,在Rt ABC △中,90ACB ∠=︒,点D 在边AC 上(不与点C 重合),以CD 为直径作O e ,交BD 于点E ,连接CE .(1)尺规作图:作边BC 的垂直平分线l ,交BC 于点F ;(要求:不写作法,保留作图痕迹,使用2B 铅笔)(2)连接EF EF ,是O e 的切线吗?请说明理由.19.鹤壁市玄天洞石塔,原名玲珑塔,始建于元朝,重建于明代,是河南省现存最大的一座楼阁式石塔,也是中原地区保存最完整的大型青石塔.此塔坐东朝西,为九级重檐平面四角楼阁式建筑,塔身自下而上逐层收敛.某数学社团打算运用“解直角三角形”的知识来计算玲珑塔的高度AB ,如图,先将无人机竖直上升至30m 高的点P 处,在点P 处测得玲珑塔顶端A 的俯角为25︒,将无人机沿水平方向继续飞行7.5m 到达点Q ,在点Q 处测得塔底端B 的俯角为45︒.求玲珑塔的高度AB .(结果保留一位小数.参考数据:1.41,sin250.42,cos250.91,tan250.47≈≈︒≈︒≈︒)20.如图,平行于y 轴的直尺(一部分)与双曲线()0ky x x=>交于点A 和C ,与x 轴交于点B和D ,点A 和B 的刻度分别为5cm 和2cm ,直尺的宽度为2cm ,2cm OB =(注:平面直角坐标系内一个单位长度为1cm ).(1)求反比例函数解析式;(2)若经过A ,C 两点的直线关系式为y mx b =+,请直接写出不等式0kmx b x+-<的解集; (3)求梯形ABCD 的面积.21.某商家在购进一款产品时,由于运输成本及产品成本的提高,该产品第x 天的成本y (元/件)与x (天)之间的关系如图所示,并连续50天均以80元/件的价格出售,第x 天该产品的销售量z (件)与x (天)满足关系式10z x =+.(1)第5天,该商家获得的利润是________元;第40天,该商家获得的利润是________元; (2)设第x 天该商家出售该产品的利润为w 元.①求w 与x 之间的函数关系式,并指出第几天的利润最大,最大利润是多少?②在出售该产品的过程中,当天利润不低于1125元的共有________天?(直接填写结果) 22.鹰眼技术助力杭州亚运,提升球迷观赛体验.如图分别为足球比赛中某一时刻的鹰眼系统预测画面(如图1)和截面示意图(如图2),攻球员位于点O ,守门员位于点A ,OA 的延长线与球门线交于点B ,且点A ,B 均在足球轨迹正下方,足球的飞行轨迹可看成抛物线.水平距离s 与离地高度h 的鹰眼数据如表:(1)根据表中数据预测足球落地时,s =______m ; (2)求h 关于s 的函数解析式;(3)当守门员位于足球正下方,足球离地高度不大于守门员的最大防守高度2.6m 时,视为防守成功,若一次防守中,守门员位于足球正下方时,24m s =,请问这次守门员能否防守成功?试通过计算说明. 23.综合与实践 【问题发现】在学习了“特殊的四边形”后,数学兴趣小组的同学发现了这样一个问题:如图1,已知正方形,ABCD E 为对角线AC 上一动点,过点C 作垂直于AC 的射线CG ,点F 在射线CG 上,且90EBF ∠=︒,连接EF .通过观察图形,数学兴趣小组的同学进行了如下猜想: 猜想①:BE BF =; 猜想②:AE CF =;猜想③:点E 在AC 上运动的过程中,四边形BECF 的面积不变. 根据上述猜想,兴趣小组的同学进行了证明,过程如下:Q 四边形ABCD 是正方形,,90,45AB CB ABC BAE BCE ∴=∠=︒∠=∠=︒,90EBF ∠=︒Q ,90ABC EBF ∴∠=∠=︒,即90ABE EBC EBC CBF ∠+∠=∠+∠=︒.ABE CBF ∴∠=∠.,90AC CG ECF ⊥∴∠=︒Q .又45BCE ∠=︒Q ,45BCF BAE ∴∠=︒=∠.ABE CBF ∴△≌△(依据:________). ……(1)上述证明过程中的依据是________,上述猜想中正确的有________(填序号). 【类比探究】(2)兴趣小组的同学在探究了正方形中的结论后,将正方形换成矩形继续探究. 如图2,已知矩形ABCD ,30BAC ∠=︒,E 为对角线AC 上一动点,过点C 作垂直于AC 的射线CG ,点F 在射线CG 上,且90EBF ∠=︒,连接EF . ①请判断线段AE 与CF 的数量关系,并说明理由.②点E 在AC 上运动时,四边形BECF 的面积是否改变?________.(填“不变”或“改变”) 【拓展应用】(3)在(2)的条件下,若6AB =,点E 在AC 上运动,当四边形BECF 为轴对称图形时,请直接写出线段BF 的长.。
河南省中考数学模拟测试卷-附参考答案与解析
![河南省中考数学模拟测试卷-附参考答案与解析](https://img.taocdn.com/s3/m/79efa3045b8102d276a20029bd64783e09127d91.png)
河南省中考数学模拟测试卷-附参考答案与解析一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中选出符合题目的一项)1. −3的绝对值是( )C. 3D. ±3A. −3B. −132. 2023年3月30日郑州市人民公园第二十六届郁金香花展盛大开幕,据了解,本次花展共展出郁金香31个品种10万余株,采取全园分布,让游人闻着浓郁的花香,漫步于花田小径间,体验“人在花中走,如在画中游”的美妙感受.数据“10万”用科学记数法表示为( )A. 10×104B. 10×105C. 1×104D. 1×1053. 郑州是华夏文明的重要发祥地,是三皇五帝活动的腹地,是中华文明的轴心区,市政府开展了“游郑州知华夏”活动.将这六个汉字分别写在某正方体的表面上,如图是它的一种展开图,则在原正方体中与“郑”字所在面相对的面上的汉字是( )A. 知B. 华C. 夏D. 游4. 某校开展了丰富多彩的学雷锋志愿服务活动,为了了解同学们所做志愿者服务活动的情况,数学兴趣小组的同学在全校范围内随机抽查了部分同学,将收集的数据绘制成了如图所示的扇形统计图,若该校有2000名学生,则参加爱心捐助活动的学生人数为( )A. 200B. 300C. 400D. 5005. 如图,一副三角尺按如图所示的方式放置,若AB//CD,则∠α的度数为( )A. 75°B. 90°C. 105°D. 120°6. 一元二次方程x2−2x+3=0的根的情况为( )A. 有两个相等的实数根B. 有两个不相等的实数根C. 没有实数根D. 只有一个实数根7. 凸透镜成像的原理如图所示,AG//l//HC.若缩小的实像是物体的23,则物体到焦点F1的距离与焦点F2到凸透镜的中心线GH的距离之比为(焦点F1和F2关于O点对称)( )A. 32B. 23C. 2D. 128. 如图,已知点A(2,a)在反比例函数y1=4√ 3x的图象上,过点A作AB⊥x轴,垂足为B,连接OA,将△AOB沿OA翻折,点B的对应点B′恰好落在y2=kx(k≠0)的图象上,则k的值为( )A. √ 3B. −√ 3C. 2√ 3D. −2√ 39. 如图,在平面直角坐标系中边长为2的等边三角形AOP在第二象限,OA与x轴重合,将△AOP绕点O顺时针旋转60°,得到△A1OP1,再作△A1OP1关于原点O的中心对称图形,得到△A2OP2,再将△A2OP2绕点O顺时针旋转60°,得到△A3OP3,再作△A3OP3关于原点O的中心对称图形,得到△A4OP4,以此类推⋯⋯,则点P2023的坐标是( )A. (1,√ 3)B. (−1,−√ 3)C. (2,0)D. (−2,0)10. 已知抛物线y=x2−2mx+m2−9(m为常数)与x轴交于点A,B点P(m+1,y1),Q(m−3,y2)为抛物线上的两点,则下列说法不正确的是( )A. y有最小值为m2−9B. 线段AB的长为6C. 当x<m−1时,则y随x的增大而减小D. y1<y2二、填空题(本大题共5小题,共15.0分)11. 写出一个比0大且比3小的无理数:______ .12. 方程3x+2−1x=0的解为______ .13. 对一批运动鞋进行抽检,统计合格的运动鞋的数量,得到合格运动鞋的频数表如下:抽取双数(双)20406080100200300合格频数1738557596189286合格频率0.850.950.920.940.960.950.95估计出厂的1500双运动鞋中次品大约有______ 双.14. 某校无人机社团的同学用无人机测量学校旗杆的高度,组员操作无人机飞至离地面高度为25米的A处时,则测得旗杆BC的顶端B的俯角为45°,然后操控无人机水平方向飞行20米至旗杆另一侧D处时,则测得旗杆BC的顶端B的俯角为30°,已知A,B、C、D在同一平面内,则旗杆的高度为______ 米.15. 黄金分割比是让无数科学家、数学家、艺术家为之着迷的数字.黄金矩形的长宽之比为黄金分割比,即矩形的短边为长边的√ 5−12倍.黄金分割比能够给画面带来美感,令人愉悦,在很多艺术品以及大自然中都能找到它.比如蜗牛壳的螺旋中就隐藏了黄金分割比.如图,用黄金矩形ABCD框住整个蜗牛壳,之后作正方形ABFE,得到黄金矩形CDEF,再作正方形DEGH,得到黄金矩形CFGH……,这样作下去,我们以每个小正方形边长为半径画弧线,然后连接起来,就是黄金螺旋.已知AB=√ 5+12,则阴影部分的面积为______ .三、解答题(本大题共8小题,共75.0分。
河南省郑州市2024年中考模拟数学试题(含答案)
![河南省郑州市2024年中考模拟数学试题(含答案)](https://img.taocdn.com/s3/m/94fcd91fe55c3b3567ec102de2bd960590c6d9b9.png)
郑州市名校中考模拟数学注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟。
2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上。
答在试卷上的答案无效。
一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个正确的.1.在0、3-、13-、3这四个数中,最小的数是………………………………()A .0B .3-C .13-D .32.如图是由长方体和圆柱体组成的几何体,则它的左视图是……………()A B C D 3.全国深入践行习近平生态文明思想,科学开展大规模国土绿化行动,厚植美丽中国亮丽底色,去年完成造林约3830000公顷、用科学记数法表示3830000是()A .63.8310⨯B .60.38310⨯C .73.8310⨯D .70.38310⨯4.如图,已知AB CD ,将一块直角三角板按如图的位置放置,使直角顶点E 在直线CD 上,若130∠=︒,则2∠的度数为…………………………………………()第4题图第6题图A .60︒B .50︒C .40︒D .30︒5.化简2111m m m -⋅+的结果为…………………………………………………()A .1m m +B .11m m -+C .1m m -D .1m m +6.如图,四边形ABCD 内接于O ,AB 是O 的直径,点E 在O 上,且125ADC ∠=︒,则BEC ∠的度数是……………………………………………………………()A .25︒B .55︒C .45︒D .35︒7.已知关于x 的一元二次方程21202402024x mx --=,则该一元二次方程的根的情况是………………………………………………………………………………()A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根8.“花花牛”和“生生”是河南两大牛奶品牌.现有4盒两种品牌的牛奶,其中2盒“花花牛”,2盒“生生”,随机抽取2盒,至少有一盒是“花花牛”的概率是…()A .12B .23C .34D .569.如图,等边ABC 的边长为2cm ,点P 从点A 出发,以1cm /s 的速度沿AC 向点C 运动,到达点C 停止;同时点Q 从点A 出发,以2cm /s 的速度沿AB BC-向点C 运动,到达点C 停止,设APQ △的面积为()2cm y ,运动时间为()s x ,则下列最能反映y 与x 之间函数关系的图象是……………………………………………………………()A B C D 10.如图,点E 是边长为8的正方形ABCD 的边CD 上一动点,连接AE ,将线段AE 绕点E 逆时针旋转90︒到线段EF ,连接AF ,BF ,AF 交边BC 于点G ,连接EG ,当AF BF+取最小值时,线段EG 的长为…………………………………………………()A .B .7C .9D .203二、填空题(每小题3分,共15分)11.学校购买了一批文具,共a 套,每套有b 本笔记本,将这批文具的一半捐给贫困地区的学生,捐出的笔记本有本.12.已知二元一次方程组325234a b a b +=⎧⎨+=⎩,则a b -=.13.为了调查某校5000名学生对“中国梦”的了解程度,随机抽取部分学生进行调查,并结合数据作出如图的扇形统计图.根据统计图提供的信息,估计该校“不太了解”的学生共有名.第14题图第15题图14.如图所示,点P 为O 外一点,过点P 作O 的切线PA ,PB ,点A ,B 为切点,连接AO 并延长,交PB 的延长线于点C ,过点C 作CD PO ⊥,交PO 的延长线于点.D 已知6PA =,8AC =,则OC 的长为.15.如图,正方形ABCD 的边长为8,点E 为BC 边上一点,且2BE =,点F 为AB 边上的中点,连接EF ,以EF 为一条直角边向右侧作等腰Rt EGF ,且使90EFG ∠=︒,连接CG ,则CG 的长是.三、解答题(本大题共8小题,共75分)16.(1)(5分)计算:1113-⎛⎫--+-- ⎪⎝⎭(2)(5分)化简:211x x x -++17.(9分)在2023年国际数学日当天,甲、乙两所学校联合举办九年级数学知识竞赛.为了解两校学生的答题情况,从中各随机抽取20名学生的得分,并对这些数据进行整理、描述和分析,下面给出部分信息.【信息1】两校学生得分的数据的频数分布直方图如下图所示:(数据分成4组:2040x ≤<,4060x ≤<,6080x ≤<,80100x ≤≤)【信息2】其中乙校学生得分在6080x ≤<这一组的数据如下:6868707373747676777879【信息3】两组样本数据的平均数、中位数如上表所示:根据所给信息,解答下列问题:(1)写出表中m 的值:m =______.(2)一名学生的成绩为70分,在他所在的学校,他的成绩超过了一半以上被抽取的学生,他是哪所学校的学生?请说明理由;(3)在这次数学知识竞赛中,你认为哪所学校的学生表现较好,为什么?18.(9分)如图,在Rt ABC △中,90ACB CD AB ∠=︒⊥,于点D .(1)尺规作图:作ACD ∠的平分线交AB 边于点E .(保留作图痕迹,不写作法,标明字母)(2)试猜想线段BE 与BC 之间的数量关系,并加以证明.19.(9分)如图,已知直线:4l y x =+与反比例函数(0)k y x x =<的图象交于点(1,)A n -,直线l '经过点A ,且与l 关于直线=1x -对称.(1)求反比例函数的解析式;(2)求图中阴影部分的面积.(3)已知直线:4l y x =+与反比例函数(0)k y x x=<的图象交于点另一点B ,P 在在平面内,若以点A ,B ,P ,O 为顶点的四边形是平行四边形,请直接写出所有符合条件点P 的坐标.20.(9分)城市规划期间,欲拆除一电线杆AB ,如图,已知距电线杆AB 的水平距离14m 的D 处有一大坝,背水坡CD 的坡度1:0.5i =,坝高CF 为2m ,在坝顶点C 处测得电线杆顶点A 的仰角为30︒,DE 之间是宽为2m 的行人道,试问在拆除电线杆AB 时,为确保行人安全,是否需要将此人行道封上?(提示:在地面上,以点B 为圆心,以AB 为半径的圆形区域为危险区域)(参考数据:3 1.73≈)学校平均数中位数甲校68.3571乙校68.35m21.(9分)“洛阳地脉花最宜,牡丹尤为天下奇.”河南洛阳被称为牡丹之乡,每年,月份吸引着数万名游客前来观赏.洛阳市政府组织园林科技人员改良栽培技术,开展新品种培育,其中有A ,B 两种新品种牡丹,培育5棵A 品种牡丹,6棵B 品种牡丹需要900元,已知培育一棵A 品种牡丹比培育一棵B 品种牡丹少用40元.(1)培育每棵A 品种牡丹和每棵B 品种牡丹各需要多少元?(2)今年计划培育A ,B 两种牡丹共600棵,A 品种牡丹的数量不超过B 品种牡丹数量的3倍,其中培育A 品种牡丹x 棵,培育A ,B 两品种牡丹的总费用为y 元,求y 与x 的函数关系式及总费用的最值.(3)园林科技人员在培育过程中,A ,B 两种牡丹的成活率分别为80%和90%.今年计划培育A ,B 两种牡丹共600棵;要使这两种牡丹的总成活率不低于85%,至少应投入多少钱?请说明.22.(10分)随着社会的进步,科技的力量已融入到我们生活的方方面面.为提高校学生足球队的技术水平,数学兴趣小组对某一主力球员的射门能力进行了大量的测试,并对采集的数据进行汇总分析,得出如下结论:如图所示,该球员在离球门O 点18米远的B 处时将球踢出,球在离他10米远的A 处上升到最大高度为4米.据实验测算,足球在空中运行的路线是一条抛物线.(1)求该抛物线的解析式;(2)已知球门的高为2.44米(球门的上沿离地面的距离),请你帮忙计算一下,该球员要想一次性射门成功,他应该在离球门多远的范围内将球踢出.(答案精确到0.1米,6.2≈)23.(10分)综合与实践(1)【问题提出】如图1,在Rt ABC △中,90ACB ∠=︒,AC BC =,点D 为斜边AB 上一点,连接CD 并延长到点E ,使得DE DC =,过点E 作EF AB ⊥于点F .则AC 与EF 的数量关系为______.(2)【拓展应用】如图2,在ABC 中,5AC BC k ==,8AB k =,点D 为AB 边上一点,连接CD 并延长到点E ,使得12DE CD =,过点E 作EF AB ⊥,交直线AB 于点F①当点D ,F 位于点A 异侧时,写出AC ,AD ,DF 之间的数量关系,并说明理由;②当点D ,F 位于点A 同侧时,若6AD =,1DF =,请直接写出AC 的长.。
2024年河南省洛阳市中考数学质检模拟预测题(解析版)
![2024年河南省洛阳市中考数学质检模拟预测题(解析版)](https://img.taocdn.com/s3/m/a007f54578563c1ec5da50e2524de518974bd35a.png)
2024年河南省洛阳市中考数学质检试卷一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的选项中,只有一项是符合题目要求的.1. 下列实数:,0,,其中最小的是( )A. B. 0 C.D. 【答案】A 【解析】【分析】根据实数大小比较的法则解答.【详解】解:∵,∴最小的数是,故选:A .【点睛】此题考查了实数的大小比较:正数大于零,零大于负数,两个负数绝对值大的反而小,熟练掌握实数的大小比较法则是解题的关键.2. 下列运算正确的是( )A. B. C. D. 【答案】D 【解析】【分析】按照积的乘方运算、完全平方公式、幂的乘方、平方差公式分别计算,再选择.【详解】,故选项A 不合题意;,故选项B 不合题意;,故选项C 不合题意;,故选项D 符合题意.故选D .【点睛】此题考查整式的运算,掌握各运算法则是关键,还要注意符号的处理.3. 数据显示,中国已实现“带动三亿人参与冰雪运动”的目标,全国冰雪运动参与人数达到3.46亿人.数1-12-1-12-1102-<-<<1-()2224a a -=-()222a b a b +=+()257a a =()()2224a a a -+--=-22(2)4a a -=222()2ab a ab b +=++5210()a a =22(24)()a a a -+--=-据“3.46亿”用科学记数法表示是()A. B. C. D. 【答案】B 【解析】【分析】根据科学记数法的定义即可得.【详解】3.46亿=故选:B .【点睛】本题考查了科学记数法,熟记科学记数法定义(将一个数表示成的形式,其中,为整数,这种记数的方法叫做科学记数法)是解题关键.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.4. 如图,直线,相交于点,,垂足为点.若,则的度数为( )A. B.C. D. 【答案】B 【解析】【分析】已知,,根据邻补角定义即可求出的度数.【详解】∵∴∵∴故选:B【点睛】本题考查了垂直的性质,两条直线垂直,形成的夹角是直角;利用邻补角的性质求角的度数,平角度数为180°.5. 如果,那么代数式的值是( )的93.4610⨯83.4610⨯734.610⨯634610⨯8346000000 3.4610=⨯10n a ⨯110a ≤<n n a n AB CD O OE CD ⊥O 40BOE ∠=︒AOC ∠40︒50︒60︒140︒OE CD ⊥40BOE ∠=︒AOC ∠OE CD ⊥90COE ∠=︒40BOE ∠=︒180°180904050AOC COE EOB ∠=-∠-∠=︒-︒-︒=︒2210a a +-=224a a a a ⎛⎫⋅ ⎪-⎝⎭-A. B. C. 1 D. 3【答案】C 【解析】【分析】先将等式变形可得,然后根据分式各个运算法则化简,最后利用整体代入法求值即可.【详解】解:∵∴=====1故选C .【点睛】此题考查的是分式的化简求值题,掌握分式的运算法则是解决此题的关键.6. 如图,是半圆的直径,,是上两点,连接,并延长交于点,连接,,如果,那么的度数为( )A. B. C. D. 【答案】C 【解析】【分析】连接CD ,由圆周角定理得出∠BDC=90°,求出∠ACD=90°-∠A=20°,再由圆周角定理得出∠DOE=2∠ACD=40°即可,3-1-221a a +=2210a a +-=221a a +=224a a a a ⎛⎫⋅⎪-⎝⎭-2242a a a a -⋅-()()2222a a aa a ⋅+--()2a a +22a a +BC O D E BCBD CE A OD OE 70A ∠︒=DOE ∠35︒38︒40︒42︒【详解】连接CD ,如图所示:∵BC 是半圆O 的直径,∴∠BDC=90°,∴∠ADC=90°,∴∠ACD=90°-∠A=20°,∴∠DOE=2∠ACD=40°,故选C .【点睛】本题考查了圆周角定理、直角三角形的性质;熟练掌握圆周角定理是解题的关键.7. 若关于的一元二次方程有两个实数根,则的取值范围是()A. B. C. 且 D. 且【答案】A 【解析】【分析】本题主要考查一元二次方程根的判别式,掌握,方程有两个实根是解题的关键,由此即可求解.【详解】解:根据题意,,∴,故选:.8. “二十四节气”是中华上古农耕文明的智慧结晶,被国际气象界普为“中国第五大发明”,小文购买了“二十四节气”主题邮票,他要将“立春”“立夏”“秋分”“大暑”四张邮票中的两张送给好朋友小乐.小文将它们背面朝上放在桌面上(邮票背面完全相同),让小乐从中随机抽取一张(不放回),再从中随机抽取一张,则小乐抽到的两张邮票恰好是“立春”和“立夏”的概率是()x 210x x k ++-=k 54k ≤54k >54k <1k ≠54k ≤1k ≠240b ac ∆=-≥()214110k ∆=-⨯⨯-≥54k ≤AA.B.C.D.【答案】C 【解析】【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【详解】解:将“立春”、“立夏”、“秋分”、“大暑”的图片分别记为A 、B 、C 、D .根据题意,列表如下:AB C D A (A ,B )(A ,C )(A ,D )B (B ,A )(B ,C )(B ,D )C (C,A)(C ,B )(C ,D )D(D ,A )(D ,B )(D ,C )由表格可知,共有12种等可能的结果,其中抽到的两张卡片恰好是“立春”和“立夏”的结果有2种,故其概率为:.故选:C .【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.9. 已知二次函数的图象如图所示,则一次函数的图象和反比例函数的图象在同一坐标系中大致为()2312161821126=2y ax bx c =++y bx c =+a b cy x-+=A. B. C. D.【答案】A 【解析】【分析】本题考查了二次函数的图象与性质、一次函数的图象与性质以及反比例函数的图象与性质,先通过二次函数的图象确定、、的正负,再利用代入解析式,得到的正负即可判定两个函数的图象所在的象限,即可得出正确选项.详解】解:由图象可知:图象开口向下,对称轴位于轴左侧,与轴正半轴交于一点,可得:又由于当时,因此一次函数的图像经过一、二、四三个象限,反比例函数的图像位于一、三象限;故选:A .10. 如图,点从四条边都相等的的顶点出发,沿以的速度匀速运动到点,图是点运动时,的面积随时间变化的关系图象,则的值为( )A.B. C.D. 【答案】C 【解析】【分析】本题综合考查了性质,动点问题的函数图象,勾股定理,解答过程中要注意函数图象变化与动点位置之间的关系.通过分析图象,点从点到用,此时,的面积为,依此可求的高,再由图象可知,,应用两次勾股定理分别求和.【详解】解:过点作于点a b c 1x =-a b c -+y y 0,0,0,a b c <<>=1x -0y a b c =-+>F ABCD Y A A D B →→1cm /s B 2F FBC ()2cm y ()s xa 252ABCD Y F A D s a FBC a ABCD YDE BD =BE a D DE BC ⊥E∵的四条边都相等,∴.由图象可知,点由点到点用时为,的面积为.,,,当点从点到点,中,,的四条边都相等,,中,,解得:故选:C .二、填空题:本题共5小题,每小题3分,共15分.11. 某种商品的原价每件a 元,第一次降价打“八折”,第二次降价又减10元.则两次降价后的售价为________元.【答案】【解析】【分析】本题考查列代数式,列代数式注意规范书写格式.先表示出打“八折”后售价为元,再表示出第二次降价又减10元的售价为元.【详解】解:第一次降价打“八折”为元,ABCD Y AB BC CD AD ===F A D s a FBC 2cm a AD BC a ∴==12DE BC a ∴⋅=2DE ∴=F D B BD ∴=Rt DEB △1BE === ABCD Y1EC a ∴=-DC a=Rt DEC △2222(1)a a =+-52a =()0.810a -0.8a ()0.810a -0.8a第二次降价又减10元为元,故答案为:元.12. 不等式组的所有整数解的和为____________.【答案】2【解析】【分析】利用一元一次不等式组的解法先求出不等式组的解集,再确定出不等式组所有整数解即可求解.【详解】解:,解不等式①得,解不等式②得,不等式组的解集是,不等式组所有整数解是:-1,0,1,2,不等式组所有整数解的和为.故答案为:2.【点睛】本题考查了一元一次不等式组的解法,以及一元一次不等式组的整数解,熟练掌握一元一次不等式组的解法是解本题的关键.13. 根据如图所示的统计图,回答问题:该超市年月的水果类销售额________月的水果类销售额(填“”“”或“”).【答案】【解析】【分析】本题主要考查条形统计图与折线图的综合运用,掌握统计图的信息的关系是解题的关键,根据销售总额与占比计算出相应的量进行比较即可求解.()0.810a -()0.810a -()421325x x x ⎧-<-⎨-≤⎩()421325x x x ⎧-<-⎨-≤⎩①②2x >-73x ≤∴723x -<≤∴∴10122-+++=20221011><=>【详解】解:某超市月的销售总额为万元,水果类销售额占比为,∴某超市月水果类的销售额为:万元;某超市月销售总额为万元,水果类销售额占比为,∴某超市月水果类的销售额为:万元;∵,故答案为:.14. 如图,在扇形中,,平分交于点,点为半径上一动点.若阴影部分周长的最小值为,则扇形的半径的长为________.【答案】2【解析】【分析】本题主要考查扇形周长的计算,轴对称最短路径的计算方法,掌握扇形弧长的计算方法,轴对称求最短路径的方法是解题的关键.根据题意可求出,作点关于的对称点,可得最小,则扇形周长最小,由此即可求解.【详解】解:∵平分,,∴,设扇形的半径,∴的长为:,阴影部分的周长最小为,如图所示,作点关于的对称点,连接与交于点,此时,的值最小,即阴影部分的周长最小,106020%106020%12⨯=117015%117015%10.5⨯=1210.5>>BOC 60BOC ∠︒=OD BOC ∠ BC D E OB 3πOB 30COD BOD ∠=∠=︒D OB D 'CD 'OD BOC ∠60BOC ∠=︒30COD DOB ∠=∠=︒OC OB r ==CD3023606rr ππ︒⨯=︒3π+D OB D 'CD 'OBE CE ED CE ED CD +=+=''∴,∴,即,解得,,故答案为:.15. 如图,在△ABC中∠C =90°,AC =6,BC =8.点D 是BC 上的中点.点P 是边AB 上的动点,若要使△BPD 为直角三角形,则BP =__.【答案】5或【解析】【分析】根据勾股定理算出AB ,由已知得到DB ,然后根据三角形相似和平行线分线段成比例定理可以得到PB 的两个可能值.【详解】解:在Rt △ABC 中,∵∠C =90°,AC =6,BC =8,∴AB =10,∵D 是BC 中点,∴CD =BD =4,分两种情形:①当∠DPB =90°时,△DPB ∽△ACB ,∴=,90COD COB BOD ∠=∠+'∠='︒CD '=63rππ+=+2r =2165PB BC BDAB∴=,∴BP =.②当∠PDB =90°,易证:DP ∥AC ,∵CD =DB ,∴AP =PB =5,综上所述,满足条件的PB 的值为5或.故答案为5或.【点睛】本题考查直角三角形的应用,熟练掌握勾股定理、三角形相似的判定和性质及平行线分线段成比例定理是解题关键.三、解答题:本题共8小题,共75分.解答应写出文字说明,证明过程或演算步骤.16. (1)计算:.(2)先化简,再求值:,其中.【答案】(1);(2),【解析】【分析】本题考查了整式的加减和代数式求值.主要考查学生的化简能力和计算能力.(1)代入特殊角三角函数值,利用负整数指数幂,绝对值和二次根式的性质化简即可.(2)先算利用完全平方公式和单项式乘多项式的运算法则化简,再合并同类项,最后代入求出即可.【详解】(1)解:原式.(2)解:原式,当时,原式.17. 为倡导绿色健康节约的生活方式,某社区开展“减少方便筷使用,共建节约型社区”活动.志愿者随机抽取了社区内50名居民,对其5月份方便筷使用数量进行了调查,并对数据进行了统计整理,以下是部分8BP 41016516516514sin 603-⎛⎫︒+ ⎪⎝⎭()()22141a a a +--18a =581+a 2432=++-32=++-5=2244144a a a a=++-+81a =+18a =8111218=⨯+=+=数据和不完整的统计图表:方便筷使用数量在范围内的数据:5,7,12,9,10,12,8,8,10,11,6,9,13,6,12,8,7.不完整的统计图表:方便筷使用数量统计表组别使用数量(双)频数1410合50请结合以上信息回答下列问题:(1)统计表中的__________;(2)统计图中组对应扇形的圆心角为__________度;(3)组数据的众数是___________;调查的50名居民5月份使用方便筷数量的中位数是__________;(4)根据调查结果,请你估计该社区2000名居民5月份使用方便筷数量不少于15双的人数.【答案】(1)9;(2)72;(3)12,10;(4)该社区2000名居民5月份使用方便筷数量不少于15双的人数为760名.【解析】【分析】(1)根据扇形统计图可知D 组所占百分比,然后问题可求解;515x ≤<A05x <≤B510x ≤<C1015x ≤<D1520x ≤<a E20x ≥=a E C(2)由统计表可得E 组人数为10人,然后可得E 组所占的百分比,然后问题可求解;(3)由题意可把在范围内的数据从小到大排列,进而可得组数据的众数及中位数;(4)根据题意可得50名被调查的人中不少于15双的人数所占的百分比,然后问题可求解.【详解】解:(1)由统计图可得:;故答案为9;(2)由统计图可得组对应扇形的圆心角为;故答案为72;(3)由题意可把在范围内的数据从小到大排列为:、6、6、7、7、8、8、8、9、9、10、10、11、12、12、12、13;∴在组()数据的众数是;调查的50名居民5月份使用方便筷数量的中位数是第25和第26名的平均数,即为;故答案为12,10;(4)由题意得:(名);答:该社区2000名居民5月份使用方便筷数量不少于15双的人数为760名.【点睛】本题主要考查中位数、众数及扇形统计图,熟练掌握中位数、众数及扇形统计图是解题的关键.18. 如图,是菱形的对角线,,(1)请用尺规作图作的垂直平分线,垂足为,交于;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接,求.【答案】(1)见解析(2【解析】【分析】本题主要考查菱形的性质,垂直平分线的画法及性质,含角的直角三角形的性质,等腰三角形的性质的综合,掌握菱形的性质,含角的直角三角形的性质是解题的关键.(1)根据垂直平分线的画法即可求解;(2)根据菱形的性质,分别求出的度数,根据含角的直角三角形的性515x ≤<C 50189a =⨯=%E 103607250︒⨯=︒515x ≤<5C 1015x ≤<121010102+=910200076050+⨯=BD ABCD 75CBD ∠=︒AB EF E AD F BF DF DB :30︒30︒ABD A BFD DBF ∠∠∠∠,,,30︒质,设,可用含的式子表示的长,由此即可求解.【小问1详解】解:如图所示,直线即为所求;【小问2详解】解:∵四边形是菱形,∴,,,∴,∴,∵垂直平分线段,∴,∴,∴,∴,作于,则,设,则,,,∴.19. 如图,反比例函数与一次函数的图象交于点,点,一次函数FG a=a DF DB ,EF ABCD 75CBD ∠=︒1752ABD CBD ABC ∠=∠=∠=︒DC AB ∥A C ∠=∠150180ABC ABC C ∠=︒∠+∠=︒,30C A ∠=∠=︒EF AB AF FB =30A FBA ∠=∠=︒60DFB ∠=︒753045DBF ABD FBA ∠=∠-∠=︒-︒=︒DG FB ⊥G 30FDG ∠=︒FG a =2FD a DG ==,DG BG ==DB =DF DB ==()0my m x=≠y kx b =+()13A ,()1B n ,与y 轴交于点C .(1)求反比例函数和一次函数解析式;(2)连接,求的面积;(3)如图2,点E 是反比例函数图象上A 点右侧一点,连接,把线段绕点A 顺时针旋转,点E 的对应点F 恰好也落在这个反比例函数的图象上,求点E 的坐标.【答案】(1);(2)4(3)点E 的坐标为【解析】【分析】(1)将代入反比例函数的解析式求得m 的值,再将代入,即可求解;(2)利用的面积,即可求解;(3)设点,,又,利用等腰直角三角形的性质列方程组,解方程组即可求解.【小问1详解】解:将代入反比例函数,解得,∴,将代入,得,将,点代入,,解得,y kx b =+OA OB ,OAB AE AE 90︒3y x=4y x =-+162⎛⎫ ⎪⎝⎭,()13A ,()1B n ,3y x=OAB COD COA CBD S S S =--△△△3E m m ⎛⎫ ⎪⎝⎭,3F n n ⎛⎫ ⎪⎝⎭,()13A ,()13A ,m y x=133m =⨯=3y x=()1B n ,3y x=3n =()13A ,()B 3,1y kx b =+331k b k b +=⎧⎨+=⎩14k b =-⎧⎨=⎩∴;【小问2详解】解:设一次函数与x 轴交于点D ,xx 令,则,令,则,∴的面积;;【小问3详解】解:设点,又,由旋转知:为等腰直角三角形,∴,解得,∴.【点睛】本题考查了反比例函数与一次函数的交点问题.也考查了等腰直角三角形的性质.利用待定系数法确定反比例函数与一次函数的解析式;要能够借助直线和y 轴的交点运用分割法求得不规则图形的面积是解题的关键.20. 如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托上,图2是其侧面结构示意图.量得托板长,支撑板长,底座长.托板固定在支撑板顶4y x =-+4y x =-+0x =4y =0y =4x =OAB COD COA CBDS S S =--△△△1114441414222=⨯⨯-⨯⨯-⨯⨯=3E m m ⎛⎫ ⎪⎝⎭,3F n n ⎛⎫⎪⎝⎭,()13A ,AEF △()()()()22222222331313333213m n m n m n m m n m ⎧⎛⎫⎛⎫-+-=-+-⎪ ⎪ ⎪⎝⎭⎝⎭⎪⎨⎡⎤⎛⎫⎛⎫⎪-+-=-+-⎢⎥ ⎪ ⎪⎪⎝⎭⎝⎭⎢⎥⎣⎦⎩632m n =⎧⎪⎨=-⎪⎩162E ⎛⎫ ⎪⎝⎭,120mm AB =80mm CD =90mm DE =AB端点C 处,且,托板可绕点C 转动,支撑板可绕点D 转动.若,,求点A 到直线的距离;(结果保留小数点后一位)(参考数据:,,,)【答案】【解析】【分析】如图,过A 作,交的延长线于点M ,过点C 作,垂足为F ,过点C 作,垂足为N ,则四边形是矩形,在中,由求的值,进而可得的值,根据角度之间的数量关系求得,,则,在中,求的值,根据计算求解即可.【详解】解:如图,过A 作,交的延长线于点M ,过点C 作,垂足为F ,过点C 作,垂足为N ,则四边形是矩形,由题意可知,,,,,在中,∴,∵,∴,∴,∵,40mm CB =AB CD 80DCB ∠=︒60CDE ∠=︒DE sin 400.643︒≈cos 400.766︒≈tan 400.839︒≈ 1.732≈1207mm .AM DE ⊥ED CF AM ⊥CN DE ⊥CFMN Rt CDN △sin CN CD CDE =⋅∠CN FM 30D C N ∠=︒50A BCN ∠=∠=︒905040ACF ∠=︒-︒=︒Rt AFC △sin 40AF AC =⋅︒AF AM AF FM =+AM DE ⊥ED CF AM ⊥CN DE ⊥CFMN 80AC =80CD =80DCB ∠=︒60CDE ∠=︒Rt CDN △sin 80CN CD CDE =⋅∠==FM =180DCN CND CDN ∠+∠+∠=︒30D C N ∠=︒803050BCN DCB DCN ∠=∠-∠=︒-︒=︒,AM DE CN DE ⊥⊥∴,∴,∴,在中,,∴,答:点A 到直线的距离约为.【点睛】本题考查了解直角三角形的应用,矩形的判定与性质,三角形内角和定理等知识.解题的关键在于确定线段之间的数量关系.21. 如图,在菱形中,对角线相交于点经过两点,交对角线于点,连接交于点,且.(1)求证:是的切线;(2)已知的半径与菱形的边长之比为,求的值.【答案】(1)见解析(2).【解析】【分析】(1)利用垂径定理得,利用菱形的性质得,利用半径相等得,即可证明,据此即可证明结论成立;(2)设,由题意得,求得,由勾股定理得到,求得,利用菱形的性质求得,据此求解即可.【小问1详解】证明:连接,∵,由垂径定理知,AM CN ∥50A BCN ∠=∠=︒905040ACF ∠=︒-︒=︒Rt AFC △sin 40800.64351.44AF AC =⋅=⨯≈︒51.44120.7AM AF FM =+=+≈DE 1207mm .ABCD ,AC BD ,E O ,A D AC F OF AD G AG GD =AB O O 5:8tan ADB ∠tan 2ADB ∠=OF AD ⊥GAF BAF ∠=∠OAF OFA ∠=∠90OAF BAF ∠+∠=︒4AG GD a ==:5:4OA AG =5OA a =3OG a =2FG a =ADB AFG ∠=∠OA AG GD =OF AD ⊥∴,∵四边形是菱形,∴,∴,∵,∴,∴,又∵为的半径,∴是的切线;【小问2详解】解:∵四边形是菱形,,∴设,∵的半径与菱形的边长之比为,∴在中,,∴,,∴,∵四边形是菱形,∴,即,∴,∴.【点睛】本题考查了菱形的性质,垂径定理,切线的判定,求角的正切值,勾股定理,解答本题的关键是明确题意,找出所求问题需要的条件.22. 跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K 为飞行距离计分的参照点,落地点超过K 点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度为,基准点K 到起跳台的水平距离为,高度为(h 为定值).设运动员从起跳点A 起跳后的高度与水平距离之间的函数关系为.90OGA FGA ∠=∠=︒ABCD GAF BAF ∠=∠90GAF AFG BAF AFG ∠+∠=︒=∠+∠OA OF =OAF OFA ∠=∠90OAF BAF OAB ∠+∠=∠=︒OA O AB O ABCD AG GD =4AG GD a ==O 5:8Rt OAG △:5:4OA AG =5OA a=3OG a ==2FG OF OG a =-=ABCD BD AC ⊥90DEA FGA ∠=︒=∠ADB AFG ∠=∠4tan tan 22AG aADB AFG FG a∠=∠===OA 66m 75m m h (m)y (m)x 2(0)y ax bx c a =++≠(1)c 的值为__________;(2)①若运动员落地点恰好到达K 点,且此时,求基准点K 的高度h ;②若时,运动员落地点要超过K 点,则b 的取值范围为__________;(3)若运动员飞行的水平距离为时,恰好达到最大高度,试判断他的落地点能否超过K 点,并说明理由.【答案】(1)66(2)①基准点K 的高度h 为21m ;②b>;(3)他的落地点能超过K 点,理由见解析.【解析】【分析】(1)根据起跳台的高度OA 为66m ,即可得c =66;(2)①由a =﹣,b =,知y =﹣x 2+x +66,根据基准点K 到起跳台的水平距离为75m ,即得基准点K 的高度h 为21m ;②运动员落地点要超过K 点,即x =75时,y >21,故﹣×752+75b +66>21,即可解得答案;(3)运动员飞行的水平距离为25m 时,恰好达到最大高度76m ,即是抛物线的顶点为(25,76),设抛物线解析式为y =a (x ﹣25)2+76,可得抛物线解析式为y =﹣(x ﹣25)2+76,当x =75时,y =36,从而可知他的落地点能超过K 点.【小问1详解】解:∵起跳台的高度OA 为66m ,∴A (0,66),把A (0,66)代入y =ax 2+bx +c 得:是19,5010a b =-=150a =-25m 76m 9101509101509101502125c =66,故答案为:66;【小问2详解】解:①∵a =﹣,b =,∴y =﹣x 2+x +66,∵基准点K 到起跳台的水平距离为75m ,∴y =﹣×752+×75+66=21,∴基准点K 的高度h 为21m ;②∵a =﹣,∴y =﹣x 2+bx +66,∵运动员落地点要超过K 点,∴当x =75时,y >21,即﹣×752+75b +66>21,解得b >,故答案为:b >;【小问3详解】解:他的落地点能超过K 点,理由如下:∵运动员飞行的水平距离为25m 时,恰好达到最大高度76m ,∴抛物线的顶点为(25,76),设抛物线解析式为y =a (x ﹣25)2+76,把(0,66)代入得:66=a (0﹣25)2+76,解得a =﹣,1509101509101509101501501509109102125∴抛物线解析式为y=﹣(x ﹣25)2+76,当x =75时,y =﹣×(75﹣25)2+76=36,∵36>21,∴他的落地点能超过K 点.【点睛】本题考查二次函数的应用,解题的关键是读懂题意,能根据题意把实际问题转化为数学问题.23. 综合与实践数学活动课上同学们开展了以折叠为主题探究活动,如图1,已知矩形纸片,其中(1)操作判断将矩形纸片按图1折叠,使点落在上的点处,可得到一个角,请你写出一个的角.(2)探究发现将图1纸片展平,把四边形剪下来如图2,取边的中点,将沿折叠得到,延长交于点,求的周长.(3)拓展应用改变图2中点的位置,令点为射线上一动点,按照(2)中方式将沿折叠得到,所在直线交于点,若点为的三分点,请直接写出此时的长.【答案】(1)(或)(2)(3或【解析】【分析】(1)利用矩形的性质和折叠的性质证明四边形是正方形,然后利用正方形的性质即可得出结论;(2)连结,先证明四边形是矩形,可得,由折叠性质并结合的的21252125ABCD 611AB AD ==,ABCD B AD E 45︒45︒EFCD FC M EFM △EM EF M '△EF 'CD N EDN △M M FC EFM △EM EF M '△EF 'CD N N CD NF 'BAF ∠EAF BFA EFA ∠∠∠,,176-6AEFB MN CDEF 65EF CD FC ED ====,M为的中点可得到,,,然后证明可得到,最后计算;(3)分两种情况计算:①当点为的三分点且靠近点时,②当点为的三分点且靠近点时,利用勾股定理和折叠的性质即可得出结论.【小问1详解】解:∵四边形是矩形,∴,∵将矩形纸片按图1折叠,使点落在边上的点处,∴,∴,∴四边形是矩形,∵,∴四边形是正方形,∴,∴的角有(或).【小问2详解】解:连结,∵四边形矩形,,∴,∵四边形是正方形,∴,∴,FC MF MC '=EF EF '=90MF N MF E '∠=∠='︒Rt Rt (HL)MF N MCN '△≌△F N CN '=DE EN ND ++N CD C N CD D ABCD 90B BAE ∠=∠=︒ABCD B AD E 90AB AE B AEF =∠=∠=︒,90B BAE AEF ∠=∠=∠=︒AEFB AB AE =AEFB 45BAF EAF BFA EFA ∠=∠=∠=∠=︒45︒BAF ∠EAF BFA EFA ∠∠∠,,MN ABCD 611AB AD ==,690CD AB C D ==∠=∠=︒,AEFB 690EF AB FED FEA ==∠=∠=︒,90FED D C ∠=∠=∠=︒∴四边形是矩形,∴,由折叠性质得:,∵为的中点,∴,∴,在与中,,∴,∴,∴的周长为:.【小问3详解】解:①如图,当点为的三分点且靠近点,连接,∴,∴,在中,,;②如图,当点为的三分点且靠近点时,连接,CDEF 61165EF CD FC ED AD AE ====-=-=,,,90MF MF EF EF MF N MF E ∠∠''''︒====M FC MF MC =MF MC '=Rt MF N '△Rt MCN △MF MC MN MN ='⎧⎨=⎩()Rt HL MF N Rt MCN ' ≌F N CN '=EDN △DE EN ND++DE EF F N ND''=+++()DE EF CN ND =+++DE EF CD=++56617=++=N CD C MN 116233CN CD ==⨯=624DN CD CN =-=-=Rt DNE△EN ===6NF EN EF -'=='∴-N CD D MN∴,在中,,∴综上所述,或【点睛】本题是四边形综合题,主要考查折叠的性质,矩形的判定和性质,正方形的判定与性质,全等三角形的判定与性质,勾股定理等知识,运用了分类讨论的思想.通过添加适当辅助线构造全等三角形是解题的关键.116233DN CD ==⨯=Rt DNE △EN ===6NF EF EN ''=-=-NF 6-6。
河南省2024届九年级下学期中考模拟数学试卷(一)及答案
![河南省2024届九年级下学期中考模拟数学试卷(一)及答案](https://img.taocdn.com/s3/m/f2bbae83db38376baf1ffc4ffe4733687f21fc7a.png)
2024年河南省中考数学复习模拟试卷(一)一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.(共10题;共30分)1.(3分)绝对值小于4的所有整数的和是( )A.4B.8C.0D.17 2.(3分)将一个棱长为1的正方体水平放于桌面(始终保持正方体的一个面落在桌面上),则该正方体正视图面积的最大值为( )A.2B.C.D.1 3.(3分)根据最新数据统计,2018 年中山市常住人口已达到3260000 人.将3260000用科学记数法表示,下列选项正确的是( )A.3.26×105B.3.26×106C.32.6×105D.0.326×1074.(3分)如图,为的直径,弦于点E,于点F,,则为( )A.B.C.D.5.(3分)已知分式,,其中,则与的关系是( )A.B.C.D.6.(3分)如图,AC,BD是⊙O直径,且AC⊥BD,动点P从圆心O出发,沿O→C→D→O路线作匀速运动,设运动时间为t(秒),∠APB=y(度),则下列图象中表示y与t之间的函数关系最恰当的是( )A.B.C.D.7.(3分)关于的一元二次方程的根的情况,下列说法正确的是( )A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.与的值有关,无法确定8.(3分)一个不透明的袋子中放入三个除标号外其余均相同的小球,三个小球的标号分别是2,1,-1,随机从这个袋子中一次取出两个小球,取出的两个小球上数BK字之积为负数的概率是( )A.B.C.D.9.(3分)一次函数y=kx+b(k≠0)的图象如图,则下列结论正确的是( )A.k=2B.k=3C.b=2D.b=3 10.(3分)如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P 不与点B,C重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作∠BPC′的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是( )A.B.C.D.二、填空题(每小题3分,共15分)(共5题;共15分)11.(3分)下表是2002年12月份的日历,现在用一个长方形在日历中任意框出4个数,请你用一个等式表示之间的关系 .12.(3分)已知关于x,y的方程组给出下列结论:①是方程组的一个解;②当时,x,y的值互为相反数③a=1时,方程组的解也是方程的解;④和之间的数量关系是.其中正确的是 (填序号)13.(3分)某班女学生人数与男生人数之比是4:5,把男女学生人数分布情况制成扇形统计图,则表示女生人数的扇形圆心角的度数是 .14.(3分)如图,在Rt△ABC中,∠ACB=90°,AD平分∠CAB交边BC于点D,E,F分别是AD,AC上的点,连接CE,EF.若AB=10,BC=6,AC=8,则CE+EF的最小值是 .15.(3分)如图,正方形网格中的△ABC,若小方格的边长都为1,则△ABC是 三角形.三、解答题(本大题共8个小题,共75分)(共8题;共75分)16.(10分)回答下列问题.(1)(5分)计算:.(2)(5分)解方程:.17.(9分)为了让同学们了解自己的体育水平,初二1班的体育刘老师对全班45名学生进行了一次体育模拟测试(得分均为整数),成绩满分为10分,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:初二1班体育模拟测试成绩分析表平均分方差中位数众数男生287女生7.92 1.998根据以上信息,解答下列问题:(1)(3分)这个班共有男生 人,共有女生 人;(2)(3分)补全初二1班体育模拟测试成绩分析表;(3)(3分)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并写出一条支持你的看法的理由.18.(9分)一犯罪分子正在两交叉公路间沿到两公路距离相等的一条小路上逃跑,埋伏在A、B两处的两名公安人员想在距A、B相等的距离处同时抓住这一罪犯.请你帮助公安人员在图中设计出抓捕点.19.(9分)如图,等腰Rt的直角顶点A在反比例函数的图象上.(1)(3分)已知,求此反比例函数的解析式;(2)(3分)先将点A绕原点O逆时针旋转90°,得到点E,再将点E向右平移1个单位得到点F,若点F恰好在正比例函数的图象上,求正比例函数的表达式.20.(9分)如图,为了估计河的宽度,在河的对岸选定一个目标点P,在近岸取点Q和S,使点P、Q、S在一条直线上,且直线与河垂直,在过点S且与直线垂直的直线a上选择适当的点T,与过点Q且与垂直的直线b的交点为R.如果,,,求的长.21.(9分)一辆出租车一天上午从某商场出发在东西大街上运行,若规定向东行为正,向西行为负,行驶里程(单位:km)依次如下:+9,-8,-5,+6,-8,+9,-3,-7,-5,+10.(1)(3分)将最后一名乘客送到目的地,出租车在该商场的哪边?离商场有多远?(2)(3分)如果出租车每行驶100 km的油耗为10L,1L汽油的售价为7.2元,那么出租车在这天上午消耗汽油的金额是多少元?22.(10分)如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头部的正上方达到最高点M,距地面4米高,球落地为C点.(1)(5分)求足球开始飞出到第一次落地时,该抛物线的解析式;(2)(5分)足球第一次落地点C距守门员多少米?23.(10分)如图,在菱形ABCD中,,将边AB绕点A逆时针旋转至,记旋转角为.过点D作于点F,过点B作BE⊥直线于点E,连接EF.【探索发现】(1)(3分)填空:当时,_ °;的值是_ ;(2)(3分)【验证猜想】当时,(1)中的结论是否仍然成立?若成立,请仅就图2的情形进行证明;若不成立,请说明理由;(3)(4分)【拓展应用】在(2)的条件下,若,当是等腰直角三角形时,请直接写出线段EF的长.答案1.C2.C3.B4.C5.B6.C7.C8.C9.D10.D11.d-c=b-a12.①②③13.160°14.4.815.直角16.(1)解:原式(2)解:,.17.(1)20;25(2)解:甲的平均分为×(5+6×2+7×6+8×3+9×5+10×3)=7.9,女生的众数为8,补全表格如下:平均分方差中位数众数男生7.9287女生7.92 1.9988(3)解:可根据众数比较得出答案.从众数看,女生队的众数高于男生队的众数,所以女生队表现更突出.18.解:角平分线上的点到角两边的距离相等(即犯罪分子在∠MON的角平分线上,点P也在其上)线段垂直平分线上的点到线段两端点的距离相等(所以点P在线段AB的垂直平分线上).∴两线的交点,即点P符合要求.19.(1)解:如图,作AC⊥OB于C,∵△AOB是等腰直角三角形,OA=2,∴AC=OC=2,∴A(2,2),∵直角顶点A在反比例函数y=(x>0)的图象上,∴k=2×2=4,∴反比例函数的解析式为y=;(2)解:∵A(2,2),∴将点A绕原点O逆时针旋转90°,得到点E(-2,2),再将点E向右平移1个单位得到点F(-1,2),∵点F恰好在正比例函数y=mx的图象上,∴2=-m,解得m=-2,∴正比例函数的表达式为y=-2x.20.解:由题意可知,,,设,∵,,,∴,,解得,经检验x=120是方程的解的长为.21.(1)解:9-8-5+6-8+9-3-7-5+10=(9+6+9+10)-(8+5+8+3+7+5)=34-36=-2(km).答:将最后一名乘客送到目的地,出租车在该商场的西边,离商场2 km;(2)解:|+9|+|-8|+|-5|+|+6|+|-8|+|+9|+|-3|+|-7|+|-5|+|+10|=70(km),×10×7.2= 50.4 (元).答:出租车在这天上午消耗汽油的金额是50.4元.22.(1)解:以O为原点,直线OA为y轴,直线OB为x轴建直角坐标系.由于抛物线的顶点是(6,4),所以设抛物线的表达式为y=a(x﹣6)2+4,当x=0,y=1时,1=a(0﹣6)2+4,所以a=﹣,所以抛物线解析式为:y=﹣x2+x+1;(2)解:令y=0,则﹣x2+x+1=0,解得:x1=6﹣4 (舍去),x2=6+4 =12.8(米),所以,足球落地点C距守门员约12.8米.23.(1)30;(2)解:当时,(1)中的结论仍然成立.证明:如图,连接BD,∵,∴,,∴,∴,∵,∴,∴,即,∴,,∴,又∵,∴,∴.(3)解:的长为或.。
2024年河南信阳中考押题数学模拟预测试题
![2024年河南信阳中考押题数学模拟预测试题](https://img.taocdn.com/s3/m/9e146b5c91c69ec3d5bbfd0a79563c1ec4dad752.png)
2024年河南信阳中考押题数学模拟预测试题一、单选题1.实数a ,b 在数轴上对应点的位置如图所示,化简|a ( )A .﹣2a -bB .2a ﹣bC .﹣bD .b2.如图所示物体的左视图是( )A .B .C .D . 3.2024年5.5G 技术正式开始商用,它的数据下载的最高速率从5G 初期的1Gbps 提升到10Gbps ,给我们的智慧生活“提速”.其中10Gbps 表示每秒传输10000000000 位(bit )的数据. 将10000000000用科学记数法表示应为( )A .110.110⨯B .10110⨯C .11110⨯D .91010⨯4.计算2222y y x y x y ++-的结果是( ) A .+x x y B .y x y + C .-x x y D .y x y- 5.如图,在ABC V 中,AB AD DC ==,62B ∠=︒,则C ∠的度数为( )A .30︒B .32︒C .31︒D .48︒6.如图,A ,B ,C ,D 均在O e 上,5BCD BAD ∠=∠,若BD =AB 的长最大为( )A .3B .4C .D .7.关于x 的一元二次方程240x mx +-=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无法确定D .没有实数根8.如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为( )A .12 B .14 C .18 D .1169.在平面直角坐标系中,已知抛物线()2240y ax ax a =-+>.若()11,A m y -,()2,B m y ,()32,C m y +为抛物线上三点,且总有132y y y >>,则m 的取值范围可以是( ) A .1m < B .32m > C .102m << D .312m << 10.如图,在平面直角坐标系中,将边长为a 的正方形OABC 绕点O 顺时针旋转45︒后得到正方形111OA B C .依此方式连续旋转2024次得到正方形202420242024OA B C ,那么点2024A 的坐标是( )A .(),0aB .,⎫⎪⎪⎝⎭C .,⎛⎫ ⎪ ⎪⎝⎭D .()0,a二、填空题11.如图,在ABC V 中,90BAC ∠=︒,AD 是高,AB AC >,E ,F 分别为AB ,BC 的中点,若C α∠=,则DEF ∠的度数为(用含α的式子表示).12.若关于x 的不等式组()316213x x m ⎧+>⎨-<-⎩有且只有3个整数解,则m 的取值范围是. 13.为了解全区5000名初中毕业生的体重情况,随机抽测了400名学生的体重,频数分布如图所示(每小组数据可含最小值,不含最大值),其中从左至右前四个小长方形的高依次为8,12,16,20,由此可估计全区初中毕业生的体重不小于60千克的学生人数约有人.14.如图,在ABC V 中,58ACB ∠=︒,ABC V 的内切圆O e 与AB ,AC 分别相切于点D ,E ,连接DE ,BO 的延长线交DE 于点F ,则BFD ∠=.15.如图,在ABC V 中,90BAC ∠=︒,2AB =,AC =D 是BC 边上的动点,连接AD ,则3AD DC +的最小值为.三、解答题16.(1)计算:()011()1tan602π-+++-︒;(2)先化简,再求值:2223339x x x x x x ⎛⎫+÷ ⎪-+-⎝⎭,其中x 17.某中学举行了一次“消防知识竞赛”,为了了解本次竞赛情况,从中抽取了七年级、八年级两个年级各50名学生,对他们此次竞赛的成绩(得分取整数,满分为100分)分别进行了整理、描述和分析.下面给出部分信息.a .七年级学生竞赛成绩的频数直方图如下(数据分成6组:4050x ≤<,5060,6070,7080x x x ≤<≤<≤<,8090,90100x x ≤<≤<): b .七年级学生竞赛成绩在8090x ≤<这一组的是:808181828284868686888889c .这两个年级学生竞赛成绩的平均数、众数、中位数如下:根据以上信息,回答下列问题:(1)m =_______;(2)你认为在此次竞赛中哪个年级的竞赛成绩更好?请说明理由;(3)该校七年级有学生800人,则七年级学生竞赛成绩超过85的人数约是多少?18.如图,在Rt ABC △中,90B ??,AD 为BAC ∠的平分线.(1)尺规作图:过点D 作AC 的垂线DE ,交AC 于点E .(不写作法,保留作图痕迹,标明字母)(2)在(1)的条件下,求证:AB EC AC +=.19.如图,一次函数13y x =--的图象与x 轴,y 轴分别交于点C ,D ,与反比例函数2m y x=的图象交于点A ,B ,已知点A 的纵坐标为1.(1)求反比例函数的表达式;(2)直接写出12y y >时x 的取值范围;(3)若点F 是点D 关于x 轴的对称点,求ABF △的面积.20.一天晚上,东升和朝阳利用灯光下的影子来测量一路灯D 的高度,如图,当朝阳走到点A 处时,东升测得朝阳直立身高AM 与其影子长AE 正好相等,接着朝阳沿AC 方向继续向前走,走到点B 处时,朝阳直立时身高BN 的影子恰好是线段AB ,并测得AB =1m .已知朝阳直立时的身高为1.5m ,求路灯的高CD 的长.21.小明在超市给全家购买五一小长假出游所需的小食品,若购买1袋薯片和3瓶饮料共需要26元,若购买2袋薯片和1瓶饮料共需要22元.(1)求1袋薯片和1瓶饮料各多少元?(2)小明家5人一起在五一期间出游,他买了薯片和饮料一共15件,总价钱不超过100元,那么最多能买多少袋薯片?22.根据以下素材,探索完成任务.是喷灌米.米.23.如图,(1)如图①,等腰ACB △,90ACB ∠=︒,D 为AB 的中点,90MDN ∠=︒,将MDN ∠绕点D 旋转,旋转过程中,MDN ∠的两边分别与线段AC 、线段BC 交于点E 、F (点F 与点B 、C 不重合),写出线段、、CF CE BC 之间的数量关系,并证明你的结论;(2)如图②,等腰ACB △,120ACB ∠=︒,D 为AB 的中点,60MDN ∠=︒,将MDN ∠绕点D 旋转,旋转过程中,MDN ∠的两边分别与线段AC 、线段BC 交于点E 、F (点F 与点B 、C 不重合),直接写出线段、、CF CE BC 之间的数量关系为 ;(3)如图③,在四边形ABCD 中,AC 平分BCD ∠,120BCD ∠=︒,60DAB ∠=︒,过点A 作AE AC ⊥,交CB 的延长线于点E ,若6CB =,2DC =,则BE 的长为 .。
2023年河南省中考数学模拟试卷(经典三)
![2023年河南省中考数学模拟试卷(经典三)](https://img.taocdn.com/s3/m/fb6163206fdb6f1aff00bed5b9f3f90f76c64dd4.png)
2023年河南省中考数学模拟试卷(经典三)一、选择题(每小题3分 共30分)下列各小题均有四个选项 其中只有一个是正确的。
1.2023-的相反数是( ) A .12023B .2023C .12023-D .32022.2023年国内生产总值增长5.5%左右 城镇新增就业1200万人以上 请将数“1200万”用科学记数法表示为( ) A .80.1210⨯ B .61.210⨯C .71.210⨯D .61210⨯3.如图 几何体的左视图是( ).A .B .C .D .4.如图 小宁连续两周居家记录的体温情况折线统计图 下列从图中获得的信息正确的是( )A .这两周体温的众数为36.6℃B .第一周体温的中位数为37.1℃C .第二周平均体温高于第一周平均体温D .第一周的体温比第二周的体温更加平稳5.今年 郑凯12岁 他爸39岁.x 年后郑凯年龄是他爸的一半 则x 是( ) A .10B .12C .14D .156.(本题3分)设a 是一个不为零的实数 下列式子中 一定成立的是( ) A .32a a ->-B .32a a >C .32a a ->-D .32a a> 7.如图 已知AB 为O 的直径 点C E 在O 上 且30AEC ∠=︒ 过点C 作O 的切线交BA 的延长线于点D 连接BC .若3AD = 则弦BC 的长为( )A .3B .3C .23D .338.方程组3827x y x y +=⎧⎨-=⎩的解为( )A .321x y ⎧=⎪⎨⎪=-⎩B .31x y =⎧⎨=⎩C .31x y =⎧⎨=-⎩D .131x y ⎧=⎪⎨⎪=-⎩9.如图 在平面直角坐标系中 点A 、B 分别在x 轴负半轴和y 轴正半轴上 :1:2OC BC = 连接AC 过点O 作OP AB ∥交AC 的延长线于P 若(1,1)P 则AB 的长为( )A .22B .2C .2D .310.如图1 在平行四边形ABCD 中 =60B ∠︒ 2BC AB =;动点P 以每秒1个单位的速度从点A 出发沿线段AB 运动到点B 同时动点Q 以每秒4个单位的速度从点B 出发 沿折线B C D --运动到点D .图2是点P 、Q 运动时BPQ 的面积S 随运动时间t 变化关系的图象 则a 的值是( )A.43B.63C.83D.103二、填空题(本题有6小题每题4分共24分)11.因式分解:225a-=__.12.某班的班主任布置劳动作业要求学生从做饭、洗衣服、拖地这三项任务中任选一项完成甲和乙两位同学选择不同任务的概率是________.13.(3分)如图Rt△ABC中∠ACB=90°线段CO为斜边AB的中线.分别以点A和点O 为圆心大于的长为半径作弧两弧交于P Q两点作过P、Q两点的直线恰过点C交AB于点D若AD=1 则BC的长是.14.(3分)如图在▱ABCD中E为BC的中点以E为圆心CE长为半径画弧交对角线BD 于点F若∠BAD=116°∠BDC=39°BC=4 则扇形CEF的面积为.15.(3分)如图在Rt△ABC中∠ACB=90°∠ABC=30°AB=4E为斜边AB的中点点P是射线BC上的一个动点连接AP、PE将△AEP沿着边PE折叠折叠后得到△EP A′当折叠后△EP A′与△BEP的重叠部分的面积恰好为△ABP面积的四分之一则此时BP的长为.三、解答题(本大题共8个小题共75分)16.(10分)(1)计算:;(2)化简:.17.(9分)中国是世界上最早使用铸币的国家.距今3000年前殷商晚期墓葬出土了不少“无文铜贝”为最原始的金属货币.下列装在相同的透明密封盒内的古钱币材质相同其密封盒上分别标有古钱币的尺寸及质量(例如:钱币“状元及第”密封盒上所标“48.1*2.4mm24.0g”是指该枚古钱币的直径为48.1mm厚度为2.4mm质量为24.0g).根据图中信息解决下列问题.(1)这5枚古钱币所标直径数据的平均数是所标厚度数据的众数是;(2)由于古钱币无法从密封盒内取出为判断密封盒上所标古钱币的质量是否有错桐桐用电子秤测得每枚古钱币与其密封盒的总质量如下:名称文星高照状元及第鹿鹤同春顺风大吉连中三元总质量/g58.758.155.254.355.8盒标质量24.424.013.020.021.7盒子质量34.334.142.234.334.1请你应用所学的统计知识判断哪枚古钱币所标的质量与实际质量差异较大并计算该枚古钱币的实际质量约为多少克.18.(9分)如图直线y=kx+b与双曲线相交于A(﹣3 1)B两点与x轴相交于点C(﹣4 0).(1)分别求一次函数与反比例函数的解析式;(2)连接OA OB求△AOB的面积;(3)直接写出当x<0时关于x的不等式的解集.19.(9分)宝轮寺塔为供奉舍利由尼姑道秀主持建筑始建于隋文帝仁寿元年(601年)故又称仁寿建塔位于河南省三门峡市陕州风景区.数学活动小组欲测量宝轮寺塔DE的高度如图在A处测得宝轮寺塔塔基C的仰角为15°沿水平地面前进23米到达B处测得宝轮寺塔塔顶E的仰角∠EBD为53°测得塔基C的仰角∠CBD为30°(图中各点均在同一平面内).(1)求宝轮寺塔DE的高度;(2)实际测量时会存在误差请提出一条减小误差的合理化建议.(结果精确到0.1米参考数据:20.(9分)当前我国约有十分之一的教师因为种种原因患上嗓音疾病.针对于此某校工会计划为超课时任务的教师配备音频放大器.已知购买2个A型音频放大器和3个B型音频放大器共需352元;购买3个A型音频放大器和4个B型音频放大器共需496元.(1)求A、B两种类型音频放大器的单价;(2)该校准备采购A、B两种类型的音频放大器共30个且A型音频放大器的数量不少于B型音频放大器数量的2倍请给出最省钱的购买方案并说明理由.21.(9分)某跳台滑雪运动员进行比赛起跳后飞行的路线是抛物线的一部分(如图中实线部分所示)落地点在着陆坡(如图中虚线部分所示)上已知标准台的高度OA为66m当运动员在距标准台水平距离25m处达到最高最高点距地面76m建立如图所示的平面直角坐标系并设抛物线的表达式为y=a(x﹣h)2+k.其中x(m)是运动员距标准台的水平距离y(m)是运动员距地面的高度.(1)求抛物线的表达式;(2)已知着陆坡上有一基准点K且K到标准台的水平距离为75m高度为21m.判断该运动员的落地点能否超过K点并说明理由.22.(10分)如图△ABC为⊙O的内接三角形其中AB为⊙O的直径且AC=3 BC=4.(1)尺规作图:分别以B、C为圆心大于长为半径画弧在BC的两侧分别相交于P、Q两点画直线PQ交BC于点D交劣弧于点E连接CE;(2)追根溯源:由所学知识可知点O(填“在”或“在”)直线PQ上;(3)数据运算:在(1)所作的图形中求点O到BC的距离及∠DCE的余弦值.23.(10分)在△ABC中AB=AC∠BAC=α点P为线段CA延长线上一动点连接PB将线段PB绕点P逆时针旋转旋转角为α得到线段PD连接DB DC.(1)如图1 当α=60°时;P A与DC的数量关系为;∠DCP的度数为;(2)如图2 当α=120°时请问(1)中P A与DC的数量关系还成立吗?∠DCP的度数呢?说明你的理由.(3)当α=120°时若请直接写出点D到CP的距离.。
2024年河南省平顶山中考数学一模模拟试题(解析版)
![2024年河南省平顶山中考数学一模模拟试题(解析版)](https://img.taocdn.com/s3/m/55d8022edcccda38376baf1ffc4ffe473268fd18.png)
2024年平顶山市中招学科第-次调研试卷九年级数学注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟.2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上.答在试卷上的答案无效.一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1. 的相反数是( )A. B. C. D. 【答案】D【解析】【分析】本题考查相反数的定义,根据相反数定义直接求解即可得到答案,熟记相反数定义是解决问题的关键.【详解】解:的相反数是,故选:D .2. 已知某几何体的俯视图如图所示,该几何体可能是( )A. B. C. D.【答案】A【解析】【分析】本题考查由三视图判断几何体.由于俯视图是从物体的上面看得到的视图,所以先得出四个选项中各几何体的俯视图,再与题目图形进行比较即可.【详解】解:图示是一个圆且这个圆的圆心.A 、圆柱的俯视图是一个圆,没有圆心,故选项符合题意;B 、三棱柱的俯视图是三角形,故选项不符合题意;C 、圆锥的俯视图是一个圆,有圆心,故选项不符合题意;D 、长方体的俯视图是一个长方形,故选项不符合题意;故选:A.20241202412024-20242024-20242024-3. 龙年伊始,平顶山市迎来了新年文旅“满堂红”.今年春节期间,平顶山市共接待游客万人次,实现旅游收入亿元.数据亿用科学记数法表示为( )A. B. C. D. 【答案】D【解析】【分析】本题考查了科学记数法.科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值大于等于时与小数点移动的位数相同.【详解】解:亿,故选:D .4. 如图,直线,等边的顶点B ,C 分别在直线m ,n 上,若,则∠2的度数为( )A. B. C. D. 【答案】B【解析】【分析】本题考查了平行线的性质,等边三角形的性质.由平行线的性质求得的度数,根据等边三角形的性质求得,再利用平角的性质求解即可.【详解】解:∵直线,∴,∵是等边三角形,∴,∴,599.6636.436.483.6410⨯836.410⨯90.36410⨯93.6410⨯10n a ⨯110a ≤<n n a n 1036.48936.410 3.6410=⨯=⨯m n ∥ABC 170=︒∠45︒50︒55︒60︒3∠60ABC ∠=︒m n ∥3170∠=∠=︒ABC 60ABC ∠=︒2180706050∠=︒-︒-︒=︒故选:B .5. 下列计算中,正确的是( )A.B. C. D. 【答案】D【解析】【分析】本题考查了同底数幂相乘、积的乘方、幂的乘方,合并同类项,根据相关运算法则进行逐项分析,即可作答.【详解】解:A 、不是同类项,不能合并,故该选项是错误的;B 、,故该选项是错误的;C 、,故该选项是错误的;D 、,故该选项是正确的故选:D6. 如图所示,是的内接三角形.若则的度数等于( )A. 70°B. 65°C. 60°D. 55°【答案】A【解析】【分析】本题考查了圆周角定义,三角形的内角和性质,同弧所对的圆周角是圆心角的一半,据此即可作答.【详解】解:∵,∴,,∴,故选:A.247a a a +=()328=a a ()55210a a =235a a a = 24a a ,()326a a =()55232a a =235a a a = ABC O 20OAC ∠=︒,ABC ∠20OAC OA OC ∠=︒=,20180220140OAC ACO AOC ∠=∠=︒∠=︒-⨯︒=︒ AC AC = 1702ABC AOC ∠=∠=︒7. -元二次方程根的情况是( )A. 没有实数根B. 有两个相等的实数根C. 有两个不相等的实数根D. 只有一个实数根【答案】C【解析】【分析】本题主要考查根的判别式.先整理成一般式,再计算判别式即可判断一元二次方程的跟的情况.【详解】解:整理得,∴,∴有两个不相等的实数根.故选:C .8. 若反比例函数经过点.则一次函数的图像一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】【分析】本题考查反比例函数图像上点的坐标特征.先确定反比例函数解析式,从而可得一次函数解析式,进而求解.【详解】解:∵反比例函数的图像经过点,∴,解得:,∴一次函数的解析式为,∴该直线经过第二、三、四象限,不经过第一象限,故选:A .9. 如图,电路图上有4个开关A 、B 、C 、D 和1个小灯泡,同时闭合开关A 、B 或同时闭合开关C 、D 都可以使小灯泡发光.下列操作中,“小灯泡发光”这个事件是随机事件的是( )()23x x -=24b ac ∆=-()23x x -=2230x x --=()()2242413412160b ac ∆=-=--⨯⨯-=+=>()0k y k x =≠()1,2-y kx k =+()0k y k x =≠()1,2-21k =-2k =-22y x =--A. 只闭合1个开关B. 只闭合2个开关C. 只闭合3个开关D. 闭合4个开关【答案】B【解析】【分析】本题考查了事件的分类,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.根据必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,对每一项进行分析即可.【详解】解:A 、只闭合1个开关,小灯泡不会发光,属于不可能事件,不符合题意;B 、只闭合2个开关,小灯泡可能发光也可能不发光,是随机事件,符合题意;C 、只闭合3个开关,小灯泡一定会发光,是必然事件,不符合题意;D 、闭合4个开关,小灯泡一定会发光,是必然事件,不符合题意;故选:B .10. 如图1,在中,.动点P 从点A 出发沿折线A →B →C 匀速运动至点C 后停止.设点P 运动路程为x ,线段的长度为y ,图2是y 随x 变化的关系图像,其中M 为曲线的最低点,则的面积为( )A. B. C. D. 【答案】C【解析】【分析】本题考查了动点问题的函数图象,勾股定理,垂线段最短.作,当动点P 运动到点时,线段的长度最短,此时,当动点P 运动到点时,运动结束,此时的ABC 60ABC ∠=︒AP DE ABC AD BC ⊥D AP AB BD +=C AC =根据直角三角形的性质结合勾股定理求解即可.【详解】解:作,垂足为,当动点P 运动到点时,线段的长度最短,此时点P 运动的路程为,即,当动点P 运动到点时,运动结束,线段的长度就是的长度,此时,∵,∴,∴,∴,∴,∴,在中,,∴,∴,∴的面积为故选:C .二、填空题(每小题3分,共15分)11. 已知点P 在数轴上,且到原点的距离大于2,写出一个点P 表示的负数:______.【答案】【解析】【分析】本题考查了数轴上两点之间的距离,在数轴上表示有理数,根据“点P 在数轴上,且到原点的距离大于2,还是负数”这三个条件,写出一个即可作答.答案不唯一AD BC ⊥D D AP AB BD +=C AP AC AC =60ABC ∠=︒30BAD ∠=︒2AB BD =3AB BD BD +==BD =AB =2AD ==Rt △ABD AC =CD ==BC BD CD =+=ABC 11222BC AD ⨯=⨯=3-【详解】解:依题意,当点P 在数轴的负半轴上,即点P 表示为满足“到原点的距离大于2,还是负数”故答案为:12.分式方程的解是______.【答案】【解析】【分析】本题考查解分式方程.方程两边乘以得出,求出方程的解,再进行检验即可【详解】解:方程两边乘以得,解这个方程,得,检验:当时,,所以是原分式方程的解.即原分式方程的解为.故答案为:.13. 某校为了解学生对篮球、足球、乒乓球、羽毛球四类运动的参与情况,随机调查本校部分学生,让他们从中选择参与最多的一类运动,以选择各项目的人数制作了条形统计图.若从该校学生中任意抽取1人,则该学生恰好选择篮球这项运动的概率约为______.【答案】##0.375【解析】【分析】本题考查了概率公式.用恰好选择篮球这项运动的人数除以调查的总人数即可求解.【详解】解:∵调查的总人数为(人),其中选择篮球这项运动的人数为人,∴从该校学生中任意抽取1人,则该学生恰好选择篮球这项运动的概率约为,故答案为:.3-,3-2111x x x-=+2x =x 211x x -=+x 211x x -=+2x =2x =0x ≠2x =2x =2x =383020181280+++=30303808=3814. 如图,直线与y 轴交于点A ,与反比例函数图象交于点C ,过点C 作轴于点B ,,则k 的值为______.【答案】【解析】【分析】本题考查了反比例函数与一次函数图象的交点问题.先求出点A 的坐标,然后求出的长,即知点C 的横坐标,再将点C 的横坐标代入反比例函数解析式,可求得点C 的坐标,最后将点C 的坐标代入一次函数解析式,即得答案.【详解】解:对于函数中,令,则,,,,,即点C 的横坐标为,把代入,得,,把代入,得,解得.故答案为:.15. 在矩形中,,,若是射线上一个动点,连接,点关于直线的对称点为.连接,,当,,三点共线时,的长为______.3y kx =+()40y x x=-<CB x ⊥3AO BO =1-BO 3y kx =+0x =3y =()03A ∴,3OA ∴=3AO BO =Q 1BO ∴=1-=1x -4y x=-4y =()14C ∴-,()14C -,3y kx =+43k =-+1k =-1-ABCD 3AB =5BC =P AD BP A BP M MP MC P M C AP【答案】1或9【解析】【分析】本题考查了矩形的性质,折叠的性质,勾股定理,分情况讨论,当点在线段上时,当点在的延长线时,根据折叠的性质和勾股定理即可得到结论.【详解】解:当点线段上时,如图,与关于直线对称,,,,,,,,设,,,,解得,;当点在的延长线时,如图,与关于直线对称,P AD P AD P AD ABP MBP BP 90BMP A ∴∠=∠=︒3BM AB ==AP PM =90BMC ∴∠=︒222BM CM BC += 22235CM ∴+=4CM ∴=AP PM x ==90D ∠=︒ 222DP CD CP ∴+=222(5)3(4)x x ∴-+=+1x =1AP ∴=P AD ABP MBP BP,,,,,,,,,,,,,综上所述,的长为1或9,故答案为:1或9.三、解答题(本大题共8小题,满分75分)16. (1)计算:;(2)解不等式组:【答案】(1)2;(2).【解析】【分析】此题考查了一元一次不等式组的求解,负整指数幂,乘方,绝对值以及算术平方根的运算,解题的关键是熟练掌握相关运算法则.(1)根据乘方,负整数指数幂,绝对值以及算术平方根的运算求解即可;(2)求得每个不等式的解集,取公共部分即可.【详解】解:(1);(2),90BMP A ∴∠=∠=︒3BM AB ==AP PM =APB MPB ∠=∠AP BC ∥APB CBP ∴∠=∠CPB CBP ∴∠=∠5CP BC ∴==90BMC ∠=︒ 222BM CM BC ∴+=22235CM ∴+=4CM ∴=549AP PM ∴==+=AP 2132-122113x x ->⎧⎪⎨+≥⎪⎩①②3x>21332-÷--19322=÷-⨯31=-2=122113x x ->⎧⎪⎨+≥⎪⎩①②解不等式①可得:,解不等式②可得:,则不等式组的解集为:.17. 为了解A ,B 两款品质相近的智能玩具飞机在一次充满电后运行的最长时间,有关人员分别随机调查了A ,B 两款智能玩具飞机各10架,记录下它们运行的最长时间(单位:min ),并对数据进行整理描述和分析(运行最长时间用x 表示,共分为三组:合格,中等,优等),下面给出了部分信息.a .10架A 款智能玩具飞机一次充满电后运行的最长时间(单位min )分别是:60,64,67,69,71,71,72,72,72,82.b .10架B 款智能玩具飞机一次充满电后运行的最长时间(单位:min )在中等组的数据分别是:70,71,72,72,73.C .两款智能玩具飞机运行最长时间统计表d .B 款智能玩具飞机运行最长时间扇形统计图类别A B 平均数7070中位数71b 众数a 67方差30.431.6根据以上信息,解答下列问题:(1)上述图表中,______,______,______.(2)根据以上数据,你认为哪款智能玩具飞机运行性能更好?请说明理由.(写出一条理由即可)(3)若某玩具仓库有A 款智能玩具飞机200架,B 款智能玩具飞机120架,估计两款智能玩具飞机运行性能在中等及以上的共有多少架?【答案】(1),,;3x >1x ≥3x >6070x ≤<7080x ≤<80x ≥=a b =m =7270.510(2)A 款智能玩具飞机运行性能更好;因为A 款智能玩具飞机运行时间的方差比B 款智能玩具飞机运行时间的方差小,运行时间比较稳定;(3)两款智能玩具飞机运行性能在中等及以上的大约共有架.【解析】【分析】(1)由A 款数据可得A 款的众数,即可求出,由B 款扇形数据可求得合格数及优秀数,从而求得中位数及优秀等次的百分比;(2)根据方差越小越稳定即可判断;(3)用样本数据估计总体,分别求出两款飞机中等及以上的架次相加即可.【小问1详解】解:由题意可知架A 款智能玩具飞机充满电后运行最长时间中,只有出现了三次,且次数最多,则该组数据的众数为,即;由B 款智能玩具飞机运行时间的扇形图可知,合格的百分比为,则B 款智能玩具飞机运行时间合格的架次为:(架)则B 款智能玩具飞机运行时间优等的架次为:(架)则B 款智能玩具飞机的运行时间第五、第六个数据分别为:,故B 款智能玩具飞机运行时间的中位数为:,B 款智能玩具飞机运行时间优等的百分比为:,即,故答案为:,,;【小问2详解】解:A 款智能玩具飞机运行性能更好;因为A 款智能玩具飞机运行时间的方差比B 款智能玩具飞机运行时间的方差小,运行时间比较稳定;【小问3详解】解:架A 款智能玩具飞机运行性能在中等及以上的架次为:(架)架B 款智能玩具飞机运行性能在中等及以上的架次为:(架)则两款智能玩具飞机运行性能在中等及以上的共有:架,192a 10727272a =40%1040%4⨯=10451--=70,71707170.52+=1100%10%10⨯=10m =7270.510200620012010⨯=12061207210⨯=12072192+=答:两款智能玩具飞机运行性能在中等及以上的大约共有架.【点睛】本题考查了扇形统计图,中位数、众数、百分比,用方差做决策,用样本估计总体;解题的关键是熟练掌握相关知识综合求解.18. 如图,已知中,,,.(1)作的垂直平分线,分别交、于点、;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接,求的周长.【答案】(1)见解析(2)13【解析】【分析】(1)利用基本作图,作BC 的垂直平分线分别交、于点、即可;(2)由作图可得CD =BD ,继而可得AD =CD ,再结合三角形周长的求解方法进行求解即可.【小问1详解】如图所示,点D 、H 即为所求【小问2详解】∵DH 垂直平分BC ,∴DC =DB ,∴∠B =∠DCB ,∵∠B +∠A =90°,∠DCB +∠DCA =∠ACB =90°,∴∠A =∠DCA ,∴DC = DA,192Rt ABC 90ACB ∠=︒8AB =5BC =BC AB BC D H CD BCD △AB BC D H∴△BCD 的周长=DC +DB +BC =DA +DB +BC =AB +BC =8+5=13.【点睛】本题考查了作垂直平分线,垂直平分线的性质,等腰三角形的判定与性质等,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.19. 如图,为直径,点是的中点,过点作的切线,与的延长线交于点,连接.(1)求证:(2)连接,当时:①连接,判断四边形的形状,并说明理由.②若,图中阴影部分的面积为(用含有的式子表示).【答案】(1)见解析(2)①菱形,理由见解析;②【解析】【分析】(1)连接,证明,即可得到结论.(2)①根据(1)的结论和已知条件先证明四边形是平行四边形,根据平行线的性质以及点是的中点,可得从而证明邻边相等,即可得出结论;②连接,如图所示,设交于点,证明得,从而可求出,解直角三角形得出,根据,从而可得,求出扇形的面积即可得到阴影部分的面积.小问1详解】证明:如图所示,连接,的【AB O C AD C O CE BD E BC 90CEB ∠=︒CD CD AB ∥OC OBDC 3BE =______π23πOC OC BE ∥OBDC C AD DCB DBC ∠=∠OD ,OD BC F AC DCBC ==60AOC ∠=︒30CBE ∠=︒2OB =CD AB ∥COD BCD S S =△△COD OC∵点是的中点,∴,∴,∵,∴,∴,∴,∵是的切线.∴,∴,即:;【小问2详解】①如图所示,由(1)可得∵∴,四边形是平行四边形,又∵∴∴,∴四边形是菱形,C AD AC DC=ABC EBC ∠=∠OB OC =ABC OCB ∠=∠EBC OCB ∠=∠OC BE ∥CE O OC CE ⊥BE CE ⊥90CEB ∠=︒OC BE∥CD AB∥DCB ABC ∠=∠OBDC ABC EBC∠=∠DCB EBC∠=∠DC DB =OBDC②连接,如图所示,设交于点∵,∴,∵,,∴,∴,∴,∵,,∴∴∵,∴,∴.∴.【点睛】本题考查了圆周角定理,切线的判定,弧弦圆心角的关系,平行线的判定与性质,等腰三角形的性质,等边三角形的判定与性质,解直角三角形,扇形的面积等知识,熟练掌握切线的判断定理以及扇形面积的求法是解题的关键.20. 近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.(1)甲、乙两种头盔的单价各是多少元?OD ,OD BC FCD BD = CDBD = CD BD = AC DC= AC DCBC ==60AOC COD BOD ∠=∠=∠=︒1302ABC CBE AOC ∠=∠=∠=︒cos BE CBE BC ∠=3BE =3cos30BC ==︒BF =2cos30OF OB ===︒CD AB ∥COD BCD S S =△△COD S S =阴影扇形260223603COD S S ππ⨯===阴影扇形(2)商店决定再次购进甲、乙两种头盔共40只,正好赶上厂家进行促销活动,促销方式如下:甲种头盔按单价的八折出售,乙种头盔每只降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少只甲种头盔,使此次购买头盔的总费用最小?最小费用是多少元?【答案】(1)甲、乙两种头盔的单价各是65元, 54元.(2)购14只甲种头盔,此次购买头盔的总费用最小,最小费用为1976元.【解析】【分析】(1)设购买乙种头盔的单价为x 元,则甲种头盔的单价为元,根据题意,得,求解;(2)设购m 只甲种头盔,此次购买头盔的总费用最小,设总费用为w ,则,解得,故最小整数解为,,根据一次函数增减性,求得最小值=.【小问1详解】解:设购买乙种头盔的单价为x 元,则甲种头盔的单价为元,根据题意,得解得,,,答:甲、乙两种头盔的单价各是65元, 54元.小问2详解】解:设购m 只甲种头盔,此次购买头盔的总费用最小,设总费用为w ,则,解得,故最小整数解为,,∵,则w 随m 的增大而增大,∴时,w 取最小值,最小值.答:购14只甲种头盔,此次购买头盔的总费用最小,最小费用为1976元.【点睛】本题考查一元一次方程的应用,一次函数的性质,一次函数的应用、一元一次不等式的应用;根据题意列出函数解析式,确定自变量取值范围是解题的关键.21. 下图是某篮球架的侧而示意图,四边形为平行四边形.其中为长度固定的支【(11)x +20(11)302920x x ++=1(40)2m m ³-1313m ≥14m =41920w m =+41419201976´+=(11)x +20(11)302920x x ++=54x =1165x +=1(40)2m m ³-1313m ≥14m =0.865(546)(40)41920w m m m =´+--=+40>14m =41419201976=⨯+=ABCD BE CD GF ,,架,支架在A ,D ,G 处与立柱连接(垂直于,垂足为H ),在B ,C 处与篮板连接,旋转点F 处的螺栓可以调节长度,使支架绕点A 旋转,进而调节篮板的高度,已知.(1)如图1,当时,测得点C 离地面的高度为,求的长度;(2)如图2,调节伸缩臂,将由调节为时,请判断点C 离地面的高度是升高了还是降低了?并计算升(或降)的距离.(参考数据,)【答案】(1);(2)点离地面的高度升高了,升高了.【解析】【分析】本题考查是平行四边形性质,矩形的判定与性质,解直角三角形的实际应用,理解题意,作出合适的辅助线是解本题的关键.(1)如图,延长与底面交于点,过作于,则四边形为矩形,可得,根据四边形是平行四边形,可得,当时,则,此时,,即可求得;(2)当时,则,解直角三角形得,从而可得答案.【小问1详解】解:如图,延长与底面交于点,过作于,则,四边形为矩形,∴,的AH AH MN EF BE 209cm DH =60GAE ∠=︒289cm CD EF GAE ∠60︒54︒sin540.8cos540.6︒≈︒≈,tan 54 1.4︒≈160cm CD =C 16cm BC K D D Q C K ^Q DHKQ 208QK DH ==ABCD AB CD ∥60GAE ∠=︒60QCD QBA GAE ∠=∠=∠=︒30CDQ ∠=︒28920980CQ =-=2160CD CQ ==54GAE ∠=︒54QCD QBA GAE ∠=∠=∠=︒cos541600.696CQ CD =︒≈⨯= BC K D DQ C K ^Q 90DHK DQK HKQ ∠=∠=∠=︒DHKQ 209QK DH ==∵四边形是平行四边形,∴,当时,则,此时,,∴;【小问2详解】解:当时,则,∴,而,,∴点离地面的高度升高了,升高了.22. 一次足球训练中,小明从球门正前方的A 处射门,球射向球门的路线呈抛物线,其函数表达式为.当球飞行的水平距离为时,球达到最高点,此时球离地面.已知球门高为,现以O 为原点建立如图所示平面直角坐标系.(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素).(2)经过教练指导,小明改变了射球的力度和角度,在同一地点再次射门,球射向球门的路线呈抛物线,其表达式为.结果足球“画出一-条美妙的曲线”在点O 正上方处精彩落入球网内.求两次射门,足球经过的路线最高点之间的距离.ABCD AB CD ∥60GAE ∠=︒60QCD QBA GAE ∠=∠=∠=︒30CDQ ∠=︒28920980CQ cm =-=()2160cm CD CQ ==54GAE ∠=︒54QCD QBA GAE ∠=∠=∠=︒·cos541600.696CQ CD cm =︒≈⨯=96>80968016cm -=C 16cm 8m ()2y a x h k =-+6m 3m OB 2.44m 2116y x bx c =-++2m(注:题中的x 表示球到球门的水平距离,y 表示球飞行的高度)【答案】(1),球不能射进球门 (2)【解析】【分析】本题考查二次函数的应用,理解题意,求出解析式是解题的关键.(1)先确定抛物线的顶点坐标,利用待定系数法求出解析式即可;(2)求出第二次射门的解析式,求出顶点坐标即可求出答案.【小问1详解】由题意,可知抛物线的顶点坐标为,∴把代入,得,解得,∴抛物线的函数表达式为,当时,,∴球不能射进球门;【小问2详解】把,代入,得,∴,∴,∴顶点坐标为,()212312y x =--+3m 4()23,()223y a x =-+()80A ,()223y a x =-+3630a +=112a =-()212312y x =--+0x =8 2.443y =>()80A ,()0,22116y x bx c =-++210 88162b c c⎧=-⨯++⎪⎨⎪=⎩142b c ⎧=⎪⎨⎪=⎩()221119 2 2164164y x x x =-++=--+92,4⎛⎫ ⎪⎝⎭∵.∴两次射门,足球经过的路线最高点之间的距离为.23. (1)观察发现:已知是直角三角形,.将绕点B 顺时针旋转得到,旋转角为,直线交直线AC 于点F .如图1,当时,判断:四边形的形状为_____,与的数量关系为_____;(2)深入探究:在图1的基础上,将绕点B 逆时针旋转,旋转角为,如图2,当时,直接写出线段的数量关系______;继续旋转,如图3,当时,请写出线段的数量关系,并说明理由;(3)拓展应用:在(2)的基础上当时,若,请直接写出的长.【答案】(1)正方形,;(2);;理由见解析;(3)的长为或.【解析】【分析】(1)先证明四边形为矩形,根据,证明四边形为正方形,推出;(2)当时,连接,证明,据此即可求得;当时,同理求得;(3)当时,根据角的转换求得,推出,得到,进而求得,据此求解即可;当时,同理即可求解.【详解】解:(1)根据题意,由旋转的性质得,∴四边形为矩形,由旋转的性质得,933m 44-=3m 4ABC 90ACB ∠=︒ABC DBE αDE 90α=︒BCFE CF EF DBE β090β︒<<︒AF EF DE ,,90180β︒<<︒AF EF DE ,,CBE BAC ∠=∠912BC AC ==,AF CF EF =AF EF DE +=AF EF DE -=AF 915BCFE BC BE =BCFE CF EF =090β︒<<︒BF ()Rt Rt HL BCF BEF ≌AF EF DE +=90180β︒<<︒AF EF DE -=090β︒<<︒ABD BAC ∠=∠DB AC ∥A D AFD ABD ∠=∠=∠=∠15DF AB ==90180β︒<<︒90C DEB BEF ∠=∠=∠=︒90BCE ∠=︒BCFE BC BE =∴四边形为正方形,∴;故答案为:正方形,;(2)当时,连接,∵,,,∴,∴,∵,∴,即;当时,连接,同理,,∴,∵,∴,即;故答案为:;;(3)当时,BCFE CF EF =CF EF =090β︒<<︒BF BC BE =90B BEF ∠=∠=︒BF BF =()Rt Rt HL BCF BEF ≌EF CF =DE AC =AF CF AC +=AF EF DE +=90180β︒<<︒BF ()Rt Rt HL BCF BEF ≌EF CF =DE AC =AF CF AC -=AF EF DE -=AF EF DE +=AF EF DE -=090β︒<<︒∵,∴,∴,∴,∵,∴,∴,∵,∴,∴,∵,∴,∴,,∴,即,解得,∴;当时,同理,求得.综上,的长为或.【点睛】本题考查了勾股定理,正方形的判定和性质,全等三角形的判定和性质,平行线的判定和性质,正确引出辅助线解决问题是解题的关键.912BC AC ==,15AB ==912BE DE ==,15DB =ABC DBE ∠=∠ABC ABE DBE ABE ∠-∠=∠-∠CBE ABD ∠=∠CBE BAC ∠=∠ABD BAC ∠=∠DB AC ∥A D ∠=∠A D AFD ABD ∠=∠=∠=∠AG FG =DG BG =15DF AB ==1215DE EF EF +=+=3EF CF ==1239AF =-=90180β︒<<︒15AF BD ==AF 915。
2024年河南省南阳市中考数学模拟试卷
![2024年河南省南阳市中考数学模拟试卷](https://img.taocdn.com/s3/m/a3572b55a9114431b90d6c85ec3a87c240288afa.png)
2024年河南省南阳市中考数学模拟试卷一、选择题(每小题3分,共30分)。
1.(3分)下列说法错误的是()A.“对顶角相等”是必然事件B.“刻舟求剑”是不可能事件C.“方程x2+k=0有实数解”是随机事件D.某彩票的中奖机会是1%,买100张一定会中奖2.(3分)下列计算正确的是()A.=×B.C.2=D.﹣=3.(3分)已知△ABC如图所示.则与△ABC相似的是下列图中的()A.B.C.D.4.(3分)如图,在△ABC中,DE∥BC,DE分别与AB,AC相交于点D,E,若AD=4,DB=2,则DE:BC的值为()A.B.C.D.5.(3分)关于x的一元二次方程x2+m=6x有两个不相等的实数根,则m的值可能是()A.8B.9C.10D.116.(3分)将抛物线y=﹣x2﹣2x+3的图象向右平移1个单位,再向下平移2个单位得到的抛物线必定经过()A.(﹣2,2)B.(﹣1,1)C.(0,6)D.(1,﹣3)7.(3分)如图,在平面直角坐标系中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为12,则C点坐标为()A.(6,4)B.(6,2)C.(4,4)D.(8,4)8.(3分)如图,矩形OABC的边OA,OC分别在x轴、y轴的正半轴上,点D在OA的延长线上,若A(2,0),D (4,0),以O为圆心、OD长为半径的弧经过点B,交y轴正半轴于点E,连接DE,BE,则∠BED的度数是()A.15°B.22.5°C.30°D.45°9.(3分)如图,四边形ABCD中,∠A=90°,AB=12,AD=5,点M、N分别为线段BC、AB上的动点(含端点,但点M不与点B重合),点E、F分别为DM、MN的中点,则EF长度的可能为()A.2B.5C.7D.910.(3分)如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x﹣x2刻画,斜坡可以用一次函数y=x刻画,下列结论错误的是()A.当小球抛出高度达到7.5m时,小球距O点水平距离为3m B.小球距O点水平距离超过4米呈下降趋势C .小球落地点距O 点水平距离为7米D .斜坡的坡度为1:2二、填空题(每小题3分,共15分)。
2024年河南省洛阳市汝阳县九年级中考第一次模拟考试数学模拟试题(含答案)
![2024年河南省洛阳市汝阳县九年级中考第一次模拟考试数学模拟试题(含答案)](https://img.taocdn.com/s3/m/039452e0dc3383c4bb4cf7ec4afe04a1b171b014.png)
汝阳县2024年中招第一次模拟考试数学试题(考试时间100分钟,满分120分)参考公式:二次函数图像的顶点坐标,即一、选择题(每小题3分,共30分.下列各小题均有四个答案,只有一个是正确的,将正确的选项代码填入括号中.)1.要使的取值范围是()A .B .C .D .2.下列调查项目中:①了解某班50名学生的体重情况;②选出某校短跑最快的学生参加全市比赛;③调查中央电视台新闻联播的收视率;④调查某批次汽车的抗撞击能力.适宜抽样调查的项目是( )A .①②B .②③C .③④D .①④3.如图,以点为位做中心,将放大后得到,,.若的面积为,则的面积为()A .B .C .D .4.在平面直角坐标系中,将点平移到点处,正确的移动方法是()A .向右平移3个单位长度,向上平移5个单位长度B .向右平移3个单位长度,向下平移5个单位长度C .向左平移3个单位长度,向下平移5个单位长度D .向左平移3个单位长度,向上平移5个单位长度5.方程的根是()A .B .C .,D .,6.关于的图象,下列叙述正确的是( )A .其图像开口向左B .其最小值为20()20y ax bx c a =++≠24,24b ac b a a ⎛⎫-- ⎪⎝⎭2,24b b c a a ⎛⎫-- ⎪⎝⎭x 1x ≥-1x ≥1x ≤-1x ≤O DEF △ABC △1OD =3OA =DEF △m ABC △2m 3m 4m 9m()2,3A-()1,2B -()()23533x x x x -+-=-2x =3x =12x =43x =12x =-43x =()2232y x =-+C .当时随增大而减小D .其图像的对称轴为直线7.如图中,不规则小图形是一座山的地形图.现施工队沿方向开山修路,而且要在小山的另一边同时施工.在上取一点,使得.已知米,,点,,在同一条直线上,那么开挖点离点的距离是()A ,米B .米C.米D .米8.物理学中,电源、电奵、开关形成闭合回路,电灯新会发光.如图,电路图上有4个开关、、、和1个小灯泡,在所有的元件和线路都正常的前提下,只闭合2个开关的操作下,“小灯泡发光”是随机事件,其概率是()A .B .C .D .9.如图,为的直径,与相切于点.交的延长线于点,若,,则线段的长是( )A .3B .4C .5D .610.图形结合法既可以由数解决形的问题,也可以由形解决数的问题.如图所示,已知二次函数的图象如图所示.下列结论:①;②;③;④.其中正确的个数有( )A .1B .2C .3D .43x >yx 3x =AC AC B 148ABD ︒∠=600BD =58D ∠=︒A C E E D 600cos58︒600tan 58︒600cos58︒600sin 58︒A B C D 12141316AB O CD O C BA D 30B ∠=︒3AD =OB 2y ax bx c =++0ab >420a b c -+<20a b -<a c b +<二、填空题(每小题3分,共15分)11.二次函数的顶点坐标为______.12______.13.如图,点、、都在半径为3的圆上,若,则劣弧的长度为______.14.现有一副三角板,即含30°的和含45°的,如图放置,点在上滑动,交于,交于,且在滑动过程中始终保持在线段上,且.若,设,的面积为,则关于的函数表达式是______.(结果化为一般式,不必写的取值范围.)15.在中,,若于,,,则为______.三、解答题(本大题共8个小题,满分75分.)16.(本题满分10分)(1(2).17.(本题满分9分)已知等边内接于,为弧的中点,连接、,过作的平行线,交的延长线于点.(1)求证:与相切;244y x x =++=A B CO 30ACB ∠=︒AB Rt BCM △Rt AEG △E BC AE BM D EG MC F D BM EF DE =4MB =BE x =EFC △yyx x ABC △AB AC =BD AC ⊥D 2cos 3BAD ∠=BD CD sin 45sin 30tan 30tan 60cos 45︒-︒-︒⋅︒︒ABC △O DBC DB DC C AB BD E CE O(2)若,求的边长.18.(本题满分9分)汝阳某商场今年年初以每件10元的进价购进一批商品.当商品售价为20元时,一月份销售2250件,三月份销售3240件.设二月份和三月份该商品销售的月平均增长率相等.(1)求二月份和三月份该商品的月平均增长率;(2)从四月初起,商场决定采用降价促销的方式回馈顾客,经调查发现,在三月份销售量的基础上,该商品每降价1元,销售量增加50件,当商品降价多少元时,商场获利29610元?19.(本题满分9分)某校组织七、八年级学生参加厂“科教兴国、强国在我”科普知识竞赛.现该校从七、八年级学生中分别随机抽取了20名学生的竞赛成绩进行整理、描述和分析(成绩得分用表示,共分为五组:,,,),下面给出了部分信息:七年级20名学生的成绩是:69,76,78,79,82,84,85,86,86,86,86,88,88,90,92,92,95,98,100,100.八年级20名学生的成绩在组中的数据是:83,85,85,86,87,89,89,89,89.七、八两年级抽取的学生成绩数据统计表班级平均数中位数众数满分率七年级878610%八年级878915%根据以上信息,解答下列问题:(1)直接写出图表中、、的值:______,______,______.(2)根据以上数据,你认为七年级和八年级中哪个年级的学生掌握科普知识较好?请说明理由(一条理由即可);(3)该校七年级有400名学生和八年级有500名学生参加了此次科普知识竞赛,请估计两个年级成绩达到90分及以上的学生共有多少人?20.(本题满分9分)目前,我国的太空站是世界上仅有的两个太空站之一,它为我国的科学实验提供了极大的支持.2023年5月,“神舟十六号”载人飞船成功把三名航天员送入到我国空间站,为了观察飞船的发射情况,科学家预设了两个飞船上升位置与.如图,在发射的过程中,飞船从地面处发射,当飞船到达点时,从位于地面处的雷达站测得的距离是8km ,仰角为30°,10s 后飞船到达点时,测得仰角为45°.3CE =ABC △x x ()070A x ≤<()7080B x ≤<()8090C x ≤<()90100D x ≤≤C aba b m a =b =m =A B O A C AC B(1)求点离地面的高度;(2)求飞船从点到点的平均速度.(结果精确到)21.(本题满分9分)如图所示,将矩形纸片沿折叠得到,且点恰好落在上.(1)求证:,(2)若,求的值.22.(本题满分10分)在平面直角坐标系中,抛物线交轴于、两点,交轴于点.(1)求抛物线表达式中的、;(2)点是直数上方抛物线上的一动点,过点作轴交于点,作交轴于点,求的最大值及此时点的坐标;(3)将该抛物线沿射线方向平移,请直接写出新抛物线的表达式______.23.(本题满分10分)同学们,“在同一个圆中,同弧对的圆周角相角”,这个命题的逆命题是“在一条线段的同侧,若干个点对线段两端点张角相等,那么这些点与线段的两端是共圆的”.这是真命题.如右图,若,则、、、共圆.这个命题可以解决很多问题.B BO A B 0.1km /s 1.73≈ABCD AE AFE △F DC ADF FCE ∽△△tan 1CEF ∠=tan AEB ∠212y x bx c =-++x ()4,0A B y ()0,4Cb c P AC F PE y ∥AC E PF AC ∥x F PE PF P CA 1y 1y MPN MQN ∠=∠P Q M N(1)如图1,和均为正三角形,、、三点共线,的度数是______,线段、之间的数量关系是______.(2)如图2,在等腰直角和等腰直角中,,、、三点共线,线段、交于点.求出的度数.(3)如图3所示,在中,,,,连结,,将绕点逆时针方向旋转,当所在直线与直线交于点时,请直接写出的长.汝阳县2024年中招第一次模拟考试数学参考答案一、选择题(每小题3分,共30分)1-5 ADDBC6-10 DACAD二、填空题(每小题3分,共15分)11.12.2024 13. 14. 15.1或5三、解答题(本大题共8小题,满分75分.)16.(本题满分10分)解:(1)原式.ABC △ADE △B D E BEC ∠BD CE ABC △ADE △90ACB AED ∠=∠=︒B D E BE AC F BEC ∠Rt ABC △30B ∠=︒AD BD =AE CE =DE 4DE =ADE △A DE AB B CE ()2,0-π212y x =-+=++-=-(2)原式.17.(本题满分9分)(1)证明:连接,,是等边三角形,,,,,,,与相切;(2)四边形是圆的内接四边形,,.是弧的中点,,,,,即的边长为6.18.(本题满分9分)(1)解:二、三这两个月的月平均增长率为,根据题意可得:,解得:或(不合题意舍去).答:二、三这两个月的月平均增长率为20%;(2)设当商品降价元时,商品获利29610元,根据题意可得:,解得:,(不合题意舍去).答:当商品降价1元时,商品获利29610元.19.(本题满分9分)解:(1)86,88,30;(2)八年级的学生掌握科普知识较好.理由:七年级和八年级抽取的学生成绩的平均数相同,但八年级的中位数比七年级的中位数大,所以八年1==-=OC OB ABC △60A ABC ∴∠=∠=︒2BOC A ∠=∠ 120BOC ︒∴∠=AB CE ∥ 60BCE ABC ∴∠=∠=︒OB OC = 30OBC OCB ︒∴∠=∠=306090OCE OCB BCE ∴∠=∠+∠=︒+︒=︒CE ∴O ABCD 180A BCD ∴∠+∠=︒120BDC ∴∠=︒D BC 30DBC BCD ∴∠=∠=︒18090BEC EBC BCE ︒︒∴∠=-∠-∠=132CE BC == 6BC ∴=ABC △x ()2225013240x +=20%x =22.2x =-m ()()201032405029610m m --+=11m =255.8m =-级的学生掌握科普知识较好.(理由合理均给分)(3)(人).两个年级成绩达到90分及以上的学生一共约有290人.20.(本题满分9分)(1)解:在中,,,.,.在中,,,.(两个数值都给分)(2)在中,,在,,,飞船从处到处的平均速度.21.(本题满分9分)(1)证明:四边形是矩形,,.矩形纸片沿折叠得到,且点在上,,,..(2)解:在中,,设,则,.矩形纸片沿折叠得到,且点在上,,,,,,...22.(本题满分10分)764005001401502902020⨯+⨯=+=∴Rt AOC △90AOC ∠=︒ 30ACO ∠=︒8km AC =()1184km 22AO AC ∴==⨯=O C =Rt AOB △45BCO ∠=︒45BCO OBC ∴∠=∠=︒6.92km BO OC ∴===Rt AOC△OC =Rt BOC△BO ∴=()4km AB OB OA ∴=-=-∴AB ()0.3km/s =≈ ABCD 90B C D ∴∠=∠=∠=︒90AFD DAF ︒∴∠+∠= ABCD AE AFE △F DC 90AFE B ︒∴∠=∠=18090AFD CFE AFE ︒︒∴∠+∠=-∠=DAF CFE ∴∠=∠ADFC FCE ∴≌△△Rt CEF △tan 1CFCEF CE∠==CE a =CF a=EF∴=AE AFE △F DC B E E F ∴==AEB AEF ∠=∠)1BC BE CEa ∴=+=+)1AD BC a ∴==ADF FCE ∽△△1AF AD FE CF∴===+tan 1AFAEFFE∴∠==+tan tan 1A E B A E F ∴∠=∠=+解:(1)抛物线过点和点,,解这个方程组,得,,.(2)延长交轴于点.设直线的表达式为.,解这个方程组,得,直线的表达式为.、,,,,,,由(1)知抛物线.设,则,当时,取得最大值为,此时.(3).23.(本题满分10分)212y x bx c =-++()4,0A () 0,4C 221440210042b c b c ⎧-⨯++=⎪⎪∴⎨⎪-⨯+⨯+=⎪⎩14b c =⎧⎨=⎩1b ∴=4c =PE x H AC ()0y kx mk =+≠404k m m +=⎧∴⎨=⎩14k m =-⎧⎨=⎩∴AC 4y x =-+()4,0A ()0,4C 4OA OC ∴==45OAC ∴∠=︒PF AC ∥ 45AFP OAC ∴∠=∠=︒sin 45PH PF ∴=⋅︒2142y x x =++21,42P t t t ⎛⎫-++⎪⎝⎭(),4E t t -+()221144422PE PF PE PH t t t t t ⎛⎫⎛⎫∴+=+=-++--++-++ ⎪ ⎪⎝⎭⎝⎭223253424t t t ⎛⎫=-++=--+⎪⎝⎭∴32t =PE PF 254335,28P ⎛⎫ ⎪⎝⎭∴()2115322y x =--+解:(1)60°,;(2)解法1:和均为等腰直角三角形,,解法2:,,,在中,,在中,,,,又,,,,,,;解法2:、、、四点共圆又在中 又在中, 、、、四点共圆在中(3BD CE =ABC△ADE △45BAC ABC ADE DAE ∴∠=∠=∠=∠=︒90ACB AED ∠=∠=︒BAD CAE ∴∠=∠135ADB ∠=︒Rt ABC △sin AC ABC AB ∠=Rt ADE △sin AEADE DE∠=sin45︒ AC AE AB AD ∴==AB AC AD AE∴=BAD CAE ∠=∠ ABD ACE ∴∽△△130ADB AEC ∴∠=∠=︒BD AB AD CEACAE==45BEC AEC AED ∴∠=∠-∠=︒AC AE AB AD ==AB AC∴=BD ABCE AC∴==BD E ∴=BCA BEA∠=∠ A ∴E C B BEC BAC∴∠=∠ Rt ABC △45BAC ∠=︒45BEC ︒∴∠=9045135AEC AEB BEC ∴∠=∠+∠=︒+︒=︒Rt ADE △45ADE ∠=︒135ADB ∴∠=︒ADB AEC∴∠=∠A E C B ABE ACE∴∠=∠ABD ACE ∴∽△△BD ADCEAE ∴= Rt ADE △ADAE=BD CE∴=BD E∴=。
河南省洛阳市2024届九年级下学期中考一模数学试卷(含解析)
![河南省洛阳市2024届九年级下学期中考一模数学试卷(含解析)](https://img.taocdn.com/s3/m/d1ca0b695b8102d276a20029bd64783e08127d56.png)
洛阳市2024 年中招模拟考试(一)数学试卷注意事项:1.本试卷分试题卷和答题卡两部分,试题卷共6页,满分120分,考试时间100分钟.2.试题卷上不要答题,请用0.5 毫米黑色签字水笔直接把答案写在答题卡上.答在试题卷上的答案无效.3.答题前,考生务必将本人姓名、准考证号填写在答题卡第一面的指定位置上.一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1. 的绝对值是()A. 3B.C.D.【答案】A解析:解:,的绝对值是3,故选:A.2. 天地正清明,最美四月天.2024年清明假期,河南省文化和旅游市场热度延续、高潮迭起.三天假期,河南省接待国内游客1906.9万人次,旅游总收入112.5亿元.与2023年同期相比,接待人次增长9.9%,旅游总收入增长20.6%.数据“112.5亿”用科学记数法表示为()A. B. C. D.【答案】D解析:解:数据亿用科学记数法可表示为:,故选:D.3. 我国古代数学家刘徽利用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵、横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的左视图是()A. B. C. D.【答案】A解析:解:由几何体可得,从左边看到的平面图形为,故选:.4. 下列运算正确的是()A. B. C. D.【答案】C解析:解:A.,运算错误,不符合题意;B.,运算错误,不符合题意;C.运算正确,符合题意;D.运算错误,不符合题意.故选:C.5. 如图,已知,于点F,平分,若,则的度数是()A. B. C. D.【答案】D解析:设与相交于点G,∵,∴,∵,∴,∵,∴,∵平分,∴,∴.故选:D.6. 关于x的方程有两个不相等的实数根,m的值可以是()A. B. 1 C. D. 2【答案】A解析:解:∵关于的方程有两个不相等的实数根,,解得:.故的值可以为,故选:A.7. 如图,四边形内接于,连接.若,则的度数为()A. B. C. D.【答案】D解析:∵四边形内接于,∴,∵,∴,∵与所对的弧都是,∴.故选:D.8. 某校计划组织研学活动,现有四个地点可供选择:龙门石窟、洛邑古城、龙门海洋馆、洛阳博物馆.为了解学生想法,校方进行问卷调查(每人选一个地点),并绘制成如图所示统计图.已知选择洛邑古城的有360人,那么选择龙门石窟的有()A. 120人B. 240人C. 360人D. 480人【答案】B解析:解:学生总数为:(人),选择龙门石窟的人数为:(人),故选:B.9. 如图,在平面直角坐标系中,的顶点O为坐标原点,,C是斜边的中点,且交x轴于点D.将沿x轴向右平移得到,当的中点E恰好落在y 轴上时,点的坐标为()A. B. C. D. (7,0)【答案】A详解】解:∵,∴,∴,∴;∵C是斜边的中点,∴,∵,∴在中,,由平移的性质可得,,∴,∵点E为的中点,∴,在中,,∴,∴,故选:A.10. 如图1,点E在正方形的边上,且点P沿从点B运动到点D,设B,P 两点间的距离为x,,图2是点P运动时y随x变化的关系图象,若图象的最低点M的纵坐标为则最高点N的纵坐标a的值为()A. 6B.C.D.【答案】C解析:连接,∵四边形是正方形,是其对角线,∴,又,∴,∴,,连接交于点,(三角形两边之和大于第三边).当点P运动到时,,解得,.连接,则.在图1中,当P运动到D点时,对应图2中最高点N,此时y取最大值a,,故选:C.二、填空题(每小题3分,共15分)11. 若一次函数(b是常数)的图象经过第二、三、四象限,则b的值可以是_____ (写出一个即可).【答案】(答案不唯一)解析:解:∵一次函数(b是常数)的图象经过第二、三、四象限,∴.故答案为:(答案不唯一).12. 不等式组的解集为__________.【答案】解析:解:,由①得,,由②得,,故不等式组的解集为.故答案为:.13. 人类的性别由一对染色体决定,称为性染色体.女性的性染色体是一对同型的染色体、用表示,男性的性染色体是一对异型的染色体,用表示,每个人的成对染色体只有一个能遗传给后代,且可能性相等.则一对夫妇的第一个孩子是女孩的概率是_______.【答案】##解析:解:一对夫妇的第一个孩子有女孩和男孩两种情况,所以一对夫妇的第一个孩子是女孩的概率是,故答案为:.14. 如图,在中,,,以点A 为圆心,边的长为半径作交边于点 E ,以边 为直径作半圆交边于点 D ,则图中阴影部分的面积为_______.【答案】解析:∵,∴,∴,∴.故答案为:.15. 在中,将边绕点A旋转,点C的对应点是点D,连接.当是等腰直角三角形时,的长为_________.【答案】或解析:解:当,且点在上方时,如图所示,过点作的垂线,垂足为,∵,且,∴四边形是正方形,∴,∴.在中,.当,且点在下方时,如图所示,过点作的垂线,垂足为,∵,且,∴四边形是正方形,∴,∴.在中,综上所述:的长为或.故答案为:或.三、解答题(本大题共8个小题,共75分)16. (1)计算:;(2)化简:【答案】(1);(2)解析:解:(1);(2).17. 某公司有A,B,C三种型号电动汽车出租,每辆车每天费用分别为310元,370元,580元.洛洛打算从该公司租一辆汽车外出旅游一天,往返行程为,为了选择合适的型号,通过网络调查,获得三种型号汽车充满电后的里程数据如图所示.型平均里程()中位数()众数()号A199195C227225225(1)洛洛已经对A,C型号汽车数据统计如表,请继续求出B型号汽车行驶里程的平均数、中位数和众数;(2)为了尽可能避免行程中充电耽误时间,又能经济实惠地用车,请你从相关统计量和符合行程要求的百分比等进行分析,给出合理的租车建议.【答案】(1)平均数是;中位数为;众数为(2)选择型号汽车(1)解:型号汽车行驶里程的平均数是:,把这20个数据按从小到大的顺序排列,第10,11个数据均为,所以中位数为;出现了六次,次数最多,所以众数为;(2)选择型号汽车,理由如下:型号汽车的平均里程、中位数和众数均低于,且只有的车辆能达到行程要求,故不建议选择;型号汽车的平均里程、中位数和众数都超过,其中型号汽车有符合行程要求,很大程度上可以避免行程中充电耽误时间,且型号汽车比型号汽车更经济实惠,故建议选择型号汽车.18. 如图,四边形的顶点B,C在x轴上,顶点D在y轴上,,顶点A的坐标为,顶点B的横坐标.双曲线经过点A.(1)求反比例函数的解析式;(2)请用无刻度的直尺和圆规作出的平分线(要求:不写作法,保留作图痕迹);(3)上问中所作的角平分线与x轴交于点E,若点C的坐标为,求证:四边形是菱形.【答案】(1)反比例函数的解析式为(2)见详解(3)见详解(1)解:将点代入双曲线,得,,解得:,∴反比例函数的解析式为;(2)(3),,,,,,,,,是的平分线,,,,,,,∴四边形是平行四边形,,∴平行四边形是菱形.19. 随着端午节的临近,A,B两家超市开展促销活动,各自推出不同的购物优惠方案,如下表:A超市B超市优惠方案所有商品按七五折出售购物金额每满100元返40元(1)当购物金额为90元时,选择超市(填“A”或“B”)更省钱;当购物金额为120元时,选择超市(填“A”或“B”)更省钱;(2)当购物金额为元时,请分别写出它们的实付金额y(元)与购物金额x(元)之间的函数表达式,并说明促销期间如何选择这两家超市去购物更省钱?(3)对于A超市的优惠方案,随着购物金额的增大,顾客享受的优惠率不变,均为(注:优惠率=购物金额-实付金额).若在B超市购物,购物金额越大,享受的优惠率一定越大吗?请举例说明.【答案】(1)(2)当或时,在超市购物更省钱;当或时,在超市购物和超市购物实付金额一样多,任选一家即可;当时,在超市购物更省钱(3)在超市购物、购物金额越大,享受的优惠率不一定越大(1)解:当购物金额为90元时,在超市购物实付金额(元),在超市购物实付金额90元,∵,∴当购物金额为90元时,选择超市更省钱;当购物金额为120元时,在超市购物实付金额(元),在超市购物实付金额(元),,∴当购物金额为120元时,选择超市更省钱.故答案为:.(2)当时,在超市购物实付金额;当时,在超市购物实付金额;当时,在超市购物实付金额;∴在超市购物实付金额,当时,;当时:;当时:若,解得;若,解得;若,解得.综上,当或时,在超市购物更省钱;当或时,在超市购物和超市购物实付金额一样多,任选一家即可;当时,在超市购物更省钱.(3)在超市购物、购物金额越大,享受的优惠率不一定越大.举例说明如下:当在超市购物金额为100元时,返40元,实付金额为(元),优惠率为;当在超市购物金额为160元时,返40元,实付金额为(元),优惠率为,∴在超市购物、购物金额越大,享受的优惠率不一定越大.20. 风是一种可再生能.利用风能进行发电既可以提供持续的电力供应,又可以减少温室气体排放,抑制全球气候变暖,还可以增加能供应的多样性,降低对传统能的依赖.某市若干台风机矗立在云遮雾绕的山脊之上,风叶转动,风能就能转换成电能,造福千家万户.某中学初三数学兴趣小组,为测量风叶的长度进行了实地测量.如图,三片风叶,,两两所成的角为,当其中一片风叶与塔干叠合时,在与塔底O水平距离为米的E处,测得塔顶部A的仰角.,风叶的视角,求风叶的长度(结果精确到.参考数据:)【答案】风叶的长度约为解析:如图,自点B作,垂足为点F,过点A作,垂足为点G.∵,∴四边形是矩形,∴.由已知,∴,在中,.∵,∴,又,则,∴,则.在中,,,∴,∴,在中,,∴,则,∴.答:风叶的长度约为.21. “急行跳远”是田径运动项目之一.运动员起跳后的腾空路线可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,从起跳到落入沙坑的过程中,运动员的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系某运动员进行了两次训练.(1)第一次训练时,该运动员的水平距离x与竖直高度y的几组数据如下:水平距离0234竖直高度0根据上述数据,直接写出该运动员竖直高度的最大值,并求出满足的函数关系;(2)第二次训练时,该运动员的竖直高度y与水平距离x近似满足函数关系记该运动员第一次训练落入沙坑点的水平距离为,第二次训练落入沙坑点的水平距离为,请比较,的大小.【答案】(1)(2)(1)解:由题意得,抛物线的顶点坐标为:.∴该运动员竖直高度的最大值为米.设函数关系式为:.∵经过点,∴,解得:.∴函数解析式为:.(2)取.第一次训练时,.解得:(不合题意,舍去),.∴.第二次训练时,.解得:(不合题意,舍去),.,,.22. 如图1,⊙O与直线l相离,过圆心O作直线l的垂线,垂足为P,且交于两点(M在之间).我们把点N称为关于直线l的“远望点”,把的值称为关于直线l的“远望数”.(1)如图2,在平面直角坐标系中,点E的坐标为,过点E画垂直于x轴的直线a,则半径为1的关于直线a的“远望点”的坐标是________,关于直线a的“远望数”为________;(2)如图3,在平面直角坐标系中,直线交x轴于点A,交y轴于点B,点C坐标为,以点C为圆心、长为半径作.若与直线相离,点O是关于直线的“远望点”,且关于直线的“远望数”是求直线的函数表达式.【答案】(1)(2)直线的函数表达式为(1)根据“远望点”定义,可得半径为1的关于直线a的“远望点”的坐标是,∴关于直线a的“远望数”为,故答案为:(2)设直线的解析式为连接并延长,交于H,交直线于点G,过C作轴于点D,设∵点C坐标为,∵O是关于直线的“远望点”,且关于直线的“远望数”是,即∵点C坐标为,轴于点D,∴即同理得即,∴,解得,∴直线的函数表达式为23. 综合与实践课上,老师让同学们用“木工尺”探究三等分任意角的方法.如图1为“木工尺”示意图,它是由两条宽度相同且互相垂直的直尺组成的,其中.下面是同学们的探究过程,请仔细阅读,并完成相应的任务,【操作实践】如图2,小明画的平行线,使得与的距离等于尺宽,在上取点E,使等于尺宽,调整“木工尺”的位置,使得经过点O,点D落在上,点E落在上,则三等分小明过点D作,垂足为点F,由题意得:,∴().∵,∴垂直平分,∴,∴平分(),∴.∴.∴三等分.任务:(1)请在括号内填写推理的依据.【类比迁移】爱动脑筋的小华受到上述方法的启发,想到了通过折叠矩形纸片三等分一个已知角的方法,他的前两个操作步骤如下(如图3):步骤1:在矩形纸片上折出任意角,将矩形对折,折痕记为,再将矩形对折,折痕记为,展开矩形;步骤2:将矩形沿着折叠,使得点B的对应点落在上,点M的对应点落在上.任务:(2)连接,试证明是的一条三等分线.【拓展应用】(3)在上述小华折叠的条件下,若,且三点共线,请直接写出的长.【答案】【1】到角的两边距离相等的点在这个角的角平分线上;垂直平分线的性质【2】见解析【3】解析:(1)根据到角的两边距离相等的点在这个角的角平分线上;根据垂直平分线的性质.故答案为:到角的两边距离相等的点在这个角的角平分线上;垂直平分线的性质(2)连接,过点B作于点J,过点作于点K,根据折叠的性质,得,,,∴,,∴,∵,∴,,∴,∴,∵,∴,∴平分,∴,∴,故是的一条三等分线.(3)过点作于点T,根据(2)证明,得到,∵,且三点共线,∴,∴,,∵,∴,∴,∴,,∴.。
2023年河南中考数学模拟试题(6)
![2023年河南中考数学模拟试题(6)](https://img.taocdn.com/s3/m/0efe791eeffdc8d376eeaeaad1f34693dbef1057.png)
2023河南中考数学模拟试题(6)一.选择题(共10小题,满分30分,每小题3分)1.(3分)2的相反数是()A.2B.﹣2C.D.﹣2.(3分)郑州市第47中学七年级学习小组制作了正方体卡片,以表示对广大医务工作者的感谢.如图是它的一种展开图,则在正方体中,与“最”字所在面相对的面上的汉字是()A.美B.的C.人D.逆3.(3分)如图,直线AB,CD相交于点O,OE⊥CD于点O,∠1=40°,则∠AOC的度数()A.50°B.120°C.130°D.140°4.(3分)下列运算正确的是()A.(x﹣y)2=x2﹣y2B.=﹣3C.x2•x4=x6D.(2x2)3=6x65.(3分)如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边的中点,连接EF.若EF=,BD=4,则菱形ABCD的周长为()A.4B.C.4D.286.(3分)关于x的方程(a﹣1)x2﹣4x+6=0有实数根,则整数a的最大值是()A.2B.1C.0D.﹣17.(3分)某校在一次科普知识抢答比赛中,7名选手的得分分别为:8,7,6,5,5,5,4,则这组数据的众数是()A.5B.6C.7D.88.(3分)将数5 900 000 000用科学记数法表示为()A.5.9×1010B.5.9×109C.59×108D.0.59×1010 9.(3分)如图,在平面直角坐标系中,点A1在x轴的正半轴上,B1在第一象限,且△OA1B1是等边三角形.在射线OB1上取点B2,B3,…,分别以B1B2,B2B3,…为边作等边三角形△B1A2B2,△B2A3B3,…使得A1,A2,A3,…在同一直线上,该直线交y轴于点C.若OA1=1,∠OA1C=30°,则点B9的横坐标是()A.B.C.256D.10.(3分)某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m个人共同完成需n天,选取6组数对(m,n),在坐标系中进行描点,则正确的是()A.B.C.D.二.填空题(共5小题,满分15分,每小题3分)11.(3分)请你写出同时具备下列两个条件的一次函数表达式(写出一个即可).(1)y随着x的增大而减小;(2)图象经过点(﹣1,1)12.(3分)若不等式组无解,则m的取值范围.13.(3分)一个布袋里装有2个只有颜色不同的球,其中1个红球,1个白球,从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球,则两次摸到的球是一白一红的概率是.14.(3分)如图,正方形ABCD的边长为2,分别以顶点A,B为圆心,边长2为半径画弧,则图中阴影部分的面积为.15.(3分)如图,△ABC和△BDE都是等腰直角三角形,BA=BC,BD=BE,将△BDE绕点B逆时针旋转后得到△BD'E',当点E'恰好落在直线AD'上时,AE'=m,DE=n,则△AD'C的面积为.三.解答题(共8小题,满分75分)16.(10分)计算:﹣|﹣1|+.17.(9分)2022年,教育部制定了独立的《义务教育劳动课程标准》,其中规定:以劳动项目为载体,以孩子经历体验劳动过程为基本要求,培养学生的核心劳动素养.某校分别从该校七、八年级学生中各随机调查了100名学生,统计他们上周的劳动时间,劳动时间记为x分钟,将所得数据分为5个组别(A组:90≤x≤100;B组:80≤x<90;C组:70≤x<80:D组:60≤x<70;E组:0≤x<60),将数据进行分析,得到如下统计:①八年级B组学生上周劳动时间从高到低排列,排在最后的10个数据分别是:82,82,81,81,81,81,80,80,80,80.②八年级100名学生上周劳动时间频数分布统计表:分组A B C D E频数14b27136③七、八年级各100名学生上周带动时间的平均数、中位数、众数如表:年级平均数中位数众数七年级81.379.582八年级81.3c83④七年级100名学生上周劳动时间分布扇形统计图如图.请你根据以上信息,回答下列问题:(1)a=,b=,c=;(2)根据以上数据分析,你认为七、八年级哪个年级学生上周劳动情况更好,请说明理由;(写出一条理由即可)(3)已知七年级有800名学生,八年级有600名学生,请估计两个年级上周劳动时间在80分钟以上(含80分钟)的学生一共有多少人?18.(9分)如图,在平面直角坐标系中,点A在第一象限且点A到x轴、y轴的距离分别是6、2,若反比例函数的图象经过点A、点B(4,b).(1)求出点A的坐标及反比例函数的解析式;(2)连接OA、OB、AB.求△OAB的面积;(3)过点A作AC垂直于x轴,过点B作BD垂直于y轴,垂足分别是点C、点D,AC 和BD交于点E,连接AB、CD,求证:AB∥CD.19.(9分)如图,有一垂直于地面的电线杆AB.在一建筑物二楼平台上的C处和三楼平台上的D处测得A的仰角分别为45°、35°.已知建筑物的层高CE和DF都是3.3m,CF的长为3m.求电线杆AB的高度.(图中所有点都在同一平面内,参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70.)20.(9分)某新能源汽车经销商分别花费60万元,32万元购进A,B两种型号的新能源汽车若干辆.已知A型汽车的进货单价比B型汽车的进货单价高4万元,且购进A型汽车的数量是B型汽车的数量的1.5倍.(1)求A,B两种型号汽车的进货单价;(2)由于新能源汽车需求不断增加,该店准备再次购进A,B两种型号的新能源汽车60辆,已知A型车的售价为25万元/辆,B型车的售价为20万元/辆,根据销售经验,购进B型车的数量不少于A型车的2倍.如果设将这60辆汽车全部售完会获利w万元,那么该经销商应购进A型车多少辆,才能使w最大?w最大为多少万元?21.(9分)为了节省材料,某水产养殖户利用水库的岸堤作为一边,用总长为42m的围网在水库中围成了如图所示的两块矩形区域;已知岸堤的可用长度不超过15m,设AB的长为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数解析式,并求自变量x的取值范围;(2)当AB的长度是多少时,矩形区域ABCD的面积y取得最大值,最大值是多少?22.(10分)如图1所示,在△ABC中,AB=AC=12,∠CAB=120°,P是BC边上一点(不与B、C点重合),将线段AP绕点A逆时针旋转120°得到扇形P AQ.(1)求证:△APB≌△AQC;(2)当BC与扇形P AQ相切时,求BQ的长;(3)如图2,若AP∥CQ,求阴影部分的图形的周长.(结果不求近似值)23.(10分)矩形纸片ABCD中,AB=4.实践思考:(1)连接BD,将纸片折叠,使点B落在边AD上,对应点为E,折痕为GH,点G,H 分别在AB,BD上.若AD=AB,如图①.①BD=,tan∠ADB=;②若折叠后的△AGE为等腰三角形,则△DHE为三角形;③隐去点E,G,H,线段GE,EH,折痕GH,如图②,过点D作DF⊥BD交BC的延长线于点F,连接AF,AC,则S△ACF=;(2)若AD=(+1)AB,如图③,点M在AD边上,且AM=AB,连接BM,求∠DBM的度数;拓展探究:(3)若AD=AB,如图④,N为边AD的中点,P为矩形ABCD内一点,连接BP,CP,满足∠BPC=90°,Q是边AB上一动点,则PQ+QN的最小值为.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南省2011年高级中等学校招生统一考试模拟试卷 数学(冲刺一)
一、选择题(每小题3分,共18分)
1
的平方根是【 】
A .2±
B . 1.414± C
. D .2-
2.甲型H1N1流感病毒的直径约为0.08微米至0.12微米,普通纱布或棉布口罩不能阻挡甲型H1N1流感病毒的侵袭,只有配戴阻隔直径低于0.075微米的标准口罩才能有效.0.075微米用科学记数法表示正确的是【 】
A .37.510⨯微米
B .37.510-⨯微米
C .27.510⨯微米
D .27.510-⨯微米
3.如图,由四个相同的直角三角板拼成的图形,设三角板的直角边分别为a 、b (a b >),则这两个图形能验证的式子是【 】
A
.
22()()4a b a b ab +--=
B .222()()2a b a b ab +--=
C .222()2a b ab a b +-=+
D .22()()a b a b a b +-=-
4.如图,一个由若干个相同的小正方体堆积成的几何体,它的主视图、左视图和俯视图都是田字形,则小正方体的个数是【 】
A .6、7或8 B
D .8
5的图象交于A 、B 、C 、D 四点,已知点A 的横坐标为1 A .1- B .2- C .3
- D .4- 6.如图,圆锥的轴截面ABC △是一个以圆锥的底面直径为底边,圆锥的母线为腰的等腰三角形,若圆锥的底面直径BC = 4 cm ,母线AB = 6 cm ,则由点B 出发,经过圆锥的侧面到达母线AC 的最短路程是【 】
(第3题)
(第4题) (第5题) A
B
C
O
(第6题) ·
A
cm B .6cm C
. D .4cm 二、填空题(每小题3分,共27分) 7
.在数轴上,与表示
_________.
8.图象经过点(cos60,sin30)P ︒-︒的正比例函数的表达式为____________.
9.如图,直线12l l ∥,则三个角的度数x 、y 、z 之间的等量关系是____________.
10.分解因式:32
28x xy -. 11.如图,在平面直角坐标系中,矩形的边与坐标轴平行或垂直,顶点A 、C 分别在函数2y x
=的图象的两支上,则图中两块阴影部分的面积的乘积等于__________. 12.如图,点C 、D 在以AB 为直径的半圆上,120BCD ∠=︒,若AB
=2,则弦BD 的长为________________.
13.某着名篮球运动员在一次比赛中20投16中得28分(罚球命中一次得1分),其中3分球2个,则他投中2分球的频率是__________.
14
.如图,若开始输入的x 的值为正整数,最后输出的结果为144,则满足条件的x 的值为_____________________.
15.如图,两个半径相等的直角扇形的圆心分别在对方的圆弧上,
AB 的中
半径AE 、CF 交于点G ,半径BE 、CD 交于点H ,且点C 是点,若扇形的半径为2,则图中阴影部分的面积等于____________________.
三、解答题(本大题共8个小题, 满分75分)
16.(8分)解方程:
32
322
x x x -=+-. l 1
x
(第9题)
l 2 z y
(第11题)
A B
C
O (第12题)
· D (第14题)
(第15题)
17.(9分)国务院办公厅下发《关于限制生产销售使用塑料购物袋的通知》,从2008年6月1日起,在全国范围内禁止生产销售使用超薄塑料袋,并实行塑料袋有偿使用制度,“禁塑令”有效的减少了“白色污染”的来源。
某校“环保小组”在“禁塑令”颁布实施前期,到居民小区随机调查了20户居民一天丢弃废塑料袋的情况,统计结果如下表:
每户一天丢弃废塑料袋的个数
2 3 4 5 户 数
8
6
4
2
请根据表中信息回答:
⑴ 这20户居民一天丢弃废塑料袋的众数和中位数分别是多少个?
⑵ 若该小区有居民500户,如果严格执行“禁塑令”不再丢弃塑料袋,你估计该小区一年来(按365天计算)共减少丢弃的废塑料袋多少个?
18.(9分)如图,正方形ABCD 中,E 点在边BC 上,F 点在边CD 上,
AF ED ⊥.
⑴ 线段AF 和DE 相等吗?说明理由; ⑵ 求证:222EF BE FD =+.
(第18题)
D
A
B
C
E F
19.(9分)如图,是一台名为帕斯卡三角的仪器,当实心小球从入口落下,它依
次碰到每层菱形挡块时,会等可能的向左或向右落下.
⑴分别求出小球通过第2层的A位置、第3层的B位置、第4层的C位置、第5层的D位置的概率;
⑵设菱形挡块的层数为n,则小球通过第n层的从左边算起第2个位置的概率是多少?
(第19题)
20.(9分)如图,Rt ABC △的斜边AB =10,3sin 5
A
. ⑴ 用尺规作图作线段AB 的垂直平分线l (保留作图痕迹,不要写作法、证明); ⑵ 求直线l 被Rt ABC △截得的线段长.
21.(9分
三种食品的价格分别是2元、4元和1050元,若A 种食品购买m 件.
⑴ 用含有m 的代数式表示另外两种食品的件数; ⑵ 请你帮助设计购买方案,并说明理由.
(第20题)
22.(10分)如图,在平面直角坐标系中,直线
4
8
3
y x
=-+分别与x轴交于点
A,与y轴交于点B,OAB
∠的平分线交y轴于点E,点C在线段AB上,以CA为直径的D经过点E.
⑴判断D与y轴的位置关系,并说明理由;
⑵求点C的坐标.
(第22题)
23.(12分)如图,已知关于x 的一元二次函数2y x bx c =-++(0c >)的图象与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,且3OB OC ==,顶点为M .
⑴ 求出一元二次函数的关系式;
⑵ 点P 为线段MB 上的一个动点,过点P 作x 轴的垂线PD ,垂足为D .若
OD m =,PCD △的面积为S ,求S 关于m 的函数关系式,并写出m 的取值范围;
⑶ 探索线段MB 上是否存在点P ,使得PCD △为直角三角形,如果存在,求出P 的坐标;如果不存在,请说明理由.
(第23题)
参考答案
一、选择题:⑴C ⑵D ⑶B ⑷A ⑸C ⑹C .
二、填空题:⑺2.⑻y x =-.⑼180y x z -+=︒.⑽2(2)(2)x x y x y +-.⑾4.⑿
0.4.⒁6,29.⒂24π-.
三、解答题:16.略解:同乘(2)(2)x x +-,得1x =,检验(12)(12)0+-≠,所以方程的解是1.
17.略解:⑴众数和中位数分别是2和3;
⑵ 82634425
38642
x ⨯+⨯+⨯+⨯=
=+++,3653500547500n =⨯⨯=.答.
18.略证:⑴ AF DE =,ADF DCE △≌△(AAS );
⑵222EF FC EC =+22BE FD =+
19.略解:⑴ A 、B 、C 、D 位置的概率分别为:12、38、14、516
; ⑵
2n
n 20.⑴ 略;
⑵ 求出6BC =,8AC =,3tan 4A =
.截线长为 1535tan 344
A ⨯==. 21.略解:⑴ 设
B 、
C 两种食品的件数分别为x 、y ,则16,
241050m x y m x y ++=⎧⎨++=⎩
.解得
5543m x -=
,7
3
m y -=; ⑵联立
55413m -≥、7
13
m -≥、1m ≥.解得1013m ≤≤.则正整数10,11,12,13m =.只有当10m =时,5x =,1y =;当13m =时,1x =,2y =这两种方案符合题意.答.
22.⑴相切,连结ED ,DEA DAE EAO ∠=∠=∠,所以ED OA ∥,所以ED OB ⊥; ⑵ 易得10AB =.设(,)C m n ,ED R =,则解直角三角形得5
3
B D R =
.因为5103R R +=,则15
4
R =.cos m R R CAF =-⨯∠15331452⎛⎫=-= ⎪⎝⎭.
2sin n R CAF =⨯∠1542645=⨯⨯=.所以3,62C ⎛⎫
⎪⎝⎭
.
23.⑴(3,0)B 、(0,3)C .3,930.c b c =⎧⎨-++=⎩得2,
3.
b c =⎧⎨=⎩,所以223y x x =-++;
⑵ 易得(1,4)M .设MB :y kx d =+,则30,4.k d k d +=⎧⎨+=⎩得2,
6.k d =-⎧⎨=⎩
所以26y x =-+.所以
(,26)P m m -+,21
(26)32
S m m m m =-+=-+(13m ≤<).
⑶ 存在.在PCD △中,PDC ∠是锐角,当90DPC ∠=︒时,CDO DCP ∠=∠,得矩形
CODP .由263m -+=,解得32m =
,所以3,32P ⎛⎫ ⎪⎝⎭
; 当
90PCD ∠=︒
时,C O D D △∽△,此时2
C
D C O P D
=⋅,即
293(26)m m +=-+
.2690m m
+-=.解得3m =-±,因为13m ≤<,所以
1)m =,所以()
3,6(2P .。