上街区三中2018-2019学年高二上学期数学期末模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上街区三中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 在等差数列{a n }中,a 1=2,a 3+a 5=8,则a 7=( ) A .3
B .6
C .7
D .8
2. 已知函数f (x )=﹣log 2x ,在下列区间中,包含f (x )零点的区间是( ) A .(0,1) B .(1,2) C .(2,4) D .(4,+∞)
3. 设函数()()21x f x e x ax a =--+,其中1a <,若存在唯一的整数,使得()0f t <,则的 取值范围是( ) A .3,12e ⎡⎫-
⎪⎢⎣⎭ B .33,24e ⎡⎫-⎪⎢⎣⎭ C .33,24e ⎡⎫⎪⎢⎣⎭ D .3,12e ⎡⎫
⎪⎢⎣⎭
1111]
4. 设△ABC 的三边长分别为a 、b 、c ,△ABC 的面积为S ,内切圆半径为r ,则,类比这个结论可
知:四面体S ﹣ABC 的四个面的面积分别为S 1、S 2、S 3、S 4,内切球半径为r ,四面体S ﹣ABC 的体积为V ,
则r=( )
A .
B .
C .
D .
5. 直线l 过点P (2,﹣2),且与直线x+2y ﹣3=0垂直,则直线l 的方程为( )
A .2x+y ﹣2=0
B .2x ﹣y ﹣6=0
C .x ﹣2y ﹣6=0
D .x ﹣2y+5=0 6. 若动点A ,B 分别在直线l 1:x+y ﹣7=0和l 2:x+y ﹣5=0上移动,则AB 的中点M 到原点的距离的最小值
为( )
A .3
B .2
C .3
D .4 7. 若a >b ,则下列不等式正确的是( )
A .
B .a 3>b 3
C .a 2>b 2
D .a >|b|
8. 等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( ) A .1
B .2
C .3
D .4
9. 函数y=2|x|的图象是( )
A .
B .
C .
D .
10.复数i i -+3)1(2
的值是( )
A .i 4341+-
B .i 4341-
C .i 5351+-
D .i 5
351-
【命题意图】本题考查复数乘法与除法的运算法则,突出复数知识中的基本运算,属于容易题. 11.函数2
()45f x x x =-+在区间[]0,m 上的最大值为5,最小值为1,则m 的取值范围是( )
A .[2,)+∞
B .[]2,4
C .(,2]-∞
D .[]0,2 12.双曲线
E 与椭圆C :x 29+y 2
3=1有相同焦点,且以E 的一个焦点为圆心与双曲线的渐近线相切的圆的面积
为π,则E 的方程为( ) A.x 23-y 2
3=1 B.x 24-y 2
2=1 C.x 25
-y 2
=1 D.x 22-y 2
4
=1 二、填空题
13x 和所支出的维修费用y (万元)的统计资料如表:
根据上表数据可得y 与x 之间的线性回归方程=0.7x+
,据此模型估计,该机器使用年限为14年时的维修
费用约为 万元.
14.已知函数f (x )
=,则关于函数F (x )=f (f (x ))的零点个数,正确的结论是 .(写
出你认为正确的所有结论的序号)
①k=0时,F (x )恰有一个零点.②k <0时,F (x )恰有2个零点. ③k >0时,F (x )恰有3个零点.④k >0时,F (x )恰有4个零点.
15.如图所示,圆C 中,弦AB 的长度为4,则AB AC ×的值为_______.
【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想. 16.若正方形P 1P 2P 3P 4
的边长为1,集合M={x|x=且i ,j ∈{1,2,3,4}},则对于下列命题:
①当i=1,j=3时,x=2; ②当i=3,j=1时,x=0;
③当x=1时,(i ,j )有4种不同取值; ④当x=﹣1时,(i ,j )有2种不同取值; ⑤M 中的元素之和为0.
其中正确的结论序号为 .(填上所有正确结论的序号)
17.阅读下图所示的程序框图,运行相应的程序,输出的n 的值等于_________. 18.方程(
x+y ﹣1)
=0
三、解答题
19.已知函数f (x )=log a (1+x )﹣
(Ⅰ)判断f (x )奇偶性,并证明;
(Ⅱ)当0<a <1时,解不等式f (x
20.已知函数f (x )=
.
(1)求f(f(﹣2));
(2)画出函数f(x)的图象,根据图象写出函数的单调增区间并求出函数f(x)在区间(﹣4,0)上的值域.
21.在直角坐标系xOy中,过点P(2,﹣1)的直线l的倾斜角为45°.以坐标原点为极点,x轴正半轴为极坐标建立极坐标系,曲线C的极坐标方程为ρsin2θ=4cosθ,直线l和曲线C的交点为A,B.
(1)求曲线C的直角坐标方程;
(2)求|PA|•|PB|.
22.(本题满分12分)如图所示,在正方体ABCD—A1B1C1D1中,E、F分别是棱DD1、C1D1的中点. (1)求直线BE和平面ABB1A1所成角 的正弦值;
(2)证明:B1F∥平面A1BE.
A1D1
23.现有5名男生和3名女生.
(1)若3名女生必须相邻排在一起,则这8人站成一排,共有多少种不同的排法?
(2)若从中选5人,且要求女生只有2名,站成一排,共有多少种不同的排法?
24.(本小题满分13分)
设1
()1f x x
=+,数列{}n a 满足:112a =,1(),n n a f a n N *+=∈.
(Ⅰ)若12,λλ为方程()f x x =的两个不相等的实根,证明:数列12n n a a λλ⎧⎫
-⎨⎬-⎩⎭
为等比数列;
(Ⅱ)证明:存在实数m ,使得对n N *
∀∈,2121222n n n n a a m a a -++<<<<.
)
上街区三中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)
一、选择题
1. 【答案】B
【解析】解:∵在等差数列{a n }中a 1=2,a 3+a 5=8, ∴2a 4=a 3+a 5=8,解得a 4=4,
∴公差d==,
∴a 7=a 1+6d=2+4=6 故选:B .
2. 【答案】C
【解析】解:∵f (x )=﹣log 2x ,
∴f (2)=2>0,f (4)=﹣<0, 满足f (2)f (4)<0,
∴f (x )在区间(2,4)内必有零点, 故选:C
3. 【答案】D 【解析】
考
点:函数导数与不等式.1 【思路点晴】本题主要考查导数的运用,涉及划归与转化的数学思想方法.首先令()0f x =将函数变为两个函
数()()()21,x
g x e x h x ax a =-=-,将题意中的“存在唯一整数,使得()g t 在直线()h x 的下方”,转化为
存在唯一的整数,使得()g t 在直线()h x ax a =-的下方.利用导数可求得函数的极值,由此可求得m 的取值
范围.
4.【答案】C
【解析】解:设四面体的内切球的球心为O,
则球心O到四个面的距离都是R,
所以四面体的体积等于以O为顶点,
分别以四个面为底面的4个三棱锥体积的和.
则四面体的体积为
∴R=
故选C.
【点评】类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).
5.【答案】B
【解析】解:∵直线x+2y﹣3=0的斜率为﹣,
∴与直线x+2y﹣3=0垂直的直线斜率为2,
故直线l的方程为y﹣(﹣2)=2(x﹣2),
化为一般式可得2x﹣y﹣6=0
故选:B
【点评】本题考查直线的一般式方程和垂直关系,属基础题.
6.【答案】A
【解析】解:∵l1:x+y﹣7=0和l2:x+y﹣5=0是平行直线,
∴可判断:过原点且与直线垂直时,中的M到原点的距离的最小值
∵直线l1:x+y﹣7=0和l2:x+y﹣5=0,
∴两直线的距离为=,
∴AB 的中点M 到原点的距离的最小值为+=3,
故选:A
【点评】本题考查了两点距离公式,直线的方程,属于中档题.
7. 【答案】B
【解析】解:∵a >b ,令 a=﹣1,b=﹣2,代入各个选项检验可得:
=﹣1, =﹣,显然A 不正确. a 3=﹣1,b 3=﹣6,显然 B 正确. a 2 =1,b 2=4,显然C 不正确. a=﹣1,|b|=2,显然D 不正确.
故选 B .
【点评】通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法.
8. 【答案】B
【解析】解:设数列{a n }的公差为d ,则由a 1+a 5=10,a 4=7,可得2a 1+4d=10,a 1+3d=7,解得d=2,
故选B .
9. 【答案】B
【解析】解:∵f (﹣x )=2|﹣x|=2|x|
=f (x )
∴y=2|x|
是偶函数,
又∵函数y=2|x|
在[0,+∞)上单调递增,故C 错误.
且当x=0时,y=1;x=1时,y=2,故A ,D 错误
故选B
【点评】本题考查的知识点是指数函数的图象变换,其中根据函数的解析式,分析出函数的性质,进而得到函数的形状是解答本题的关键.
10.【答案】C
【解析】i i i i i i i i i i 5
3
511062)3)(3()3(2323)1(2+-=+-=+-+=-=-+.
11.【答案】B 【解析】
试题分析:画出函数图象如下图所示,要取得最小值为,由图可知m 需从开始,要取得最大值为,由图可知m
的右端点为,故m 的取值范围是[]2,4.
考点:二次函数图象与性质. 12.【答案】
【解析】选C.可设双曲线E 的方程为x 2a 2-y 2
b
2=1,
渐近线方程为y =±b
a
x ,即bx ±ay =0,
由题意得E 的一个焦点坐标为(6,0),圆的半径为1, ∴焦点到渐近线的距离为1.即
|6b |b 2
+a
2
=1,
又a 2+b 2=6,∴b =1,a =5,
∴E 的方程为x 25
-y 2
=1,故选C.
二、填空题
13.【答案】 7.5
【解析】解:∵由表格可知=9, =4,
∴这组数据的样本中心点是(9,4),
根据样本中心点在线性回归直线=0.7x+
上,
∴4=0.7×9+,
∴
=﹣2.3,
∴这组数据对应的线性回归方程是=0.7x﹣2.3,
∵x=14,
∴=7.5,
故答案为:7.5
【点评】本题考查线性回归方程,考查样本中心点,做本题时要注意本题把利用最小二乘法来求线性回归方程的系数的过程省掉,只要求a的值,这样使得题目简化,注意运算不要出错.
14.【答案】②④
【解析】解:
①当k=0时,,当x≤0时,f(x)=1,则f(f(x))=f(1)==0,
此时有无穷多个零点,故①错误;
②当k<0时,(Ⅰ)当x≤0时,f(x)=kx+1≥1,
此时f(f(x))=f(kx+1)=,令f(f(x))=0,可得:x=0;
(Ⅱ)当0<x≤1时,,此时
f(f(x))=f()=,令f(f(x))=0,可得:x=,满足;
(Ⅲ)当x>1时,,此时f(f(x))=f()=k+1>0,此时无零点.
综上可得,当k<0时,函数有两零点,故②正确;
③当k>0时,(Ⅰ)当x≤时,kx+1≤0,此时f(f(x))=f(kx+1)=k(kx+1)+1,
令f(f(x))=0,可得:,满足;
(Ⅱ)当时,kx+1>0,此时f(f(x))=f(kx+1)=,令f(f(x))=0,可得:x=0,满足;
(Ⅲ)当0<x≤1时,,此时f(f(x))=f()=,令f(f(x))=0,可得:x=,满足;
(Ⅳ)当x>1时,,此时f(f(x))=f()=k+1,令f(f(x))=0得:x=
>1,满足;
综上可得:当k>0时,函数有4个零点.故③错误,④正确.
故答案为:②④.
【点评】本题考查复合函数的零点问题.考查了分类讨论和转化的思想方法,要求比较高,属于难题.15.【答案】8
16.【答案】①③⑤
【解析】解:建立直角坐标系如图:
则P1(0,1),P2(0,0),P3(1,0),P4(1,1).
∵集合M={x|x=且i,j∈{1,2,3,4}},
对于①,当i=1,j=3时,x==(1,﹣1)•(1,﹣1)=1+1=2,故①正确;
对于②,当i=3,j=1时,x==(1,﹣1)•(﹣1,1)=﹣2,故②错误;
对于③,∵集合M={x|x=且i,j∈{1,2,3,4}},
∴=(1,﹣1),==(0,﹣1),==(1,0),
∴•=1;•=1;•=1;•=1;
∴当x=1时,(i,j)有4种不同取值,故③正确;
④同理可得,当x=﹣1时,(i,j)有4种不同取值,故④错误;
⑤由以上分析,可知,当x=1时,(i,j)有4种不同取值;当x=﹣1时,(i,j)有4种不同取值,当i=1,j=3时,x=2时,当i=3,j=1时,x=﹣2;
当i=2,j=4,或i=4,j=2时,x=0,
∴M中的元素之和为0,故⑤正确.
综上所述,正确的序号为:①③⑤, 故答案为:①③⑤.
【点评】本题考查命题的真假判断与应用,着重考查平面向量的坐标运算,建立直角坐标系,求得=(1,
﹣1),
=
=(0,﹣1),
=
=(1,0)是关键,考查分析、化归与运算求解能力,属于
难题.
17.【答案】6
【解析】解析:本题考查程序框图中的循环结构.第1次运行后,9,2,2,S T n S T ===>;第2次运行后,
13,4,3,S T n S T ===>;第3次运行后,17,8,4,S T n S T ===>;第4次运行后,21,16,5,S T n S T ===>;第5次运行后,25,32,6,S T n S T ===<,此时跳出循环,输出结果6n =程
序结束.
18.【答案】 两条射线和一个圆 .
【解析】解:由题意可得x 2+y 2
﹣4≥0,表示的区域是以原点为圆心的圆的外部以及圆上的部分.
由方程(x+y ﹣1)
=0,可得x+y ﹣1=0,或 x 2+y 2=4,
故原方程表示一条直线在圆外的地方和一个圆,即两条射线和一个圆,
故答案为:两条射线和一个圆.
【点评】本题主要考查直线和圆的方程的特征,属于基础题.
三、解答题
19.【答案】
【解析】解:(Ⅰ)由
,得
,
即﹣1<x <1,即定义域为(﹣1,1),
则f (﹣x )=log a (1﹣x )﹣log a (1+x )=﹣[log a (1+x )﹣log a (1﹣x )]=﹣f (x ),
则f (x )为奇函数.
(Ⅱ)当0<a <1时,由f (x )>0, 即log a (1+x )﹣log a (1﹣x )>0,
即log a(1+x)>log a(1﹣x),
则1+x<1﹣x,
解得﹣1<x<0,
则不等式解集为:(﹣1,0).
【点评】本题主要考查函数奇偶性的判断以及对数不等式的求解,利用定义法以及对数函数的单调性是解决本题的关键.
20.【答案】
【解析】解:(1)函数f(x)=.
f(﹣2)=﹣2+2=0,
f(f(﹣2))=f(0)=0.3分
(2)函数的图象如图:…
单调增区间为(﹣∞,﹣1),(0,+∞)(开区间,闭区间都给分)…
由图可知:
f(﹣4)=﹣2,f(﹣1)=1,
函数f(x)在区间(﹣4,0)上的值域(﹣2,1].…12分.
21.【答案】
【解析】(1)∵ρsin2θ=4cosθ,∴ρ2sin2θ=4ρcosθ,…
∵ρcosθ=x,ρsinθ=y,
∴曲线C的直角坐标方程为y2=4x …
(2)∵直线l 过点P (2,﹣1),且倾斜角为45°.∴l
的参数方程为
(t 为参数).…
代入 y 2=4x 得t 2
﹣
6
t ﹣14=0…
设点A ,B 对应的参数分别t 1,t 2 ∴t 1t 2=﹣14… ∴|PA|•|PB|=14.…
22.【答案】解:(1)设G 是AA 1的中点,连接GE ,BG .∵E 为DD 1的中点,ABCD —A 1B 1C 1D 1为正方体,∴GE ∥AD ,又∵AD ⊥平面ABB 1A 1,∴GE ⊥平面ABB 1A 1,且斜线BE 在平面ABB 1A 1内的射影为BG ,∴Rt △BEG 中的∠EBG 是直线BE 和平面ABB 1A 1所成角,即∠EBG =θ.设正方体的棱长为a ,∴a GE =,
a BG 25=
,a GE BG BE 2
3
22=+=, ∴直线BE 和平面ABB 1A 1所成角θ的正弦值为:=
θsin 3
2
=BE GE ;……6分 (2)证明:连接EF 、AB 1、C 1D ,记AB 1与A 1B 的交点为H ,连接EH . ∵H 为AB 1的中点,且B 1H =
21C 1D ,B 1H ∥C 1D ,而EF =2
1
C 1
D ,EF ∥C 1D , ∴B 1H ∥EF 且B 1H =EF ,四边形B 1FEH 为平行四边形,即B 1F ∥EH , 又∵B 1F ⊄平面A 1B
E 且EH ⊆平面A 1BE ,∴B 1
F ∥平面A 1BE . ……12分 23.【答案】
【解析】解:(1)先排3个女生作为一个整体,与其余的5个元素做全排列有 A 33A 66
=4320种.
(2)从中选5人,且要求女生只有2名,则男生有3人,先选再排,故有C 32C 53A 55
=3600种
【点评】本题主要考查排列与组合及两个基本原理,排列数公式、组合数公式的应用,注意特殊元素和特殊位置要优先排.
24.【答案】
【解析】解:证明:2
()10f x x x x =⇔+-=,∴2112221010λλλλ⎧+-=⎪⎨+-=⎪⎩,∴2112
22
11λλλλ⎧-=⎪⎨-=⎪⎩. ∵1
21111111
121222222221
11111n n n n n n n n n n
a a a a a a a a a a λλλλλλλλλλλλλλλλ++--+----====⋅------+, (3分)
11120a a λλ-≠-,12
0λ
λ≠,
∴数列12n n a a λλ⎧⎫-⎨⎬-⎩⎭
为等比数列. (4分)
(Ⅱ)证明:设m =()f m m =.
由112a =及111n n
a a +=+得223a =,335a =,∴130a a m <<<.
∵()f x 在(0,)+∞上递减,∴13()()()f a f a f m >>,∴24a a m >>.∴1342a a m a a <<<<,(8分) 下面用数学归纳法证明:当n N *
∈时,2121222n n n n a a m a a -++<<<<.
①当1n =时,命题成立. (9分)
②假设当n k =时命题成立,即2121222k k k k a a m a a -++<<<<,那么 由()f x 在(0,)+∞上递减得2121222()()()()()k k k k f a f a f m f a f a -++>>>> ∴2222321k k k k a a m a a +++>>>>
由2321k k m a a ++>>得2321()()()k k f m f a f a ++<<,∴2422k k m a a ++<<, ∴当1n k =+时命题也成立, (12分)
由①②知,对一切n N *
∈命题成立,即存在实数m ,使得对n N *
∀∈,2121222n n n n a a m a a -++<<<<.。