【压轴卷】七年级数学下期中模拟试卷(附答案) (2)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【压轴卷】七年级数学下期中模拟试卷(附答案) (2)
一、选择题
1.无理数23的值在( )
A.2和3之间B.3和4之间C.4和5之间D.5和6之间
2.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A(﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的平面坐标是()
A.(2,﹣1)B.(4,﹣2)C.(4,2)D.(2,0)
3.汽车的“燃油效率”是指汽车每消耗1升汽油最多可行驶的公里数,如图描述了A、B两辆汽车在不同速度下的燃油效率情况.
根据图中信息,下面4个推断中,合理的是()
①消耗1升汽油,A车最多可行驶5千米;
②B车以40千米/小时的速度行驶1小时,最多消耗4升汽油;
③对于A车而言,行驶速度越快越省油;
④某城市机动车最高限速80千米/小时,相同条件下,在该市驾驶B车比驾驶A车更省油.
A.①④B.②③C.②④D.①③④
4.下列图中∠1和∠2是同位角的是( )
A.(1)、(2)、(3)B.(2)、(3)、(4)
C.(3)、(4)、(5)D.(1)、(2)、(5)
5.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()
A .132°
B .134°
C .136°
D .138°
6.在平面直角坐标系中,点A 的坐标()0,1,点B 的坐标()3,3,将线段AB 平移,使得A 到达点()4,2C ,点B 到达点D ,则点D 的坐标是( )
A .()7,3
B .()6,4
C .()7,4
D .()8,4 7.下列现象中是平移的是( ) A .将一张纸对折
B .电梯的上下移动
C .摩天轮的运动
D .翻开书的封面
8.如图,下列条件中,能判断AB//CD 的是( )
A .∠BAC=∠ACD
B .∠1=∠2
C .∠3=∠4
D .∠BAD=∠BCD 9.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是( )
A .40°
B .50°
C .60°
D .70° 10.一个自然数的算术平方根是x ,则它后面一个自然数的算术平方根是( ). A .x +1 B .x 2+1 C 1x
D 21x + 11.在平面直角坐标系内,线段CD 是由线段AB 平移得到的,点A (-2,3)的对应点为C (2,5),则点B (-4,-1)的对应点D 的坐标为()
A .()8,3--
B .()4,2
C .()0,1
D .()1,8 12.过一点画已知直线的垂线,可画垂线的条数是( )
A .0
B .1
C .2
D .无数 二、填空题
13.m 的3倍与n 的差小于10,用不等式表示为______________.
14.如图,把一长方形纸片ABCD 沿EF 折叠后ED 与BC 交于点G ,D 、C 分别在M ,N 的位置,若∠EFG=56°,则∠EGB =___________.
15.已知△ABC 中,AB =AC ,求证:∠B <90°
.用反证法证明,第一步是假设_________.
16.如图,点,A B 的坐标分别是()1,0、()0,2,把线段AB 平移至11A B 时得到点1A 、1B 两点的坐标分别为()3,b ,(),4a ,则+a b 的值是__________.
17.如图,直线a 和b 被直线c 所截,∠1=110°,当∠2=_____时,直线a ∥b 成立
18.如图,直线a ,b 相交,若∠1与∠2互余,则∠3=_____.
19.比较大小1-5______ 12
-.(填“>”、“<”或“=”) 20.如图,已知AB ∥CD ,F 为CD 上一点,∠EFD=60°,∠AEC=2∠CEF ,若6°<∠BAE <15°,∠C 的度数为整数,则∠C 的度数为_____.
三、解答题
21.解方程:
(1)()3
18x -=
(2)()2
42289x +=
22.类比学习:
一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位.用有理数加法表示为()321+-=.若坐标平面上的点做如下平移:沿x 轴方向平移的数量为a (向右为正,向左为负,平移a 个单位),沿y 轴方向平移的数量为b (向上为正,向下为负,平移b 个单位),则把有序数对{},a b 叫做这一平移的“平移量”;“平移量”{},a b 与“平移量”{},c d 的加法运算法则为{}{}{},,,a b c d a c b d +=++ 解决问题:
(1)计算:{}{}3,11,2+;
(2)动点P 从坐标原点O 出发,先按照“平移量”{}3,1平移到A ,再按照“平移量”{}1,2平移到B :若先把动点P 按照.“平移量”{}1,2平移到C ,再按照“平移量”{}3,1平移,最后的位置还是B 吗?在图1中画出四边形OABC .
(3)如图2,一艘船从码头O 出发,先航行到湖心岛码头()2,3P ,再从码头P 航行到码头()5,5Q ,最后回到出发点O .请用“平移量”加法算式表示它的航行过程.
解:(1){}{}3,11,2+______;
(2)答:______;
(3)加法算式:______.
23.小红同学在做作业时,遇到这样一道几何题:
已知:AB ∥CD ∥EF ,∠A =110°,∠ACE =100°,过点E 作EH ⊥EF,垂足为E ,交CD 于H 点.
(1)依据题意,补全图形;
(2)求∠CEH 的度数.
小明想了许久对于求∠CEH 的度数没有思路,就去请教好朋友小丽,小丽给了他如图2所示的提示:
请问小丽的提示中理由①是 ;
提示中②是: 度;
提示中③是: 度;
提示中④是: ,理由⑤是 .
提示中⑥是 度;
24.列一元一次不等式(组)解决问题:永安六中学生会准备组织七年级和八年级共60名同学参加环保活动,七年级学生平均每人收集15个废弃塑料瓶,八年级学生平均每人收集20个废弃塑料瓶,为了保证所收集的塑料瓶总数不少于1000个,至少需要多少名八年级学生参加活动?
25.甲、乙两人同解方程组232Ax By Cx y +=⎧⎨-=-⎩,甲正确解得11x y =⎧⎨=-⎩
,乙因抄错C 解得26x y =⎧⎨=-⎩
,求A 、B 、C 的值.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
【分析】 33.
【详解】
∵1.52=2.25,22=4,2.25<3<4,
<<,
∴1.532
<<,
∴3234
故选B.
【点睛】
本题考查了无理数的估算,熟练掌握和灵活运用相关知识是解题的关键.
2.A
解析:A
【解析】
【分析】
根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系进行解答即可.
【详解】
解:因为A(﹣2,1)和B(﹣2,﹣3),
所以建立如图所示的坐标系,可得点C的坐标为(2,﹣1).
故选:A.
【点睛】
考查坐标问题,关键是根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系解答.3.C
解析:C
【解析】
【分析】
折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.
【详解】
解:①由图象可知,当A车速度超过40km时,燃油效率大于5km/L,所以当速度超过
40km时,消耗1升汽油,A车行驶距离大于5千米,故此项错误;
②B车以40千米/小时的速度行驶1小时,路程为40km,40km÷10km/L=4L,最多消耗4升汽油,此项正确;
③对于A车而言,行驶速度在0﹣80km/h时,越快越省油,故此项错误;
④某城市机动车最高限速80千米/小时,相同条件下,在该市驾驶B车比驾驶A车燃油效率更高,所以更省油,故此项正确.
故②④合理,
故选:C.
【点睛】
本题考查了折线统计图,熟练读懂折线统计图是解题思的关键.
4.D
解析:D
【解析】
【分析】
根据同位角的定义,对每个图进行判断即可.
【详解】
(1)图中∠1和∠2是同位角;故本项符合题意;
(2)图中∠1和∠2是同位角;故本项符合题意;
(3)图中∠1和∠2不是同位角;故本项不符合题意;
(4)图中∠1和∠2不是同位角;故本项不符合题意;
(5)图中∠1和∠2是同位角;故本项符合题意.
图中是同位角的是(1)、(2)、(5).
故选D.
【点睛】
本题考查了同位角,两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.
5.B
解析:B
【解析】
过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,
∠BAE=∠FEA,求出∠BAE,即可求出答案.
解:
过E作EF∥AB,
∵AB∥CD,
∴AB∥CD∥EF,
∴∠C=∠FEC,∠BAE=∠FEA,
∵∠C=44°,∠AEC为直角,
∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,
∴∠1=180°﹣∠BAE=180°﹣46°=134°,
故选B.
“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.
6.C
解析:C
【解析】
【分析】
根据A和C的坐标可得点A向右平移4个单位,向上平移1个单位,点B的平移方法与A 的平移方法相同,再根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点D的坐标.
【详解】
解:∵点A(0,1)的对应点C的坐标为(4,2),
即(0+4,1+1),
∴点B(3,3)的对应点D的坐标为(3+4,3+1),
即D(7,4);
故选:C.
【点睛】
此题主要考查了坐标与图形的变化——平移,关键正确得到点的平移方法.
7.B
解析:B
【解析】
【分析】
根据平移的概念,依次判断即可得到答案;
【详解】
解:根据平移的概念:把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,判断:
A、将一张纸对折,不符合平移定义,故本选项错误;
B、电梯的上下移动,符合平移的定义,故本选项正确;
C、摩天轮的运动,不符合平移定义,故本选项错误;
D、翻开的封面,不符合平移的定义,故本选项错误.
故选B.
【点睛】
本题考查平移的概念,在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移.
8.A
解析:A
【解析】
【分析】
根据直线平行的判定:内错角相等,两直线平行;同旁内角互补,两直线平行;同位角相
等,两直线平行进行判断即可.
【详解】
解:A. ∠BAC=∠ACD能判断AB//CD(内错角相等,两直线平行),故A正确;
B. ∠1=∠2得到AD∥BC,不能判断AB//CD,故B错误;
C. ∠3=∠4得到AD∥BC,不能判断AB//CD,故C错误;
D. ∠BAD=∠BCD,不能判断AB//CD,故D错误;
故选A.
【点睛】
本题主要考查了平行线的判定的运用,解题时注意:内错角相等,两直线平行;同旁内角互补,两直线平行;同位角相等,两直线平行.
9.D
解析:D
【解析】
【分析】
根据折叠的知识和直线平行判定即可解答.
【详解】
解:如图可知折叠后的图案∠ABC=∠EBC,
又因为矩形对边平行,根据直线平行内错角相等可得
∠2=∠DBC,
又因为∠2+∠ABC=180°,
所以∠EBC+∠2=180°,
即∠DBC+∠2=2∠2=180°-∠1=140°.
可求出∠2=70°.
【点睛】
掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键.
10.D
解析:D
【解析】
x则它后面一个数的算术平方根是
一个自然数的算术平方根是x,则这个自然数是2,
21
x .
故选D.
11.C
解析:C
【解析】
【分析】
根据点A(-2,3)的对应点为C(2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,以此规律可得D的对应点的坐标.
【详解】
点A(-2,3)的对应点为C(2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,
于是B(-4,-1)的对应点D的横坐标为-4+4=0,点D的纵坐标为-1+2=1,
故D(0,1).
故选C.
【点睛】
此题考查了坐标与图形的变化----平移,根据A(-2,3)变为C(2,5)的规律,将点的变化转化为坐标的变化是解题的关键.
12.B
解析:B
【解析】
【分析】
根据垂直的性质:过直线外或直线上一点画已知直线的垂线,可以画一条,据此解答.【详解】
在平面内,过一点有且只有一条直线与已知直线垂直,
故选:B
【点睛】
此题考查了直线的垂直的性质,注意基础知识的识记和理解.
二、填空题
13.3m-n<10【解析】【分析】根据题意利用不等符号进行连接即可得出答案【详解】解:由题意可得:3m-n<10故答案为:3m-n<10【点睛】本题考查不等式的书写
解析:3m-n<10.
【解析】
【分析】
根据题意利用不等符号进行连接即可得出答案.
【详解】
解:由题意可得:3m-n<10
故答案为:3m-n<10.
【点睛】
本题考查不等式的书写.
14.112°【解析】【分析】根据折叠前后对应角相等得∠DEF=∠GEF由AD∥BC
得∠EFG=∠DEF=56°进而求出∠DEG的度数再由AD∥BC求出∠DEG=∠EGB【详解】解:∵折叠根据折叠前后对应
解析:112°
【解析】
【分析】
根据折叠前后对应角相等得∠DEF=∠GEF,由AD∥BC得∠EFG=∠DEF=56°,进而求出∠DEG的度数,再由AD∥BC,求出∠DEG=∠EGB.
【详解】
解:∵折叠,根据折叠前后对应的角相等
∴∠DEF=∠GEF
∵AD∥BC
∴∠EFG=∠DEF=56°
∴∠DEG=∠DEF+∠GEF=56°+56°=112°
又∵AD∥BC
∴∠EGB=∠DEG=112°.
故答案为:112°
【点睛】
本题结合折叠考查了平行线的性质,熟记两直线平行时,内错角、同位角相等,同旁内角互补这个性质.
15.∠B≥90°【解析】【分析】熟记反证法的步骤直接填空即可【详解】解:用反证法证明:第一步是:假设∠B≥90°故答案是:∠B≥90°【点睛】考查反证法解题关键要懂得反证法的意义及步骤反证法的步骤是:(
解析:∠B≥90°
【解析】
【分析】
熟记反证法的步骤,直接填空即可.
【详解】
解:用反证法证明:第一步是:假设∠B≥90°.
故答案是:∠B≥90°.
【点睛】
考查反证法,解题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
16.4【解析】【分析】根据横坐标右移加左移减;纵坐标上移加下移减可得线段AB向右平移2个单位向上平移2个单位进而可得ab的值【详解】∵AB两点的坐标分别为(10)(02)平移后A1(3b)B1(a4)∴
解析:4
【解析】
【分析】
根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得线段AB向右平移2个单位,向上平移2个单位,进而可得a、b的值.
【详解】
∵A、B两点的坐标分别为(1,0)、(0,2),平移后A1(3,b),B1(a,4),
∴线段AB向右平移2个单位,向上平移2个单位,
∴a=0+2=2,b=0+2=2,
∴a+b=2+2=4
故答案为:4
【点睛】
此题主要考查了坐标与图形的变化--平移,关键是掌握点的坐标的变化规律.
17.70°【解析】【分析】根据平行的判定要使直线a∥b成立则∠2=∠3再根据∠1=110°即可把∠2的度数求解出来【详解】解:要使直线a∥b成立则
∠2=∠3(同位角相等两直线平行)∵∠1=110°∴∠3
解析:70°
【解析】
【分析】
根据平行的判定,要使直线a∥b成立,则∠2=∠3,再根据∠1=110°,即可把∠2的度数求解出来.
【详解】
解:要使直线a∥b成立,则∠2=∠3(同位角相等,两直线平行),
∵∠1=110°,
∴∠3=180°-∠1=180°-110°=70°,
∴∠2=∠3=70°,
故答案为:70°.
【点睛】
本题主要考查了平行的判定(同位角相等,两直线平行),掌握直线平行的判定方法是解题的关键.
18.135°【解析】【分析】由∠1与∠2互余且∠1=∠2可求出∠1=∠2=45°进而根据补角的性质可求出∠3的度数【详解】解:∵∠1与∠2互余∠1=∠2∴∠1=∠2=45°∴∠3=180°﹣45°=13
解析:135°.
【解析】
【分析】
由∠1与∠2互余,且∠1=∠2,可求出∠1=∠2=45°,进而根据补角的性质可求出∠3的度数.
【详解】
解:∵∠1与∠2互余,∠1=∠2,
∴∠1=∠2=45°,
∴∠3=180°﹣45°=135°,
故答案为135°.
【点睛】
本题考查了余角、对顶角及邻补角的定义,熟练掌握定义是解答本题的关键.
19.<【解析】【分析】首先比较进而得出答案【详解】解:∵∴∴故答案为:
【点睛】此题主要考查了实数比较大小正确比较与是解题关键
解析:<
【解析】
【分析】 首先比较151-<-,进而得出答案 .
【详解】
解:∵52>,
∴52-<-,
∴151-<-,
∴1512
-<-. 故答案为:<.
【点睛】
此题主要考查了实数比较大小, 正确比较15-与1-是解题关键 .
20.36°或37°【解析】分析:先过E 作EG∥AB 根据平行线的性质可得
∠AEF=∠BAE+∠DFE 再设∠CEF=x 则∠AEC=2x 根据6°<∠BA E <15°即可得到6°<3x-60°<15°解得22°<
解析:36°或37°.
【解析】
分析:先过E 作EG ∥AB ,根据平行线的性质可得∠AEF=∠BAE+∠DFE ,再设
∠CEF=x ,则∠AEC=2x ,根据6°<∠BAE <15°,即可得到6°<3x-60°<15°,解得22°<x <25°,进而得到∠C 的度数.
详解:如图,过E 作EG ∥AB ,
∵AB ∥CD ,
∴GE ∥CD ,
∴∠BAE=∠AEG ,∠DFE=∠GEF ,
∴∠AEF=∠BAE+∠DFE ,
设∠CEF=x ,则∠AEC=2x ,
∴x+2x=∠BAE+60°,
∴∠BAE=3x-60°,
又∵6°<∠BAE <15°,
∴6°<3x-60°<15°,
解得22°<x <25°,
又∵∠DFE 是△CEF 的外角,∠C 的度数为整数,
∴∠C=60°-23°=37°或∠C=60°-24°=36°,
故答案为:36°或37°.
点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,内错角相等.
三、解答题
21.(1)3x =;(2)1 6.5x =,210.5x =-.
【解析】
【分析】
(1)利用立方根的定义开立方即可求出解;
(2)方程变形后,利用平方根的定义计算即可求出解.
【详解】
解:(1)()3
18x -= 12x -=
3x =;
(2)()2
42289x += ()2272.25+=x
28.5x +=±
1 6.5x =,210.5x =-.
【点睛】
本题考查了立方根和平方根,掌握各自的定义是解决本题的关键.
22.(1){4,3};(2)B,图见解析;(3){0,0}.
【解析】
【分析】
(1)根据平移量”{a ,b}与“平移量”{c ,d}的加法运算法则为{a ,b}+{c ,d}={a+c ,b+d}计算;
(2)根据题意画出图形、结合图形解答;
(3)根据平移量的定义、加法法则表示即可.
【详解】
(1){}{}3,11,2+={3+1,1+2}={4,3},
(2)如图.最后的位置仍是点B ,
(3)从O 出发,先向右平移2个单位,再向上平移3个单位,可知平移量为{2,3}, 同理得到P 到Q 的平移量为{3,2},从Q 到O 的平移量为{-5,-5},
故有{2,3}+{3,2}+{-5,-5}={0,0}.
【点睛】
本题考查的是几何变换,掌握“平移量”的定义、平移的性质是解题的关键.
23.(1)补图见解析;(2)两直线平行,同旁内角互补,70,30,∠CEF ,两直线平行,内错角相等,60.
【解析】
【分析】
(1)按照题中要求作出线段EH ⊥EF 于点E ,交CD 于点H 即可;
(2)按照“小丽所给提示”的思路结合题中的已知条件根据“平行线的性质、垂直的定义”进行分析解答即可.
【详解】
解:(1)依据题意补全图形如下图所示:
;
(2)根据题意可得:
①:两直线平行,同旁内角互补;
②:70°;
③:30°;
④:∠CEF ;
⑤:两直线平行,内错角相等;
⑥:60°
故答案为:两直线平行,同旁内角互补,70,30,∠CEF ,两直线平行,内错角相等,60.
【点睛】
“读懂小丽的思路过程,熟悉平行线的性质”是解答本题的关键.
24.至少有20名八年级学生参加活动.
【解析】
【分析】
设需要七x 个年级学生参加活动,则参加活动的八年级学生为(60-x )个,由收集塑料瓶总数不少于1000个建立不等式求出其解即可.
【详解】
解:设至少有x 名八年级学生参加活动,
则参加活动的七年级学生有(60)x -名,依题意得:
15(60)201000x x -+≥
解得:20x ≥
答:至少有20名八年级学生参加活动.
【点睛】
此题考查列一元一次不等式解实际问题,一元一次不等式的解法的运用,解答时由收集塑料瓶总数不少于1000个建立不等式是解题关键.
25. 2.5,0.5,5A B C ===-
【解析】
分析:根据方程组的解的定义得到关于A 、B 、C 的方程组,再进一步运用加减消元法求解.
详解:把11x y =⎧⎨=-⎩代入原方程组,得25
A B C -=⎧⎨=-⎩, 把26
x y =⎧⎨=-⎩代入Ax+By=2,得:2A ﹣6B=2. 可组成方程组25262A B C A B -=⎧⎪=-⎨⎪-=⎩
,
解得 2.50.55A B C =⎧⎪=⎨⎪=-⎩
.
点睛:此题较简单,只要明白二元一次方程组的解的定义以及方程组的解法就可.。