北京劲松第一中学数学几何模型压轴题章末练习卷(Word版 含解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京劲松第一中学数学几何模型压轴题章末练习卷(Word 版 含解
析)
一、初三数学 旋转易错题压轴题(难)
1.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.
(1)观察猜想:图1中,线段PM 与PN 的数量关系是 ,位置关系是 ;
(2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由; (3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.
【答案】(1)PM =PN ,PM ⊥PN ;(2)△PMN 是等腰直角三角形.理由见解析;(3)S △PMN 最大=492. 【解析】
【分析】
(1)由已知易得BD CE =,利用三角形的中位线得出12PM CE =,12
PN BD =,即可得出数量关系,再利用三角形的中位线得出//PM CE 得出DPM DCA ∠=∠,最后用互余即可得出位置关系;
(2)先判断出ABD ACE ∆≅∆,得出BD CE =,同(1)的方法得出12
PM BD =,12
PN BD =,即可得出PM PN =,同(1)的方法由MPN DCE DCB DBC ACB ABC ∠=∠+∠+∠=∠+∠,即可得出结论;
(3)方法1:先判断出MN 最大时,PMN ∆的面积最大,进而求出AN ,AM ,即可得出MN 最大AM AN =+,最后用面积公式即可得出结论.方法2:先判断出BD 最大时,PMN ∆的面积最大,而BD 最大是14AB AD +=,即可得出结论.
【详解】
解:(1)点P ,N 是BC ,CD 的中点,
//PN BD ∴,12
PN BD =, 点P ,M 是CD ,DE 的中点,
//PM CE ∴,12
PM CE =, AB AC =,AD AE =,
BD CE ∴=,
PM PN ∴=,
//PN BD ,
DPN ADC ∴∠=∠,
//PM CE ,
DPM DCA ∴∠=∠,
90BAC ∠=︒,
90ADC ACD ∴∠+∠=︒,
90MPN DPM DPN DCA ADC ∴∠=∠+∠=∠+∠=︒,
PM PN ∴⊥,
故答案为:PM PN =,PM PN ⊥;
(2)PMN ∆是等腰直角三角形.
由旋转知,BAD CAE ∠=∠,
AB AC =,AD AE =,
()ABD ACE SAS ∴∆≅∆,
ABD ACE ∴∠=∠,BD CE =, 利用三角形的中位线得,12PN BD =,12
PM CE =, PM PN ∴=,
PMN ∴∆是等腰三角形,
同(1)的方法得,//PM CE ,
DPM DCE ∴∠=∠,
同(1)的方法得,//PN BD ,
PNC DBC ∴∠=∠,
DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠,
MPN DPM DPN DCE DCB DBC ∴∠=∠+∠=∠+∠+∠
BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠
ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠,
90BAC ∠=︒,
90ACB ABC ∴∠+∠=︒,
90MPN ∴∠=︒,
PMN ∴∆是等腰直角三角形;
(3)方法1:如图2,同(2)的方法得,PMN ∆是等腰直角三角形,
MN ∴最大时,PMN ∆的面积最大,
//DE BC ∴且DE 在顶点A 上面,
MN ∴最大AM AN =+,
连接AM ,AN ,
在ADE ∆中,4AD AE ==,90DAE ∠=︒,
22AM ∴=
在Rt ABC ∆中,10AB AC ==,52AN =
22522MN ∴=最大,
222111149(72)22242
PMN S PM MN ∆∴==⨯=⨯=最大. 方法2:由(2)知,PMN ∆是等腰直角三角形,12
PM PN BD ==, PM ∴最大时,PMN ∆面积最大,
∴点D 在BA 的延长线上,
14BD AB AD ∴=+=,
7PM ∴=,
2211497222
PMN S PM ∆∴==⨯=最大. 【点睛】
此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出
12PM CE =,12
PN BD =,解(2)的关键是判断出ABD ACE ∆≅∆,解(3)的关键是判断出MN 最大时,PMN ∆的面积最大.
2.如图一,矩形ABCD 中,AB=m ,BC=n ,将此矩形绕点B 顺时针方向旋转θ(0°<θ<90°)得到矩形A 1BC 1D 1,点A 1在边CD 上.
(1)若m=2,n=1,求在旋转过程中,点D 到点D 1所经过路径的长度;
(2)将矩形A 1BC 1D 1继续绕点B 顺时针方向旋转得到矩形A 2BC 2D 2,点D 2在BC 的延长线上,设边A 2B 与CD 交于点E ,若161A E EC
=,求n m 的值. (3)如图二,在(2)的条件下,直线AB 上有一点P ,BP=2,点E 是直线DC 上一动点,
在BE左侧作矩形BEFG且始终保持
BE n
BG m
=,设AB=
33,试探究点E移动过程中,PF 是否存在最小值,若存在,求出这个最小值;若不存在,请说明理由.
【答案】(1)
5
π;(2)
3
;(3)存在,63
+
【解析】
【分析】
(1)作A1H⊥AB于H,连接BD,BD1,则四边形ADA1H是矩形.解直角三角形,求出
∠ABA1,得到旋转角即可解决问题;
(2)由△BCE∽△BA2D2,推出22
2
A D
CE n
CB A B m
==,可得CE=2n
m
,由161
A E
EC
=-推出16
A C
EC
=,推出A1C=
2
6
n
m
•,推出BH=A1C=
2
6
n
m
•,然后由勾股定理建立方程,解方程即可解决问题;
(3)当A、P、F,D,四点共圆,作PF⊥DF,PF与CD相交于点M,作MN⊥AB,此时PF 的长度为最小值;先证明△FDG∽△FME,得到
3
FG
F
FM FE
D
==,再结合已知条件和解直角三角形求出PM和FM的长度,即可得到PF的最小值.
【详解】
解:(1)作A1H⊥AB于H,连接BD,BD1,则四边形ADA1H是矩形.
∴AD=HA1=n=1,
在Rt△A1HB中,∵BA1=BA=m=2,
∴BA1=2HA1,
∴∠ABA1=30°,
∴旋转角为30°, ∵BD=22125+=

∴D 到点D 1所经过路径的长度=
30551806
ππ⋅⋅=; (2)∵△BCE ∽△BA 2D 2, ∴222A D CE n CB A B m
==, ∴2
n CE m
=, ∵
161EA EC =-, ∴16A C EC
=, ∴A 1C=2
6n m
⋅, ∴BH=A 1C=2
22
6n m n m -=⋅, ∴4
22
26n m n m
-=⋅, ∴m 4﹣m 2n 2=6n 4, ∴24
2416n n m m
-=•, ∴3n m =(负根已舍去). (3)当A 、P 、F ,D ,四点共圆,作PF ⊥DF ,PF 与CD 相交于点M ,作MN ⊥AB ,此时PF 的长度为最小值;
由(2)可知,3BE n BG m ==, ∵四边形BEFG 是矩形,
∴3
FG FE =, ∵∠DFG+∠GFM=∠GFM+∠MFE=90°,
∴∠DFG=∠MFE ,
∵DF ⊥PF ,即∠DFM=90°,
∴∠FDM+∠GDM=∠FDM+∠DFM=∠FDM+90°,
∴∠FDG=∠FME ,
∴△FDG ∽△FME ,
∴3
FG F FM FE D ==,
∵∠DFM=90°,tan FD FMD FM ∠==, ∴∠FDM=60°,∠FMD=30°,
∴FM DM =;
在矩形ABCD 中,有
3AD AB =
=3AD =, ∵MN ⊥AB ,
∴四边形ANMD 是矩形,
∴MN=AD=3,
∵∠NPM=∠DMF=30°,
∴PM=2MN=6,
∴NP=AB =,
∴DM=AN=BP=2,
∴222
FM DM ==⨯=
∴6PF PM MF =+=+
【点睛】
本题考查点的运动轨迹,旋转变换、解直角三角形、弧长公式、矩形的性质、相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于压轴题,中考常考题型.正确作出辅助线,正确确定动点的位置,注意利用数形结合的思想进行解题.
3.综合与探究:
如图1,Rt AOB 的直角顶点O 在坐标原点,点A 在y 轴正半轴上,点B 在x 轴正半轴
上,4OA =,2OB =,将线段AB 绕点B 顺时针旋转90︒得到线段BC ,过点C 作CD x ⊥轴于点D ,抛物线23y ax x c =++经过点C ,与y 轴交于点(0,2)E ,直线AC 与x 轴交于点H .
(1)求点C 的坐标及抛物线的表达式;
(2)如图2,已知点G 是线段AH 上的一个动点,过点G 作AH 的垂线交抛物线于点F (点F 在第一象限),设点G 的横坐标为m .
①点G 的纵坐标用含m 的代数式表示为________; ②如图3,当直线FG 经过点B 时,求点F 的坐标,判断四边形ABCF 的形状并证明结论;
③在②的前提下,连接FH ,点N 是坐标平面内的点,若以F ,H ,N 为顶点的三角形与FHC 全等,请直接写出点N 的坐标.
【答案】(1)点C 的坐标为(6,2),21322y x x =-++;(2)①143
m -+;②点F 的坐标为(4,6),四边形ABCF 为正方形,证明见解析;③点N 的坐标为(10,4)或4226,55⎛⎫ ⎪⎝⎭或384,55⎛⎫ ⎪⎝⎭
. 【解析】
【分析】
(1)根据已知条件与旋转的性质证明ABO BCD ≌,根据全等三角形的性质得出点C 的坐标,结合点E 的坐标,根据待定系数法求出抛物线的表达式;
(2)①设直线AC 的表达式为y kx b =+,由点A 、C 的坐标求出直线AC 的表达式,进而得解;
②过点G 作GM x ⊥轴于点M ,过点F 作FP y ⊥轴,垂足为点P ,PF 的延长线与DC 的延长线交于点Q ,根据等腰三角形三线合一得出AG CG =,结合①由平行线分线段成比例得出点G 的坐标,根据待定系数法求出直线BG 的表达式,结合抛物线的表达式求出点F ;利用勾股定理求出AB BC CF FA ===,结合90ABC ︒∠=可得出结论; ③根据直线AC 的表达式求出点H 的坐标,设点N 坐标为(,)s t ,根据勾股定理分别求出2FC ,2CH ,2FN ,2NH ,然后分两种情况考虑:若△FHC ≌△FHN ,则FN =FC ,NH =CH ,若△FHC ≌△HFN ,则FN =CH ,NH =FC ,分别列式求解即可.
【详解】
解:(1)4=OA ,2OB =,
∴点A 的坐标为(0,4),点B 的坐标为(2,0),
线段AB 绕点B 顺时针旋转90︒得到线段BC ,
AB BC ∴=,90ABC ︒∠=,
90ABO DBC ︒∴∠+∠=,
在Rt AOB 中,90ABO OAB ︒∴∠+∠=,
=OAB DBC ∴∠∠,
CD x ⊥轴于点D ,
90BDC ︒∴∠=,
90AOB BDC ︒∴∠=∠=.
AB BC =,
ABO BCD ∴△≌△,
2CD OB ∴==,4BD OA ==,
6OB BD ∴+=,
∴点C 的坐标为(6,2),
∵抛物线2
3y ax x c =++的图象经过点C ,与y 轴交于点(0,2)E , 236182c a c =⎧∴⎨++=⎩
, 解得,122
a c ⎧=-⎪⎨⎪=⎩, ∴抛物线的表达式为21322
y x x =-++; (2)①设直线AC 的表达式为y kx b =+,
∵直线AC 经过点()6,2C ,(0,4)A ,
∴624k b b +=⎧⎨=⎩
, 解得,134k b ⎧=-⎪⎨⎪=⎩,即143y x =-+, ∴点G 的纵坐标用含m 的代数式表示为:1
43
m -+, 故答案为:1
43
m -+.
②过点G 作GM x ⊥轴于点M , OM m ∴=,143
GM m =-+,
AB BC =,BG AC ⊥,
AG CG ∴=,
90AOB GMH CDH ︒∠=∠=∠=,
OA GM
CD ∴, 1OM AG MD GC
∴==, 132
OM MD OD ∴===, 3m ∴=,1
433
m -+=,
∴点G 为(3,3), 设直线BG 的表达式为y kx b =+,将(3,3)G 和(2,0)B 代入表达式得,2033k b k b +=⎧⎨+=⎩
, 36k b =⎧∴⎨=-⎩
,即表达式为36y x =-, 点F 为直线BG 和抛物线的交点,
∴得2132362
x x x -++=-, 14x ∴=,24x =-(舍去),
∴点F 的坐标为(4,6),
过点F 作FP y ⊥轴,垂足为点P ,PF 的延长线与DC 的延长线交于点Q , 4PF ∴=,2AP =,2FQ =,4CQ =,
在Rt AFP △中和Rt FCQ △中,根据勾股定理,得25AF FC ==,
同理可得25AB BC ==,
AB BC CF FA ∴===,
∴四边形ABCF 为菱形,
90ABC ︒∠=,
∴菱形ABCF 为正方形;
③∵直线AC :143y x =-
+与x 轴交于点H , ∴1403
x -+=,
解得,x =12,
∴(12,0)H ,
∴222(64)(26)20FC =-+-=,222
(126)(02)40CH =-+-=,
设点N 坐标为(,)s t ,
∴222(4)(6)FN s t =-+-,222(12)(0)NH s t =-+-,
第一种情况:若△FHC ≌△FHN ,则FN =FC ,NH =CH , ∴2222(4)(6)20(12)40s t s t ⎧-+-=⎨-+=⎩
, 解得,11425265s t ⎧=⎪⎪⎨⎪=⎪⎩
,2262s t =⎧⎨=⎩(即点C ), ∴4226,55N ⎛⎫ ⎪⎝
⎭; 第二种情况:若△FHC ≌△HFN ,则FN =CH ,NH =FC ,
∴2222(4)(6)40(12)20s t s t ⎧-+-=⎨-+=⎩
, 解得,1138545s t ⎧=⎪⎪⎨⎪=⎪⎩
,22104s t =⎧⎨=⎩, ∴384,55N ⎛⎫ ⎪⎝
⎭或(10,4)N , 综上所述,以F ,H ,N 为顶点的三角形与△FHC 全等时,点N 坐标为(10,4)或4226,55⎛⎫ ⎪⎝⎭或384,55⎛⎫ ⎪⎝
⎭. 【点睛】
本题是函数与几何的综合题,考查了待定系数法求函数的表达式,全等三角形的判定与性质,菱形与正方形的判定,旋转的性质,勾股定理等知识,其中对全等三角形存在性的分析,因有一条公共边,可对另外两边进行分类讨论,本题有一定的难度,是中考压轴题.
4.(特例发现)如图1,在△ABC 中,AG ⊥BC 于点G ,以A 为直角顶点,分别以AB ,AC 为直角边,向△ABC 外作等腰Rt △ABE 和等腰Rt △ACF ,过点E 、F 作射线GA 的垂线,垂足分别为P 、Q .求证:EP=FQ .
(延伸拓展)如图2,在△ABC 中,AG ⊥BC 于点G ,以A 为直角顶点,分别以AB ,AC 为直角边,向△ABC 外作Rt △ABE 和Rt △ACF ,射线GA 交EF 于点H .若AB=kAE ,AC=kAF ,
请思考HE与HF之间的数量关系,并直接写出你的结论.
(深入探究)如图3,在△ABC中,G是BC边上任意一点,以A为顶点,向△ABC外作任意△ABE和△ACF,射线GA交EF于点H.若∠EAB=∠AGB,∠FAC=∠AGC,AB=kAE,
AC=kAF,上一问的结论还成立吗?并证明你的结论.
(应用推广)在上一问的条件下,设大小恒定的角∠IHJ分别与△AEF的两边AE、AF分别交于点M、N,若△ABC为腰长等于4的等腰三角形,其中∠BAC=120°,且
∠IHJ=∠AGB=θ=60°,k=2;
求证:当∠IHJ在旋转过程中,△EMH、△HMN和△FNH均相似,并直接写出线段MN的最小值(请在答题卡的备用图中补全作图).
【答案】(1)证明参见解析;(2)HE=HF;(3)成立,证明参见解析;(4)证明参见解析,MN最小值为1.
【解析】
试题分析:(1)特例发现:易证△AEP≌△BAG,△AFQ≌△CAG,即可求得EP=AG,
FQ=AG,即可解题;(2)延伸拓展:过点E、F作射线GA的垂线,垂足分别为P、Q.易证△ABG∽△EAP,△ACG∽△FAQ,得到PE=AG,FQ=AG,∴PE=FQ,然后证明
△EPH≌△FQH,即可得出HE=HF;(3)深入探究:判断△PEA∽△GAB,得到PE=AG,
△AQF∽△CGA,FQ=,得到FQ=AG,再判断△EPH≌△FQH,即可得出HE=HF;(4)应用推广:由前一个结论得到△AEF为正三角形,再依次判断△MHN∽△HFN∽△MEH,即可得出结论.
试题解析:(1)特例发现,如图:
∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,
∵∠EPA=∠AGB,AE=AB,∴△PEA≌△GAB,∴PE=AG,同理,△QFA≌△GAC,
∴FQ=AG,∴PE=FQ;
(2)延伸拓展,如图:
∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,∴∠EPA=∠AGB,
∴△PEA∽△GAB,∴,∵AB=kAE,∴,∴PE=AG,同理,
△QFA∽△GAC,∴,∵AC=kAF,∴FQ=AG,∴PE=FQ,∵EP∥FQ,
∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;
(3)深入探究,如图2,
在直线AG上取一点P,使得∠EPA═∠AGB,作FQ∥PE,∵∠EAP+∠BAG=180°﹣∠AGB,∠ABG+∠BAG=180°﹣∠AGB,∴∠EAP=∠ABG,∵∠EPA=∠AGB,∴△APE∽△BGA,
∴,∵AB=kAE,∴PE=AG,由于∠FQA=∠FAC=∠AGC=180°﹣∠AGB,同理可得,
△AQF∽△CGA,∴,∵AC=kAF,∴FQ=AG,∴EP=FQ,∵EP∥FQ,
∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;
(4)应用推广,如图3,
在前面条件及结论,得到,点H是EF中点,∴AE=AF,∵∠EAB=∠AGB,
∠FAC=∠AGC∴∠EAB+∠FAC=180°∴∠EAF=360°﹣(∠EAB+∠FAC)﹣∠BAC=60°,∴△AEF 为正三角形.又H为EF中点,∴∠EHM+∠IHJ=120°,∠IHJ+∠FHN=120°,
∴∠EHM=∠FHN .∵∠AEF=∠AFE ,∴△HEM ∽△HFN ,∴
,∵EH=FH ,∴,且∠MHN=∠HFN=60°,∴△MHN ∽△HFN ,∴△MHN ∽△HFN ∽△MEH ,在△HMN 中,∠MHN=60°,根据三角形中大边对大角,∴要MN 最小,只有△HMN 是等边三角形,∴∠AMN=60°,∵∠AEF=60°,MN ∴MN ∥EF ,∵△AEF 为等边三角形,∴MN 为△AEF 的中位线,∴MN min =EF=×2=1.
考点:1.几何变换综合题;2.三角形全等及相似的判定性质.
5.综合与实践
问题情境
在综合与实践课上,老师让同学们以“三角形的旋转”为主题开展教学活动老师给每个小组发了两个等模直角三角形ABC 和DEC ,其中
90,2,2ACB DCE AC CD ︒∠=∠===.
观案发现
(1)将两个等腰直角三角形如图①摆放,设DE 的中点是,F AE 的中点是,H BD 的中点是G ,则HFG ∠=______度;
操作证明
(2)将图①中的DEC 绕点C 顺时针(逆时针)旋转,使点A C E 、、三点在一条直线上,如图②,其余条件不变,小明通过测量发现,此时FH FG =,请你帮助小明证明这个结论.
探究发现
(3)将图①中的DEC 绕点C 顺时针(逆时针)旋转,旋转角为()0180αα︒︒<<,DEC 在旋转的过程中,当直线FH 经过点C 时,如图③,请求出线段FG 的长.
(4)在旋转过程中,在Rt ABC 和Rt CDE △中,始终有由,AC BC CE CD ⊥⊥,你在图③中还能发现哪两条线段在旋转过程中始终互相垂直?请找出并直接写出这两条线段.
【答案】(1)90;(2)证明见解析;(3)31BD =;(4)AD BE ⊥
【解析】
【分析】
(1)根据题意,运用中点的性质找到线段之间的位置关系即可求解;
(2)根据旋转的性质及等腰三角形ABC 可知()ACD BCE SAS ∆≅∆,进而通过中位线定理即可得到FH FG =;
(3)根据旋转的性质及勾股定理,先求出BF 的长,再由BD BF DF =-即可求出BD 的长;
(4)根据旋转的性质及垂直的判定可知AD BE ⊥.
【详解】
(1),,90CE CD AC BC ECA DCB ==∠=∠=︒,
BE AD ∴=,
F 是DE 的中点,H 是AE 的中点,
G 是BD 的中点,
//,//HF AD FG BE ∴,
AD BE ⊥,HF GF ∴⊥, 90HFG ∴∠=︒;
(2)证明:如下图,连接AD BE ,,
由旋转可知CE CD =,90ECD ACD ∠=∠=︒,
又∵AC=BC ,
()ACD BCE SAS ∴∆≅∆,
AD BE ∴=,
F 是DE 的中点,H 是AE 的中点,
G 是BD 的中点,
11,22
FH AD FG BE ∴==, FH FG ∴=;
(3)解:由题意可得CF DE CFD CFE ⊥∆∆,,都是等腰直角三角形,
2CD =1CF DF ∴==,
2BC AC ==,223BF BC CF ∴=-=
31BD BF DF ∴=-=,
G 是BD 的中点,31DG -∴=
31BD BF DF ∴=-=;
(4)AD BE ⊥. 连接AD ,由(3)知,CF DE ⊥,
∵ECD ∆是等腰直角三角形,
∴F 是ED 中点,
又∵H 是AE 中点,
∴AD ∥HF ,
∵HF ⊥ED ,
∴AD BE ⊥.
【点睛】
本题主要考查了中的的性质,中位线定理,三角形全等,勾股定理等三角形综合证明,熟练掌握三角形的相关知识点是解决本题的关键.错因分析:(1)不能熟练运用重点的性质找到线段之间的关系;(2)未掌握旋转的性质;(3)不能将题目探究中的发现进行推广.
6.(1)发现
如图,点A 为线段BC 外一动点,且BC a =,AB b =.
填空:当点A 位于____________时,线段AC 的长取得最大值,且最大值为_________.(用含a ,b 的式子表示)
(2)应用
点A 为线段BC 外一动点,且3BC =,1AB =.如图所示,分别以AB ,AC 为边,作等边三角形ABD 和等边三角形ACE ,连接CD ,BE .
①找出图中与BE 相等的线段,并说明理由;
②直接写出线段BE 长的最大值.
(3)拓展
如图,在平面直角坐标系中,点A 的坐标为()2,0,点B 的坐标为()5,0,点P 为线段AB 外一动点,且2PA =,PM PB =,90BPM ∠=︒,求线段AM 长的最大值及此时点P 的坐标.
【答案】(1)CB 的延长线上,a+b ;(2)①DC=BE,理由见解析;②BE 的最大值是4;(3)AM 的最大值是2,点P 的坐标为(22)
【解析】
【分析】
(1)根据点A 位于CB 的延长线上时,线段AC 的长取得最大值,即可得到结论; (2)①根据等边三角形的性质得到AD=AB ,AC=AE ,∠BAD=∠CAE=60°,推出
△CAD ≌△EAB ,根据全等三角形的性质得到CD=BE ;②由于线段BE 长的最大值=线段CD 的最大值,根据(1)中的结论即可得到结果;
(3)连接BM ,将△APM 绕着点P 顺时针旋转90°得到△PBN ,连接AN ,得到△APN 是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM ,根据当N 在线段BA 的延长线时,线段BN 取得最大值,即可得到最大值为22+3;如图2,过P 作PE ⊥x 轴于E ,根据等腰直角三角形的性质即可得到结论.
【详解】
解:(1)∵点A 为线段BC 外一动点,且BC=a ,AB=b ,
∴当点A 位于CB 的延长线上时,线段AC 的长取得最大值,且最大值为BC+AB=a+b , 故答案为CB 的延长线上,a+b ;
(2)①CD=BE ,
理由:∵△ABD 与△ACE 是等边三角形,
∴AD=AB ,AC=AE ,∠BAD=∠CAE=60°,
∴∠BAD+∠BAC=∠CAE+∠BAC ,
即∠CAD=∠EAB ,
在△CAD 与△EAB 中,
AD AB CAD EAB AC AE ⎧⎪∠∠⎨⎪⎩
=== , ∴△CAD ≌△EAB ,
∴CD=BE ;
②∵线段BE 长的最大值=线段CD 的最大值,
由(1)知,当线段CD 的长取得最大值时,点D 在CB 的延长线上,
∴最大值为BD+BC=AB+BC=4;
(3)∵将△APM 绕着点P 顺时针旋转90°得到△PBN ,连接AN ,
则△APN 是等腰直角三角形,
∴PN=PA=2,BN=AM ,
∵A的坐标为(2,0),点B的坐标为(5,0),
∴OA=2,OB=5,
∴AB=3,
∴线段AM长的最大值=线段BN长的最大值,
∴当N在线段BA的延长线时,线段BN取得最大值,
最大值=AB+AN,
∵AN=2AP=22,
∴最大值为22+3;
如图2,过P作PE⊥x轴于E,
∵△APN是等腰直角三角形,
∴2,
∴22,
∴P(22).
【点睛】
考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键.
7.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.
(1)连接AE,求证:△AEF是等腰三角形;
猜想与发现:
(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.
结论1:DM、MN的数量关系是;
结论2:DM、MN的位置关系是;
拓展与探究:
(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.
【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析.
【解析】
试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出
MN∥AE,MN=1
2
AE,利用三角形全等证出AE=AF,而DM=
1
2
AF,从而得到DM,MN数量
相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直.
试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF,
∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM,
AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,
∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90°,∴DM⊥MN;(3)(2)中的两个结论还成立,连接AE,交MD于点G,∵点M为AF的中点,点N为EF的中点,
∴MN∥AE,MN=1
2
AE,由已知得,AB=AD=BC=CD,∠B=∠ADF,CE=CF,又
∵BC+CE=CD+CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,在Rt△ADF中,∵点M为AF的
中点,∴DM=1
2
AF,∴DM=MN,∵△ABE≌△ADF,∴∠1=∠2,∵AB∥DF,∴∠1=∠3,
同理可证:∠2=∠4,∴∠3=∠4,∵DM=AM,∴∠MAD=∠5,
∴∠DGE=∠5+∠4=∠MAD+∠3=90°,∵MN∥AE,∴∠DMN=∠DGE=90°,∴DM⊥MN.所以(2)中的两个结论还成立.
考点:1.正方形的性质;2.全等三角形的判定与性质;3.三角形中位线定理;4.旋转的性质.
8.如图,正方形ABCO的边OA、OC在坐标轴上,点B的坐标为(6,6),将正方形ABCO 绕点C逆时针旋转角度α(0°<α<90°),得到正方形CDEF,ED交线段AB于点G,ED的延长线交线段OA于点H,连接CH、CG.
(1)求证:△CBG≌△CDG;
(2)求∠HCG的度数;并判断线段HG、OH、BG之间的数量关系,说明理由;
(3)连接BD、DA、AE、EB得到四边形AEBD,在旋转过程中,四边形AEBD能否为矩形?如果能,请求出点H的坐标;如果不能,请说明理由.
【答案】(1)证明见解析;(2)45°;HG= HO+BG;(3)(2,0).
【解析】
试题分析:(1)求证全等,观察两个三角形,发现都有直角,而CG为公共边,进而再锁定一条直角边相等即可,因为其为正方形旋转得到,所以边都相等,即结论可证.
(2)根据(1)中三角形全等可以得到对应边、角相等,即BG=DG,∠DCG=∠BCG.同第一问的思路容易发现△CDH≌△COH,也有对应边、角相等,即OH=DH,
∠OCH=∠DCH.于是∠GCH为四角的和,四角恰好组成直角,所以∠GCH=90°,且容易得到OH+BG=HG.
(3)四边形AEBD若为矩形,则需先为平行四边形,即要对角线互相平分,合适的点只有G为AB中点的时候.由上几问知DG=BG,所以此时同时满足DG=AG=EG=BG,即四边形AEBD为矩形.求H点的坐标,可以设其为(x,0),则OH=x,AH=6﹣x.而BG为AB的一半,所以DG=BG=AG=3.又由(2),HG=x+3,所以Rt△HGA中,三边都可以用含x的表达式表达,那么根据勾股定理可列方程,进而求出x,推得H坐标.
(1)证明:∵正方形ABCO绕点C旋转得到正方形CDEF,
∴CD=CB,∠CDG=∠CBG=90°.
在Rt△CDG和Rt△CBG中,

∴△CDG≌△CBG(HL);
(2)解:∵△CDG≌△CBG,
∴∠DCG=∠BCG,DG=BG.
在Rt△CHO和Rt△CHD中,
∵,
∴△CHO≌△CHD(HL),
∴∠OCH=∠DCH,OH=DH,
∴∠HCG=∠HCD+∠GCD=∠OCD+∠DCB=∠OCB=45°,
∴HG=HD+DG=HO+BG;
(3)解:四边形AEBD可为矩形.
如图,连接BD、DA、AE、EB,四边形AEBD若为矩形,则需先为平行四边形,即要对角线互相平分,合适的点只有G为AB中点的时候.
∵DG=BG,
∴DG=AG=EG=BG,即平行四边形AEBD对角线相等,则其为矩形,
∴当G点为AB中点时,四边形AEBD为矩形.
∵四边形DAEB为矩形,
∴AG=EG=BG=DG.
∵AB=6,
∴AG=BG=3.
设H点的坐标为(x,0),则HO=x
∵OH=DH,BG=DG,
∴HD=x,DG=3.
在Rt△HGA中,
∵HG=x+3,GA=3,HA=6﹣x,
∴(x+3)2=32+(6﹣x)2,解得x=2.
∴H点的坐标为(2,0).
考点:几何变换综合题.
二、初三数学圆易错题压轴题(难)
9.如图所示,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD 的延长线交于点A,OE//BD,交BC于点F,交AB于点E.
(1)求证:∠E=∠C;
(2)若⊙O的半径为3,AD=2,试求AE的长;
(3)在(2)的条件下,求△ABC的面积.
【答案】(1)证明见解析;(2)10;(3)48 5
.
【解析】
试题分析:(1)连接OB,利用已知条件和切线的性质证明:OE∥BD,即可证明:∠E=∠C;
(2)根据题意求出AB的长,然后根据平行线分线段定理,可求解;
(3)根据相似三角形的面积比等于相似比的平方可求解.
试题解析:(1)如解图,连接OB,
∵CD为⊙O的直径,
∴∠CBD=∠CBO+∠OBD=90°,
∵AB是⊙O的切线,
∴∠ABO=∠ABD+∠OBD=90°,
∴∠ABD=∠CBO.
∵OB、OC是⊙O的半径,
∴OB=OC,∴∠C=∠CBO.
∵OE∥BD,∴∠E=∠ABD,
∴∠E=∠C;
(2)∵⊙O的半径为3,AD=2,
∴AO=5,∴AB=4.
∵BD∥OE,
∴=,
∴=,
∴BE=6,AE=6+4=10
(3)S △AOE==15,然后根据相似三角形面积比等于相似比的平方可得
S △ABC = S △AOE ==
10.已知:
图1 图2 图3
(1)初步思考:
如图1, 在PCB ∆中,已知2PB =,BC=4,N 为BC 上一点且1BN =,试说明:12
PN PC = (2)问题提出:
如图2,已知正方形ABCD 的边长为4,圆B 的半径为2,点P 是圆B 上的一个动点,求
12
PD PC +的最小值. (3)推广运用:
如图3,已知菱形ABCD 的边长为4,∠B ﹦60°,圆B 的半径为2,点P 是圆B 上的一个动
点,求12
PD PC -的最大值. 【答案】(1)详见解析;(2)5;(3)最大值37DG =【解析】
【分析】
(1)利用两边成比例,夹角相等,证明BPN ∆∽BCP ∆,得到
PN BN PC BP =,即可得到结论成立;
(2)在BC 上取一点G ,使得BG=1,由△PBG ∽△CBP ,得到12PG PC =
,当D 、P 、G 共线时,12
PD PC +的值最小,即可得到答案; (3)在BC 上取一点G ,使得BG=1,作DF ⊥BC 于F ,与(2)同理得到12PG PC =,当点P 在DG 的延长线上时,12
PD PC -
的值最大,即可得到答案. 【详解】
(1)证明:∵2,1,4PB BN BC ===,
∴24,4PB BN BC =⋅=, ∴2PB BN BC =⋅,
∴BN BP BP BC
=, ∵B B ∠=∠,
∴BPN BCP ∆∆∽,
∴12
PN BN PC BP ==, ∴12PN PC =
; (2)解:如图,在BC 上取一点G ,使得BG=1,

242,212PB BC BG PB ====, ∴,PB BC PBG PBC BG PB
=∠=∠, ∴PBG CBP ∆∆∽,
∴12
PG BG PC PB ==, ∴12
PG PC =, ∴12
PD PC DP PG +=+; ∵DP PG DG +≥, ∴当D 、P 、G 共线时,12PD PC +
的值最小, ∴最小值为:22435DG =+=;
(3)如图,在BC 上取一点G ,使得BG=1,作DF ⊥BC 于F ,
与(2)同理,可证
1
2
PG PC
=,
在Rt△CDF中,∠DCF=60°,CD=4,
∴DF=CD•sin60°=23,CF=2,
在Rt△GDF中,DG=22
(23)537
+=,

1
2
PD PC PD PG DG -=-≤,
当点P在DG的延长线上时,
1
2
PD PC
-的值最大,
∴最大值为:37
DG=.
【点睛】
本题考查圆综合题、正方形的性质、菱形的性质、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.
11.在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.
(1)如图1,把△AMN沿直线MN折叠得到△PMN,设AM=x.
i.若点P正好在边BC上,求x的值;
ii.在M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数关系式,并求y的最大值.
(2)如图2,以MN为直径作⊙O,并在⊙O内作内接矩形AMQN.试判断直线BC与⊙O的位置关系,并说明理由.
【答案】(1)i.当x=2时,点P恰好落在边BC上;ii. y=,
当x=时,重叠部分的面积最大,其值为2;(2)当x=时,⊙O与直线BC相切;当x<
时,⊙O与直线BC相离;x>时,⊙O与直线BC相交.
【解析】
试题分析:(1)i.根据轴对称的性质,可求得相等的线段与角,可得点M是AB中点,即当x=AB=2时,点P恰好落在边BC上;
ii.分两种情况讨论:①当0<x≤2时,△MNP与梯形BCNM重合的面积为△MNP的面积,根据轴对称的性质△MNP的面积等于△AMN的面积,易见y=x2
②当2<x<4时,如图2,设PM,PN分别交BC于E,F,由i.知ME=MB=4-x∴PE=PM-ME=x-(4-x)=2x-4,由题意知△PEF∽△ABC,利用相似三角形的性质即可求得.
(2)利用分类讨论的思想,先求的直线BC与⊙O相切时,x的值,然后得到相交,相离时x的取值范围.
试题解析:(1)i.如图1,
由轴对称性质知:AM=PM,∠AMN=∠PMN,
又MN∥BC,
∴∠PMN=∠BPM,∠AMN=∠B,
∴∠B=∠BPM,
∴AM=PM=BM,
∴点M是AB中点,即当x=AB=2时,点P恰好落在边BC上.
ii.以下分两种情况讨论:
①当0<x≤2时,
∵MN∥BC,
∴△AMN∽△ABC,
∴,
∴,
∴AN=,
△MNP与梯形BCNM重合的面积为△MNP的面积,
∴,
②当2<x<4时,如图2,
设PM,PN分别交BC于E,F,
由(2)知ME=MB=4-x,
∴PE=PM-ME=x-(4-x)=2x-4,
由题意知△PEF∽△ABC,
∴,
∴S△PEF=(x-2)2,
∴y=S△PMN-S△PEF=,
∵当0<x≤2时,y=x2,
∴易知y最大=,
又∵当2<x<4时,y=,
∴当x=时(符合2<x<4),y最大=2,
综上所述,当x=时,重叠部分的面积最大,其值为2.(2))如图3,
设直线BC与⊙O相切于点D,连接AO,OD,则AO=OD=MN.
在Rt△ABC中,BC==5;
由(1)知△AMN∽△ABC,
∴,即,
∴MN=x
∴OD=x,
过M点作MQ⊥BC于Q,则MQ=OD=x,
在Rt△BMQ与Rt△BCA中,∠B是公共角,
∴△BMQ∽△BCA,
∴,
∴BM=,AB=BM+MA=x+x=4
∴x=,
∴当x=时,⊙O与直线BC相切;
当x<时,⊙O与直线BC相离;
x>时,⊙O与直线BC相交.
考点:圆的综合题.
12.如图,在平面直角坐标系中,O为坐标原点,△ABC的边BC在y轴的正半轴上,点A在x 轴的正半轴上,点C的坐标为(0,8),将△ABC沿直线AB折叠,点C落在x轴的负半轴D(−4,0)处.
(1)求直线AB的解析式;
(2)点P从点A出发以每秒45个单位长度的速度沿射线AB方向运动,过点P作PQ⊥AB,交x轴于点Q,PR∥AC交x轴于点R,设点P运动时间为t(秒),线段QR长为d,求d与t的函数关系式(不要求写出自变量t的取值范围);
(3)在(2)的条件下,点N是射线AB上一点,以点N为圆心,同时经过R、Q两点作⊙N,⊙N交y轴于点E,F.是否存在t,使得EF=RQ?若存在,求出t的值,并求出圆心N的坐标;若不存在,说明理由.
【答案】(1)
1
3
2
y x
=-+(2)d=5t (3)故当 t=
8
5
,或8
15
,时,QR=EF,N(-
6,6)或(2,2).
【解析】
试题分析:(1)由C(0,8),D(-4,0),可求得OC,OD的长,然后设OB=a,则BC=8-a,在Rt△BOD中,由勾股定理可得方程:(8-
a)2=a2+42,解此方程即可求得B的坐标,然后由三角函数的求得点A的坐标,再利用待定系数法求得直线AB的解析式;
(2)在Rt△AOB中,由勾股定理可求得AB的长,继而求得∠BAO的正切与余弦,由PR//AC 与折叠的性质,易证得RQ=AR,则可求得d与t的函数关系式;
(3)首先过点分别作NT⊥RQ于T,NS⊥EF于S,易证得四边形NTOS是正方形,然后分别从点N在第二象限与点N在第一象限去分析求解即可求解;
试题解析:
(1)∵C(0,8),D(-4,0),
∴OC=8,OD=4,
设OB=a,则BC=8-a,
由折叠的性质可得:BD=BC=8-a,
在Rt△BOD中,∠BOD=90°,DB2=OB2+OD2,
则(8-a)2=a2+42,
解得:a=3,
则OB=3,
则B(0,3),
tan∠ODB=
3
4
OB
OD
=,
在Rt△AOC中,∠AOC=90°,tan∠ACB=3
4
OA
OC
=,
则OA=6,
则A(6,0),
设直线AB的解析式为:y=kx+b,

60
{
3
k b
b
+=
=
,解得:
1
{2
3
k
b
=-
=

故直线AB的解析式为:y=-
1
2
x+3;
(2)如图所示:
在Rt△AOB中,∠AOB=90°,OB=3,OA=6,
则221
35,tan
2
OB
OB OA BAO
OA
+=∠==,255
OA
cos BAO
AB
∠==,在Rt△PQA中,905
APQ AP t
∠=︒=

则AQ=10
cos
AP
t
BAO
=

,
∵PR∥AC,
∴∠APR=∠CAB,
由折叠的性质得:∠BAO=∠CAB,
∴∠BAO=∠APR,
∴PR=AR,
∵∠RAP+∠PQA=∠APR+∠QPR=90°,
∴∠PQA=∠QPR,
∴RP=RQ,
∴RQ=AR,
∴QR=12 AQ=5t, 即d=5t; (3)过点分别作NT ⊥RQ 于T ,NS ⊥EF 于S ,
∵EF=QR ,
∴NS=NT ,
∴四边形NTOS 是正方形,
则TQ=TR=
1522QR t = , ∴1115151022224
NT AT AQ TQ t t t ==-=-=()() , 分两种情况,
若点N 在第二象限,则设N (n ,-n ),
点N 在直线132y x =-
+ 上, 则132
n n -=-+ , 解得:n=-6,
故N (-6,6),NT=6,

1564
t = , 解得:85t = ; 若点N 在第一象限,设N (N ,N ),
可得:132
n n =-
+ , 解得:n=2,
故N (2,2),NT=2, 即
1524
t =, 解得:t=815
∴当 t=8
5
,或8
15
,时,QR=EF,N(-6,6)或(2,2)。

点睛:此题考查了折叠的性质、待定系数法求一次函数的解析式、正方形的判定与性质、等腰三角形的性质、平行线的性质以及三角函数等知识.此题难度较大,注意掌握辅助线的作法,注意数形结合思想与方程思想的应用。

13.如图,四边形ABCD内接于⊙O,AC为直径,AC和BD交于点E,AB=BC.
(1)求∠ADB的度数;
(2)过B作AD的平行线,交AC于F,试判断线段EA,CF,EF之间满足的等量关系,并说明理由;
(3)在(2)条件下过E,F分别作AB,BC的垂线,垂足分别为G,H,连接GH,交BO 于M,若AG=3,S四边形AGMO:S四边形CHMO=8:9,求⊙O的半径.
【答案】(1)45°;(2)EA2+CF2=EF2,理由见解析;(3)62
【解析】
【分析】
(1)由直径所对的圆周角为直角及等腰三角形的性质和互余关系可得答案;
(2)线段EA,CF,EF之间满足的等量关系为:EA2+CF2=EF2.如图2,设∠ABE=α,
∠CBF=β,先证明α+β=45°,再过B作BN⊥BE,使BN=BE,连接NC,判定△AEB≌△CNB (SAS)、△BFE≌△BFN(SAS),然后在Rt△NFC中,由勾股定理得:CF2+CN2=NF2,将相关线段代入即可得出结论;
(3)如图3,延长GE,HF交于K,由(2)知EA2+CF2=EF2,变形推得S△ABC=S矩形BGKH,
S△BGM=S四边形COMH,S△BMH=S四边形AGMO,结合已知条件S四边形AGMO:S四边形CHMO=8:9,设
BG=9k,BH=8k,则CH=3+k,求得AE的长,用含k的式子表示出CF和EF,将它们代入EA2+CF2=EF2,解得k的值,则可求得答案.
【详解】
解:(1)如图1,
∵AC为直径,。

相关文档
最新文档