永定区二中2018-2019学年高二上学期数学期末模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
永定区二中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 已知平面向量=(1,2),=(﹣2,m ),且∥,则=( )
A .(﹣5,﹣10)
B .(﹣4,﹣8)
C .(﹣3,﹣6)
D .(﹣2,﹣4)
2. 设a ,b 为正实数,11a b
+≤23
()4()a b ab -=,则log a b =( )
A.0
B.1-
C.1 D .1-或0
【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力. 3. 函数f (x )=3x +x 的零点所在的一个区间是( ) A .(﹣3,﹣2) B .(﹣2,﹣1) C .(﹣1,0) D .(0,1)
4. 平面α与平面β平行的条件可以是( )
A .α内有无穷多条直线与β平行
B .直线a ∥α,a ∥β
C .直线a ⊂α,直线b ⊂β,且a ∥β,b ∥α
D .α内的任何直线都与β平行
5. 函数y=Asin (ωx+φ)(ω>0,|φ|<,x ∈R )的部分图象如图所示,则函数表达式( )
A .y=﹣4sin (x ﹣)
B .y=4sin (x ﹣)
C .y=﹣4sin (
x+
)
D .y=4sin (
x+
)
6. 若直线:1l y kx =-与曲线C :1
()1e
x f x x =-+没有公共点,则实数k 的最大值为( )
A .-1
B .
1
2
C .1
D 【命题意图】考查直线与函数图象的位置关系、函数存在定理,意在考查逻辑思维能力、等价转化能力、运算求解能力.
7. 已知圆C :x 2
+y 2
﹣2x=1,直线l :y=k (x ﹣1)+1,则l 与C 的位置关系是( ) A .一定相离 B .一定相切
C .相交且一定不过圆心
D .相交且可能过圆心
8. 设m ,n 表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是( ) A .m ⊥α,m ⊥β,则α∥β B .m ∥n ,m ⊥α,则n ⊥α C .m ⊥α,n ⊥α,则m ∥n
D .m ∥α,α∩β=n ,则m ∥n
9. 如图所示,在三棱锥P ABC -的六条棱所在的直线中,异面直线共有( )111]
A .2对
B .3对
C .4对
D .6对
10.已知函数()cos (0)f x x x ωωω=+>,()y f x =的图象与直线2y =的两个相邻交点的距离等于
π,则()f x 的一条对称轴是( )
A .12x π=-
B .12x π=
C .6x π=-
D .6
x π
=
11.设S n 为等差数列{a n }的前n 项和,已知在S n 中有S 17<0,S 18>0,那么S n 中最小的是( ) A .S 10 B .S 9
C .S 8
D .S 7
12.函数()2cos()f x x ωϕ=+(0ω>,0ϕ-π<<)的部分图象如图所示,则 f (0)的值为( )
A.32
-
B.1-
C.
D.
【命题意图】本题考查诱导公式,三角函数的图象和性质,数形结合思想的灵活应用.
二、填空题
13.设直线系M :xcos θ+(y ﹣2)sin θ=1(0≤θ≤2π),对于下列四个命题: A .M 中所有直线均经过一个定点
B .存在定点P 不在M 中的任一条直线上
C .对于任意整数n (n ≥3),存在正n 边形,其所有边均在M 中的直线上
D .M 中的直线所能围成的正三角形面积都相等
其中真命题的代号是 (写出所有真命题的代号).
14.设,y x 满足约束条件2110y x x y y ≤⎧⎪
+≤⎨⎪+≥⎩
,则3z x y =+的最大值是____________.
15.如图,在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 、N 分别是A 1B 1和BB 1的中点,那么直线AM 和CN 所成角的余弦值为 .
16.设α为锐角, =(cos α,sin α),=(1,﹣1)且•=
,则sin (α+
)= .
17.函数()y f x =的定义域是[]0,2,则函数()1y f x =+的定义域是__________.111] 18
.已知函数
为定义在区间[﹣2a ,3a ﹣1]上的奇函数,则a+b= .
三、解答题
19.
已知椭圆的离心率
,且点
在椭圆
上.
(Ⅰ)求椭圆
的方程;
(Ⅱ)直线与椭圆交于
、
两点,且线段
的垂直平分线经过点
.求
(
为坐标原点)
面积的最大值.
20.如图,四棱锥P ﹣ABCD 的底面是正方形,PD ⊥底面ABCD ,点E 在棱PB 上.
(1)求证:平面AEC ⊥平面PDB ;
(2)当PD=AB ,且E 为PB 的中点时,求AE 与平面PDB 所成的角的大小.
21.(本小题满分12分)
如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的中点. (1)证明://PB 平面AEC ;
(2)设1AP =,AD =P ABD -的体积V =
,求A 到平面PBC 的距离.
111]
22.(本小题满分12分)
数列{}n b 满足:122n n b b +=+,1n n n b a a +=-,且122,4a a ==. (1)求数列{}n b 的通项公式; (2)求数列{}n a 的前项和n S .
23.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,且990S =,15240S =. (1)求{}n a 的通项公式n a 和前n 项和n S ; (2)设1
(1)
n n a b n =+,n S 为数列{}n b 的前n 项和,若不等式n S t <对于任意的*n ∈N 恒成立,求实数t 的
取值范围.
24.(本小题满分10分)直线l 的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中α∈[0,π),曲线C 1的参数方
程为⎩⎪⎨⎪⎧x =cos t y =1+sin t
(t 为参数),圆C 2的普通方程为x 2+y 2+23x =0.
(1)求C 1,C 2的极坐标方程;
(2)若l 与C 1交于点A ,l 与C 2交于点B ,当|AB |=2时,求△ABC 2的面积.
永定区二中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)
一、选择题
1. 【答案】B
【解析】解:排除法:横坐标为2+(﹣6)=﹣4, 故选B .
2. 【答案】B.
【解析】2
3
2
3
()4()()44()a b ab a b ab ab -=⇒+=+,故11a b
a b ab
++≤⇒
≤
2322()44()1184()82()()a b ab ab ab ab ab ab ab ab ++⇒≤⇒=+≤⇒+≤,而事实上12ab ab +≥=,
∴1ab =,∴log 1a b =-,故选B.
3. 【答案】C
【解析】解:由函数f (x )=3x +x 可知函数f (x )在R 上单调递增,
又f (﹣1)=﹣1<0,f (0)=30
+0=1>0,
∴f (﹣1)f (0)<0,
可知:函数f (x )的零点所在的区间是(﹣1,0). 故选:C .
【点评】本题考查了函数零点判定定理、函数的单调性,属于基础题.
4. 【答案】D
【解析】解:当α内有无穷多条直线与β平行时,a 与β可能平行,也可能相交,故不选A .
当直线a ∥α,a ∥β时,a 与β可能平行,也可能相交,故不选 B .
当直线a ⊂α,直线b ⊂β,且a ∥β 时,直线a 和直线 b 可能平行,也可能是异面直线,故不选 C .
当α内的任何直线都与β 平行时,由两个平面平行的定义可得,这两个平面平行, 故选 D .
【点评】本题考查两个平面平行的判定和性质得应用,注意考虑特殊情况.
5. 【答案】 D
【解析】解:由函数的解析式可得A=4, ==6+2,可得ω=
.
再根据sin[(﹣2)×
+φ]=0,可得(﹣2)×
+φ=k π,k ∈z ,再结合|φ|<
,∴φ=
,
∴y=4sin
(
x+),
故选:D .
【点评】本题主要考查由函数y=Asin (ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A ,由周期求出ω,由特殊点的坐标求出φ的值,属于基础题.
6. 【答案】C
【解析】令()()()()1
11e
x g x f x kx k x =--=-+
,则直线l :1y kx =-与曲线C :()y f x =没有公共点,等价于方程()0g x =在R 上没有实数解.假设1k >,此时()010g =>,1
1
11101e k g k -⎛⎫
=-+< ⎪-⎝⎭
.又函数()g x 的图象连续不断,由零点存在定理,可知()0g x =在R 上至少有一解,与“方程()0g x =在R 上没
有实数解”矛盾,故1k ≤.又1k =时,()1
0e
x g x =>,知方程()0g x =在R 上没有实数解,所以k 的最大值为1,故选C .
7. 【答案】C
【解析】
【分析】将圆C 方程化为标准方程,找出圆心C 坐标与半径r ,利用点到直线的距离公式表示出圆心到直线的距离d ,与r 比较大小即可得到结果.
【解答】解:圆C 方程化为标准方程得:(x ﹣1)2+y 2
=2, ∴圆心C (1,0),半径r=,
∵≥>1, ∴圆心到直线l 的距离d=
<
=r ,且圆心(1,0)不在直线l 上,
∴直线l 与圆相交且一定不过圆心. 故选C
8. 【答案】D
【解析】解:A 选项中命题是真命题,m ⊥α,m ⊥β,可以推出α∥β;
B 选项中命题是真命题,m ∥n ,m ⊥α可得出n ⊥α;
C 选项中命题是真命题,m ⊥α,n ⊥α,利用线面垂直的性质得到n ∥m ;
D 选项中命题是假命题,因为无法用线面平行的性质定理判断两直线平行.
故选D .
【点评】本题考查了空间线面平行和线面垂直的性质定理和判定定理的运用,关键是熟练有关的定理.
9. 【答案】B
【解析】
试题分析:三棱锥P ABC -中,则PA 与BC 、PC 与AB 、PB 与AC 都是异面直线,所以共有三对,故选B .
考点:异面直线的判定. 10.【答案】D 【解析】
试题分析:由已知()2sin()6
f x x π
ω=+
,T π=,所以22π
ωπ=
=,则()2sin(2)6
f x x π
=+,令 2,62x k k Z ππ
π+
=+
∈,得,26
k x k Z ππ
=
+∈,可知D 正确.故选D .
考点:三角函数()sin()f x A x ωϕ=+的对称性. 11.【答案】C
【解析】解:∵S 16<0,S 17>0, ∴
=8(a 8+a 9)<0,
=17a 9>0,
∴a 8<0,a 9>0, ∴公差d >0. ∴S n 中最小的是S 8. 故选:C .
【点评】本题考查了等差数列的通项公式性质及其求和公式、不等式的解法,考查了推理能力与计算能力,属于中档题.
12.【答案】D
【解析】易知周期112()1212T π5π=-=π,∴22T ωπ==.由52212k ϕπ⨯+=π(k ∈Z ),得526
k ϕπ
=-+π
(k Z ∈),可得56ϕπ=-,所以5()2cos(2)6f x x π=-,则5(0)2cos()6
f π
=-=,故选D.
二、填空题
13.【答案】BC 【解析】
【分析】验证发现,直线系M :xcos θ+(y ﹣2)sin θ=1(0≤θ≤2π)表示圆x 2
+(y ﹣2)2
=1的切线的集合, A .M 中所有直线均经过一个定点(0,2)是不对,可由圆的切线中存在平行线得出, B .存在定点P 不在M 中的任一条直线上,观察直线的方程即可得到点的坐标.
C .对于任意整数n (n ≥3),存在正n 边形,其所有边均在M 中的直线上,由直线系的几何意义可判断,
D .M 中的直线所能围成的正三角形面积一定相等,由它们是同一个圆的外切正三角形可判断出.
【解答】解:因为点(0,2)到直线系M :xcos θ+(y ﹣2)sin θ=1(0≤θ≤2π)中每条直线的距离d=
=1,直线系M :xcos θ+(y ﹣2)sin θ=1(0≤θ≤2π)表示圆x 2
+(y ﹣2)2
=1的切线的集
合,
A .由于直线系表示圆x 2+(y ﹣2)2
=1的所有切线,其中存在两条切线平行,M 中所有直线均经过一个定点(0,2)不可能,故A 不正确;
B .存在定点P 不在M 中的任一条直线上,观察知点M (0,2)即符合条件,故B 正确;
C .由于圆的所有外切正多边形的边都是圆的切线,所以对于任意整数n (n ≥3),存在正n 边形,其所有边均在M 中的直线上,故C 正确;
D .如下图,M 中的直线所能围成的正三角形有两类,
其一是如△ABB ′型,是圆的外切三角形,此类面积都相等,另一类是在圆同一侧,如△BDC 型,此一类面积相等,但两类之间面积不等,所以面积大小不一定相等, 故本命题不正确. 故答案为:BC .
14.【答案】73
【解析】
试题分析:画出可行域如下图所示,由图可知目标函数在点12,
33A ⎛⎫
⎪⎝⎭
处取得最大值为73.
考点:线性规划.
15.【答案】.
【解析】解:如图,将AM平移到B1E,NC平移到B1F,则∠EB1F为直线AM与CN所成角
设边长为1,则B
E=B1F=,EF=
1
∴cos∠EB1F=,
故答案为
【点评】本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.16.【答案】:.
【解析】解:∵•=cosα﹣sinα=,
∴1﹣sin2α=,得sin2α=,
∵α为锐角,cosα﹣sinα=⇒α∈(0,),从而cos2α取正值,
∴cos2α==,
∵α为锐角,sin(α+)>0,
∴sin(α+)
====.
故答案为:.
-
17.【答案】[]1,1
【解析】
考点:函数的定义域.
18.【答案】2.
【解析】解:∵f(x)是定义在[﹣2a,3a﹣1]上奇函数,
∴定义域关于原点对称,
即﹣2a+3a﹣1=0,
∴a=1,
∵函数为奇函数,
∴f(﹣x)==﹣,
即b•2x﹣1=﹣b+2x,
∴b=1.
即a+b=2,
故答案为:2.
三、解答题
19.【答案】
【解析】【知识点】圆锥曲线综合椭圆
【试题解析】(Ⅰ)由已知,
点在椭圆上,,解得.
所求椭圆方程为
(Ⅱ)设,,的垂直平分线过点, 的斜率存在.
当直线的斜率时,
当且仅当时,
当直线的斜率时,设.
消去得:
由.①
,
,的中点为
由直线的垂直关系有,化简得②
由①②得
又到直线的距离为,
时,.
由,,解得;
即时,;
综上:;
20.【答案】
【解析】(Ⅰ)证明:∵四边形ABCD是正方形,∴AC⊥BD,
∵PD⊥底面ABCD,
∴PD⊥AC,∴AC⊥平面PDB,
∴平面AEC⊥平面PDB.
(Ⅱ)解:设AC∩BD=O,连接OE,
由(Ⅰ)知AC⊥平面PDB于O,
∴∠AEO为AE与平面PDB所的角,
∴O,E分别为DB、PB的中点,
∴OE∥PD,,
又∵PD⊥底面ABCD,
∴OE⊥底面ABCD,OE⊥AO,
在Rt△AOE中,,
∴∠AEO=45°,即AE与平面PDB所成的角的大小为45°.
【点评】本题主要考查了直线与平面垂直的判定,以及直线与平面所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.
21.【答案】(1)证明见解析;(2
【解析】
试
题解析:(1)设BD 和AC 交于点O ,连接EO ,因为ABCD 为矩形,所以O 为BD 的中点,又E 为PD 的中点,所以//EO PB ,EO ⊂且平面AEC ,PB ⊄平面AEC ,所以//PB 平面AEC .
(2)136V PA AB AD AB
=
=,由V =,可得32
AB =,作A H P B ⊥交PB 于H .由题设知BC ⊥平面PAB ,所以BC AH ⊥,故AH ⊥平面PBC ,又313
13
PA AB AH PB =
=,所以A 到平面PBC 的距离为13
.1 考点:1、棱锥的体积公式;2、直线与平面平行的判定定理.
22.【答案】(1)122n n b +=-;(2)22
2(4)n n S n n +=-++.
【解析】
试题分析:(1)已知递推公式122n n b b +=+,求通项公式,一般把它进行变形构造出一个等比数列,由等比
数列的通项公式可得n b ,变形形式为12()n n b x b x ++=+;(2)由(1)可知122(2)n
n n n a a b n --==-≥,
这是数列{}n a 的后项与前项的差,要求通项公式可用累加法,即由112()()n n n n n a a a
a a ---=-+-+
211()a a a +-+求得.
试题解析:(1)112222(2)n n n n b b b b ++=+⇒+=+,∵12
22
n n b b ++=+,
又121224b a a +=-+=,
∴23
12(21)
(2222)22222221
n
n n n a n n n +-=+++
+-+=
-+=--.
∴224(12)(22)
2(4)122
n n n n n S n n +-+=
-=-++-. 考点:数列的递推公式,等比数列的通项公式,等比数列的前项和.累加法求通项公式. 23.【答案】
【解析】【命题意图】本题考查等差数列通项与前n 项和、数列求和、不等式性质等基础知识,意在考查逻辑思维能力、运算求解能力、代数变形能力,以及方程思想与裂项法的应用.
24.【答案】
【解析】解:(1)由C 1:⎩
⎪⎨⎪⎧x =cos t
y =1+sin t (t 为参数)得
x 2+(y -1)2=1, 即x 2+y 2-2y =0,
∴ρ2-2ρsin θ=0,即ρ=2sin θ为C 1的极坐标方程, 由圆C 2:x 2+y 2+23x =0得
ρ2+23ρcos θ=0,即ρ=-23cos θ为C 2的极坐标方程. (2)由题意得A ,B 的极坐标分别为 A (2sin α,α),B (-23cos α,α). ∴|AB |=|2sin α+23cos α| =4|sin (α+π
3)|,α∈[0,π),
由|AB |=2得|sin (α+π3)|=1
2,
∴α=π2或α=5π
6
.
当α=π2时,B 点极坐标(0,π2)与ρ≠0矛盾,∴α=5π6,
此时l 的方程为y =x ·tan 5π6
(x <0),
即3x +3y =0,由圆C 2:x 2+y 2+23x =0知圆心C 2的直角坐标为(-3,0), ∴C 2到l 的距离d =|3×(-3)|(3)2+32=3
2
,
∴△ABC 2的面积为S =1
2
|AB |·d
=12×2×32=32
. 即△ABC 2的面积为3
2
.。