苍溪县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苍溪县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 如图
,三行三列的方阵中有9个数a ij (i=1,2,3;j=1,2,3),从中任取三个数,则至
少有两个数位于同行或同列的概率是( )
A .
B .
C .
D .
2. 已知定义在R 上的函数f (x )满足f (x )=,且f (x )=f (x+2),g (x )=

则方程g (x )=f (x )﹣g (x )在区间[﹣3,7]上的所有零点之和为( ) A .12 B .11 C .10 D .9
3. 数列{a n }的首项a 1=1,a n+1=a n +2n ,则a 5=( ) A .
B .20
C .21
D .31
4. 已知函数f (x )满足:x ≥4,则f (x )=;当x <4时f (x )=f (x+1),则f (2+log 23)=( )
A .
B .
C .
D .
5. 若几何体的三视图如图所示,则该几何体的体积为( )
A .
B .
C .
D .π
6. 直线l 过点P (2,﹣2),且与直线x+2y ﹣3=0垂直,则直线l 的方程为( )
A .2x+y ﹣2=0
B .2x ﹣y ﹣6=0
C .x ﹣2y ﹣6=0
D .x ﹣2y+5=0
7. 已知函数2
()2ln 2f x a x x x =+-(a R ∈)在定义域上为单调递增函数,则的最小值是( ) A .
14 B .1
2
C .
D .
8. 已知定义在R 上的可导函数y=f (x )是偶函数,且满足xf ′(x )<0, =0,则满足
的x 的范围为( )
A .(﹣∞,)∪(2,+∞)
B .(,1)∪(1,2)
C .(,1)∪(2,+∞)
D .(0,)∪(2,+∞)
9. 已知正△ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( )
A .
B .
C .
D .
10.设a=0.5,b=0.8
,c=log 20.5,则a 、b 、c 的大小关系是( )
A .c <b <a
B .c <a <b
C .a <b <c
D .b <a <c
11.已知的终边过点()2,3,则7tan 4πθ⎛⎫
+
⎪⎝⎭
等于( ) A .15- B .1
5
C .-5
D .5
12.某三棱椎的三视图如图所示,该三棱锥的四个面的面积中,最大的是( )
A .
B .8
C .
D .
二、填空题
13.函数f (x )=x ﹣的值域是 . 14.在复平面内,记复数+i 对应的向量为
,若向量
饶坐标原点逆时针旋转60°得到向量
所对应
的复数为 .
15.一个棱长为2的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该几何体的体积为________.
16.已知平面上两点M(﹣5,0)和N(5,0),若直线上存在点P使|PM|﹣|PN|=6,则称该直线为“单曲型直线”,下列直线中:
①y=x+1 ②y=2 ③y=x ④y=2x+1
是“单曲型直线”的是.
17.抛物线的准线与双曲线的两条渐近线所围成的三角形面积为__________
18.已知命题p:∃x∈R,x2+2x+a≤0,若命题p是假命题,则实数a的取值范围是.(用区间表示)
三、解答题
19.已知函数f(x)=ax2+bx+c,满足f(1)=﹣,且3a>2c>2b.
(1)求证:a>0时,的取值范围;
(2)证明函数f(x)在区间(0,2)内至少有一个零点;
(3)设x1,x2是函数f(x)的两个零点,求|x1﹣x2|的取值范围.
20.为了培养学生的安全意识,某中学举行了一次安全自救的知识竞赛活动,共有800 名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100 分)进行统计,得到如下的频率分布表,请你根据频率分布表解答下列问题:
(1)求出频率分布表中①、②、③、④、⑤的值;
(2)为鼓励更多的学生了解“安全自救”知识,成绩不低于85分的学生能获奖,请估计在参加的800名学生中大约有多少名学生获奖?
(3)在上述统计数据的分析中,有一项指标计算的程序框图如图所示,则该程序的功能是什么?求输出的S
序号(i)分组
(分数)
组中值
(Gi)
频数
(人数)
频率
(Fi)
1 [60,70)65 ①0.10
2 [70,80)75 20 ②
3 [80,90)85 ③0.20
4 [90,100)9
5 ④⑤合计50 1
21.已知命题p:不等式|x﹣1|>m﹣1的解集为R,命题q:f(x)=﹣(5﹣2m)x是减函数,若p或q为真命题,p且q为假命题,求实数m的取值范围.
22.已知正项数列{a n}的前n项的和为S n,满足4S n=(a n+1)2.
(Ⅰ)求数列{a n}通项公式;
(Ⅱ)设数列{b n}满足b n=(n∈N*),求证:b1+b2+…+b n<.
23.若函数f(x)=sinωxcosωx+sin2ωx﹣(ω>0)的图象与直线y=m(m为常数)相切,并且切点的横
坐标依次构成公差为π的等差数列.
(Ⅰ)求ω及m的值;
(Ⅱ)求函数y=f(x)在x∈[0,2π]上所有零点的和.
24.已知一个几何体的三视图如图所示.
(Ⅰ)求此几何体的表面积;
(Ⅱ)在如图的正视图中,如果点A为所在线段中点,点B为顶点,求在几何体侧面上从点A到点B的最短路径的长.
苍溪县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题
1.【答案】
D
【解析】
古典概型及其概率计算公式.
【专题】计算题;概率与统计.
【分析】利用间接法,先求从9个数中任取3个数的取法,再求三个数分别位于三行或三列的情况,即可求得结论.
【解答】解:从9个数中任取3个数共有C93=84种取法,三个数分别位于三行或三列的情况有6种;
∴所求的概率为=
故选D.
【点评】本题考查计数原理和组合数公式的应用,考查概率的计算公式,直接解法较复杂,采用间接解法比较简单.
2.【答案】B
【解析】解:∵f(x)=f(x+2),∴函数f(x)为周期为2的周期函数,
函数g(x)=,其图象关于点(2,3)对称,如图,函数f(x)的图象也关于点(2,3)
对称,
函数f(x)与g(x)在[﹣3,7]上的交点也关于(2,3)对称,
设A,B,C,D的横坐标分别为a,b,c,d,
则a+d=4,b+c=4,由图象知另一交点横坐标为3,
故两图象在[﹣3,7]上的交点的横坐标之和为4+4+3=11,
即函数y=f(x)﹣g(x)在[﹣3,7]上的所有零点之和为11.
故选:B.
【点评】本题考查函数的周期性,函数的零点的概念,以及数形结合的思想方法.属于中档题.
3.【答案】C
【解析】解:由a n+1=a n+2n,得a n+1﹣a n=2n,又a1=1,
∴a5=(a5﹣a4)+(a4﹣a3)+(a3﹣a2)+(a2﹣a1)+a1
=2(4+3+2+1)+1=21.
故选:C.
【点评】本题考查数列递推式,训练了累加法求数列的通项公式,是基础题.
4.【答案】A
【解析】解:∵3<2+log23<4,所以f(2+log23)=f(3+log23)
且3+log23>4
∴f(2+log23)=f(3+log23)
=
故选A.
5.【答案】B
【解析】解:根据几何体的三视图,得该几何体是圆锥被轴截面截去一半所得的几何体,
底面圆的半径为1,高为2,
所以该几何体的体积为V几何体=×π•12×2=.
故选:B .
【点评】本题考查了利用空间几何体的三视图求几何体体积的应用问题,是基础题目.
6. 【答案】B 【解析】解:∵直线x+2y ﹣3=0的斜率为﹣,
∴与直线x+2y ﹣3=0垂直的直线斜率为2, 故直线l 的方程为y ﹣(﹣2)=2(x ﹣2),
化为一般式可得2x ﹣y ﹣6=0
故选:B
【点评】本题考查直线的一般式方程和垂直关系,属基础题.
7. 【答案】A 【解析】
试题分析:由题意知函数定义域为),0(+∞,2'
222()x x a f x x
++=,因为函数2
()2ln 2f x a x x x
=+-(a R ∈)在定义域上为单调递增函数0)('≥x f 在定义域上恒成立,转化为2
()222h x x x a =++在),0(+∞恒
成立,1
0,4
a ∴∆≤∴≥,故选A. 1
考点:导数与函数的单调性. 8. 【答案】D
【解析】解:当x >0时,由xf ′(x )<0,得f ′(x )<0,即此时函数单调递减, ∵函数f (x )是偶函数, ∴不等式等价为f (||)<,
即|
|>,即
>或
<﹣,
解得0<x <或x >2,
故x 的取值范围是(0,)∪(2,+∞) 故选:D
【点评】本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系是解决本题的关键.
9. 【答案】D 【解析】解:∵正△ABC 的边长为a ,∴正△ABC 的高为

画到平面直观图△A ′B ′C ′后,“高”变成原来的一半,且与底面夹角45度,
∴△A′B′C′的高为=,
∴△A′B′C′的面积S==.
故选D.
【点评】本题考查平面图形的直观图的性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.
10.【答案】B
【解析】解:∵a=0.5,b=0.8,
∴0<a<b,
∵c=log20.5<0,
∴c<a<b,
故选B.
【点评】本题主要考查了对数值、指数值大小的比较,常常与中间值进行比较,属于基础题.
11.【答案】B
【解析】
考点:三角恒等变换.
12.【答案】C
【解析】
【分析】通过三视图分析出几何体的图形,利用三视图中的数据求出四个面的面积中的最大值.
【解答】解:由题意可知,几何体的底面是边长为4的正三角形,棱锥的高为4,并且高为侧棱
垂直底面三角形的一个顶点的三棱锥,
两个垂直底面的侧面面积相等为:8,
底面面积为:=4,
另一个侧面的面积为:=4,
四个面中面积的最大值为4;
故选C.
二、填空题
13.【答案】(﹣∞,1].
【解析】解:设=t,则t≥0,
f(t)=1﹣t2﹣t,t≥0,函数图象的对称轴为t=﹣,开口向下,在区间[0,+∞)上单调减,
∴f(t)max=f(0)=1,
∴函数f(x)的值域为(﹣∞,1].
故答案为:(﹣∞,1].
【点评】本题主要考查函数的值域的求法.换元法是求函数的值域的一个重要方法,应熟练记忆.14.【答案】2i.
【解析】解:向量饶坐标原点逆时针旋转60°得到向量所对应的复数为
(+i)(cos60°+isin60°)=(+i)()=2i
,故答案为2i.
【点评】本题考查两个复数代数形式的乘法及其集合意义,判断旋转60°得到向量对应的复数为(+i)(cos60°+isin60°),是解题的关键.
15.【答案】
【解析】【知识点】空间几何体的三视图与直观图
【试题解析】正方体中,BC中点为E,CD中点为F,
则截面为
即截去一个三棱锥其体积为:
所以该几何体的体积为:
故答案为:
16.【答案】①②.
【解析】解:∵|PM|﹣|PN|=6∴点P在以M、N为焦点的双曲线的右支上,即,(x>0).对于①,联立,消y得7x2﹣18x﹣153=0,
∵△=(﹣18)2﹣4×7×(﹣153)>0,∴y=x+1是“单曲型直线”.
对于②,联立,消y得x2=,∴y=2是“单曲型直线”.
对于③,联立,整理得144=0,不成立.∴不是“单曲型直线”.
对于④,联立,消y得20x2+36x+153=0,
∵△=362﹣4×20×153<0∴y=2x+1不是“单曲型直线”.
故符合题意的有①②.
故答案为:①②.
【点评】本题考查“单曲型直线”的判断,是中档题,解题时要认真审题,注意双曲线定义的合理运用.
17.【答案】
【解析】【知识点】抛物线双曲线
【试题解析】抛物线的准线方程为:x=2;
双曲线的两条渐近线方程为:
所以
故答案为:
18.【答案】(1,+∞)
【解析】解:∵命题p:∃x∈R,x2+2x+a≤0,
当命题p是假命题时,
命题¬p:∀x∈R,x2+2x+a>0是真命题;
即△=4﹣4a<0,
∴a>1;
∴实数a的取值范围是(1,+∞).
故答案为:(1,+∞).
【点评】本题考查了命题与命题的否定的真假性相反问题,也考查了二次不等式恒成立的问题,是基础题目.
三、解答题
19.【答案】
【解析】解:(1)∵f(1)=a+b+c=﹣,
∴3a+2b+2c=0.
又3a>2c>2b,
故3a>0,2b<0,
从而a>0,b<0,
又2c=﹣3a﹣2b及3a>2c>2b知3a>﹣3a﹣2b>2b
∵a>0,∴3>﹣3﹣>2,
即﹣3<<﹣.
(2)根据题意有f(0)=0,f(2)=4a+2b+c=(3a+2b+2c)+a﹣c=a﹣c.
下面对c的正负情况进行讨论:
①当c>0时,∵a>0,
∴f(0)=c>0,f(1)=﹣<0
所以函数f(x)在区间(0,1)内至少有一个零点;
②当c≤0时,∵a>0,
∴f(1)=﹣<0,f(2)=a﹣c>0
所以函数f(x)在区间(1,2)内至少有一个零点;
综合①②得函数f(x)在区间(0,2)内至少有一个零点;
(3).∵x1,x2是函数f(x)的两个零点
∴x1,x2是方程ax2+bx+c=0的两根.
故x1+x2=﹣,x1x2===
从而|x1﹣x2|===.
∵﹣3<<﹣,
∴|x1﹣x2|.
【点评】本题考查了二次函数的性质,对于二次函数要注意数形结合的应用,注意抓住二次函数的开口方向,对称轴,以及判别式的考虑;同时考查了函数的零点与方程根的关系,函数的零点等价于对应方程的根,等价于函数的图象与x轴交点的横坐标,解题时要注意根据题意合理的选择转化.属于中档题.
20.【答案】
【解析】解:(1)由分布表可得频数为50,故①的数值为50×0.1=5,
②中的值为=0.40,③中的值为50×0.2=10,
④中的值为50﹣(5+20+10)=15,⑤中的值为=0.30;
(2)不低于85的概率P=×0.20+0.30=0.40,
∴获奖的人数大约为800×0.40=320;
(3)该程序的功能是求平均数,
S=65×0.10+75×0.40+85×0.20+95×0.30=82,
∴800名学生的平均分为82分
21.【答案】
【解析】解:不等式|x﹣1|>m﹣1的解集为R,须m﹣1<0,即p是真命题,m<1
f(x)=﹣(5﹣2m)x是减函数,须5﹣2m>1即q是真命题,m<2,
由于p或q为真命题,p且q为假命题,故p、q中一个真,另一个为假命题
因此,1≤m<2.
【点评】本题考查在数轴上理解绝对值的几何意义,指数函数的单调性与特殊点,分类讨论思想,化简这两个命题是解题的关键.属中档题.
22.【答案】
【解析】(Ⅰ)解:由4S n=(a n+1)2,
令n=1,得,即a1=1,
又4S n+1=(a n+1+1)2,
∴,整理得:(a n+1+a n)(a n+1﹣a n﹣2)=0.
∵a n>0,∴a n+1﹣a n=2,则{a n}是等差数列,
∴a n=1+2(n﹣1)=2n﹣1;
(Ⅱ)证明:由(Ⅰ)可知,b n==,
则b1+b2+…+b n=
=
=.
23.【答案】
【解析】解:(Ⅰ)∵f(x)=sinωxcosωx+sin2ωx﹣
=ωx+(1﹣cos2ωx)﹣=2ωx﹣2ωx=sin(2ωx﹣),
依题意得函数f(x)的周期为π且ω>0,
∴2ω=,
∴ω=1,则m=±1;
(Ⅱ)由(Ⅰ)知f(x)=sin(2ωx﹣),∴,
∴.
又∵x∈[0,2π],
∴.
∴y=f(x)在x∈[0,2π]上所有零点的和为.
【点评】本题主要考查三角函数两倍角公式、辅助角公式、等差数列公差、等差数列求和方法、函数零点基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归转化思想,是中档题.
24.【答案】
【解析】解:(Ⅰ)由三视图知:几何体是一个圆锥与一个圆柱的组合体,且圆锥与圆柱的底面半径为2,母线长分别为2、4,
其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和.
S圆锥侧=×2π×2×2=4π;
S圆柱侧=2π×2×4=16π;
S圆柱底=π×22=4π.
∴几何体的表面积S=20π+4π;
(Ⅱ)沿A点与B点所在母线剪开圆柱侧面,如图:
则AB===2,
∴以从A点到B点在侧面上的最短路径的长为2.。

相关文档
最新文档