绥棱县实验中学2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绥棱县实验中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 如图是某几何体的三视图,则该几何体任意两个顶点间的距离的最大值为( )
A .4
B .5
C .32
D .33
2. 设向量,满足:||=3,||=4, =0.以,,﹣的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为( )
A .3
B .4
C .5
D .6
3. 若圆22
6260x y x y +--+=上有且仅有三个点到直线10(ax y a -+=是实数)的距离为, 则a =( )
A . 1±
B . 24±
C .2±
D .32
±4. 某企业为了监控产品质量,从产品流转均匀的生产线上每间隔10分钟抽取一个样本进行检测,这种抽样方法是( )
A .抽签法
B .随机数表法
C .系统抽样法
D .分层抽样法
5. 下列判断正确的是( )
A .①不是棱柱
B .②是圆台
C .③是棱锥
D .④是棱台 6. 正方体的内切球与外接球的半径之比为( )
A .
B .
C .
D .
7. 设集合S=|x|x <﹣1或x >5},T={x|a <x <a+8},且S ∪T=R ,则实数a 的取值范围是( )
A .﹣3<a <﹣1
B .﹣3≤a ≤﹣1
C .a ≤﹣3或a ≥﹣1
D .a <﹣3或a >﹣1
8. 已知偶函数f (x )满足当x >0时,3f (x )﹣2f
()
=,则f (﹣2)等于( )
A
.
B
.
C
.
D
.
9. 为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法........从该地区调查了500位老年人,结果如
由2
()()()()()
n ad bc K a b c d a c b d -=++++算得22
500(4027030160)9.96720030070430K ⨯⨯-⨯=
=⨯⨯⨯ 附表:
参照附表,则下列结论正确的是( )
①有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无.关”; ②有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有.关”; ③采用系统抽样方法比采用简单随机抽样方法更好; ④采用分层抽样方法比采用简单随机抽样方法更好; A .①③ B .①④ C .②③ D .②④ 10.执行如图所示的程序框图,则输出的S 等于( )
A .19
B .42
C .47
D .89
3.841 6.635 10.828k 2() 0.050 0.010 0.001
P K k ≥
11.如图,在长方形ABCD 中,AB=,BC=1,E 为线段DC 上一动点,现将△AED 沿AE 折起,使点D 在
面ABC 上的射影K 在直线AE 上,当E 从D 运动到C ,则K 所形成轨迹的长度为( )
A .
B .
C .
D .
12.(﹣6≤a ≤3)的最大值为( )
A .9
B .
C .3
D .
二、填空题
13.已知正四棱锥O ABCD -的体积为2
则该正四棱锥的外接球的半径为_________
14.已知函数f (x )=(2x+1)e x ,f ′(x )为f (x )的导函数,则f ′(0)的值为 . 15.若“x <a ”是“x 2﹣2x ﹣3≥0”的充分不必要条件,则a 的取值范围为 .
16.要使关于x 的不等式2
064x ax ≤++≤恰好只有一个解,则a =_________. 【命题意图】本题考查一元二次不等式等基础知识,意在考查运算求解能力. 17.已知函数f (x )=cosxsinx ,给出下列四个结论: ①若f (x 1)=﹣f (x 2),则x 1=﹣x 2; ②f (x )的最小正周期是2π;
③f (x )在区间[﹣
,
]上是增函数;
④f (x )的图象关于直线x=
对称.
其中正确的结论是 .
18.函数y=f (x )的图象在点M (1,f (1))处的切线方程是y=3x ﹣2,则f (1)+f ′(1)= .
三、解答题
19.如图,在四棱锥P ﹣ABCD 中,底面ABCD 是正方形,PA ⊥底面ABCD ,且PA=AD ,点F 是棱PD 的中点,点E 为CD 的中点. (1)证明:EF ∥平面PAC ; (2)证明:AF ⊥EF .
20.(本小题满分12分)
两个人在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中 放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设,,x y z 分别表示甲,乙,丙3个 盒中的球数.
(1)求0x =,1y =,2z =的概率;
(2)记x y ξ=+,求随机变量ξ的概率分布列和数学期望.
【命题意图】本题考查频离散型随机变量及其分布列等基础知识,意在考查学生的统计思想和基本的运算能力.
21.在长方体ABCD﹣A1B1C1D1中,AB=BC=2,过A1、C1、B三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD﹣A1C1D1,且这个几何体的体积为10.
(Ⅰ)求棱AA1的长;
(Ⅱ)若A1C1的中点为O1,求异面直线BO1与A1D1所成角的余弦值.
22.现有5名男生和3名女生.
(1)若3名女生必须相邻排在一起,则这8人站成一排,共有多少种不同的排法?
(2)若从中选5人,且要求女生只有2名,站成一排,共有多少种不同的排法?
23.设函数f(x)=lnx+,k∈R.
(Ⅰ)若曲线y=f(x)在点(e,f(e))处的切线与直线x﹣2=0垂直,求k值;
(Ⅱ)若对任意x1>x2>0,f(x1)﹣f(x2)<x1﹣x2恒成立,求k的取值范围;
(Ⅲ)已知函数f(x)在x=e处取得极小值,不等式f(x)<的解集为P,若M={x|e≤x≤3},且M∩P≠∅,求实数m的取值范围.
24.已知函数(a≠0)是奇函数,并且函数f(x)的图象经过点(1,3),
(1)求实数a,b的值;
(2)求函数f(x)的值域.
绥棱县实验中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题
1.【答案】D
【解析】
试题分析:因为根据几何体的三视图可得,几何体为下图,,
AD AB AG相互垂直,面AEFG⊥面
,//,3,1 ABCDE BC AE AB AD AG DE
====,
根据几何体的性质得:AC GC
==
GE
===
4,
BG AD EF CE
====
所以最长为GC=
考点:几何体的三视图及几何体的结构特征.
2.【答案】B
【解析】解:∵向量ab=0,∴此三角形为直角三角形,三边长分别为3,4,5,进而可知其内切圆半径为1,∵对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,
对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,
但5个以上的交点不能实现.
故选B
【点评】本题主要考查了直线与圆的位置关系.可采用数形结合结合的方法较为直观.
3.【答案】B
【解析】
试题分析:由圆226260
x y x y
+--+=,可得22
(3)(1)4
x y
-+-=,所以圆心坐标为(3,1),半径为2
r=,要使得圆上有且仅有三个点到直线10(
ax y a
-+=是实数)的距离为,则圆心到直线的距离等于1
2
r
,即1
=
,解得a=,故选B. 1
考点:直线与圆的位置关系.
【方法点晴】本题主要考查了直线与圆的位置关系,其中解答中涉及到圆的标准方程、圆心坐标和圆的半径、点到直线的距离公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力
和转化的思想方法,本题的解答中,把圆上有且仅有三个点到直线的距离为,转化为圆心到直线的距离等于1
2
r
是解答的关键.
4.【答案】C
【解析】解:由题意知,这个抽样是在传送带上每隔10分钟抽取一产品,是一个具有相同间隔的抽样,并且总体的个数比较多,
∴是系统抽样法,
故选:C.
【点评】本题考查了系统抽样.抽样方法有简单随机抽样、系统抽样、分层抽样,抽样选用哪一种抽样形式,要根据题目所给的总体情况来决定,若总体个数较少,可采用抽签法,若总体个数较多且个体各部分差异不大,可采用系统抽样,若总体的个体差异较大,可采用分层抽样.属于基础题.
5.【答案】C
【解析】解:①是底面为梯形的棱柱;
②的两个底面不平行,不是圆台;
③是四棱锥;
④不是由棱锥截来的,
故选:C.
6.【答案】C
【解析】解:正方体的内切球的直径为,正方体的棱长,外接球的直径为,正方体的对角线长,
设正方体的棱长为:2a,所以内切球的半径为:a;外接球的直径为2a,半径为:a,
所以,正方体的内切球与外接球的半径之比为:
故选C
7.【答案】A
【解析】解:∵S=|x|x<﹣1或x>5},T={x|a<x<a+8},且S∪T=R,
∴,解得:﹣3<a<﹣1.
故选:A.
【点评】本题考查并集及其运算,关键是明确两集合端点值间的关系,是基础题.
8.【答案】D
【解析】解:∵当x>0时,3f(x)﹣2f()=…①,
∴3f()﹣2f(x)==…②,
①×3+③×2得:
5f(x)=,
故f(x)=,
又∵函数f(x)为偶函数,
故f(﹣2)=f(2)=,
故选:D.
【点评】本题考查的知识点是函数奇偶性的性质,其中根据已知求出当x>0时,函数f(x)的解析式,是解答的关键.
9.【答案】D
【解析】解析:本题考查独立性检验与统计抽样调查方法.
,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关,②正确;该地区老年由于9.967 6.635
人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好,④正确,选D.
10.【答案】B
【解析】解:模拟执行程序框图,可得
k=1
S=1
满足条件k<5,S=3,k=2
满足条件k<5,S=8,k=3
满足条件k<5,S=19,k=4
满足条件k<5,S=42,k=5
不满足条件k<5,退出循环,输出S的值为42.
故选:B.
【点评】本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的S,k的值是解题的关键,属于基础题.
11.【答案】D
【解析】解:由题意,将△AED 沿AE 折起,使平面AED ⊥平面ABC ,在平面AED 内过点D 作DK ⊥AE ,K 为垂足,由翻折的特征知,连接D'K ,
则D'KA=90°,故K 点的轨迹是以AD'为直径的圆上一弧,根据长方形知圆半径是,
如图当E 与C 重合时,AK=
=,
取O 为AD ′的中点,得到△OAK 是正三角形.
故∠K0A=
,∴∠K0D'=
,
其所对的弧长为=
,
故选:D .
12.【答案】B
【解析】解:令f (a )=(3﹣a )(a+6)=﹣+
,而且﹣6≤a ≤3,由此可得函数f
(a )的最大值为,
故(﹣6≤a ≤3)的最大值为
=
,
故选B .
【点评】本题主要考查二次函数的性质应用,体现了转化的数学思想,属于中档题.
二、填空题
13.【答案】
118
【解析】因为正四棱锥O ABCD -的体积为22,设外接球的半径为R ,依轴
截面的图形可知:22211(2)8
R R R =-+∴= 14.【答案】 3 .
【解析】解:∵f (x )=(2x+1)e x
,
∴f ′(x )=2e x +(2x+1)e x
,
∴f′(0)=2e0+(2×0+1)e0=2+1=3.
故答案为:3.
15.【答案】a≤﹣1.
【解析】解:由x2﹣2x﹣3≥0得x≥3或x≤﹣1,
若“x<a”是“x2﹣2x﹣3≥0”的充分不必要条件,
则a≤﹣1,
故答案为:a≤﹣1.
【点评】本题主要考查充分条件和必要条件的应用,根据条件求出不等式的等价是解决本题的关键.
16.【答案】±.
【解析】分析题意得,问题等价于264
++≤只有一解,
x ax
x ax
++≤只有一解,即220
∴280
∆=-=⇒=±,故填:±.
a a
17.【答案】③④.
【解析】解:函数f(x)=cosxsinx=sin2x,
对于①,当f(x1)=﹣f(x2)时,sin2x1=﹣sin2x2=sin(﹣2x2)
∴2x1=﹣2x2+2kπ,即x1+x2=kπ,k∈Z,故①错误;
对于②,由函数f(x)=sin2x知最小正周期T=π,故②错误;
对于③,令﹣+2π≤2x≤+2kπ,k∈Z得﹣+kπ≤x≤+kπ,k∈Z
当k=0时,x∈[﹣,],f(x)是增函数,故③正确;
对于④,将x=代入函数f(x)得,f()=﹣为最小值,
故f(x)的图象关于直线x=对称,④正确.
综上,正确的命题是③④.
故答案为:③④.
18.【答案】4.
【解析】解:由题意得f′(1)=3,且f(1)=3×1﹣2=1
所以f(1)+f′(1)=3+1=4.
故答案为4.
【点评】本题主要考查导数的几何意义,要注意分清f (a )与f ′(a ).
三、解答题
19.【答案】
【解析】(1)证明:如图, ∵点E ,F 分别为CD ,PD 的中点, ∴EF ∥PC .
∵PC ⊂平面PAC ,EF ⊄平面PAC ,
∴EF ∥平面PAC .
(2)证明:∵PA ⊥平面ABCD ,CD ⊂平面ABCD , 又ABCD 是矩形,∴CD ⊥AD , ∵PA ∩AD=A ,∴CD ⊥平面PAD . ∵AF ⊂平面PAD ,∴AF ⊥CD .
∵PA=AD ,点F 是PD 的中点,∴AF ⊥PD . 又CD ∩PD=D ,∴AF ⊥平面PDC . ∵EF ⊂平面PDC , ∴AF ⊥EF .
【点评】本题考查了线面平行的判定,考查了由线面垂直得线线垂直,综合考查了学生的空间想象能力和思维能力,是中档题.
20.【答案】
【解析】(1)由0x =,1y =,2z =知,甲、乙、丙3个盒中的球数分别为0,1,2,
此时的概率2
13111324
P C ⎛⎫=⨯⨯= ⎪⎝⎭.
(4分)
21.【答案】
【解析】解:(Ⅰ)设AA1=h,
由题设=﹣=10,
∴
即,解得h=3.
故A1A的长为3.
(Ⅱ)∵在长方体中,A1D1∥BC,
∴∠O1BC为异面直线BO1与A1D1所成的角(或其补角).
在△O1BC中,AB=BC=2,A1A=3,
∴AA1=BC1=,=,
∴,
则cos∠O1BC===.
∴异面直线BO1与A1D1所成角的余弦值为.
【点评】本题主要考查了点,线和面间的距离计算.解题的关键是利用了法向量的方法求点到面的距离.
22.【答案】
【解析】解:(1)先排3个女生作为一个整体,与其余的5个元素做全排列有A33A66=4320种.
(2)从中选5人,且要求女生只有2名,则男生有3人,先选再排,故有C32C53A55=3600种
【点评】本题主要考查排列与组合及两个基本原理,排列数公式、组合数公式的应用,注意特殊元素和特殊位置要优先排.
23.【答案】
【解析】解:(Ⅰ)由条件得f′(x)=﹣(x>0),
∵曲线y=f(x)在点(e,f(e))处的切线与直线x﹣2=0垂直,
∴此切线的斜率为0,
即f′(e)=0,有﹣=0,得k=e;
(Ⅱ)条件等价于对任意x1>x2>0,f(x1)﹣x1<f(x2)﹣x2恒成立…(*)
设h(x)=f(x)﹣x=lnx+﹣x(x>0),∴(*)等价于h(x)在(0,+∞)上单调递减.
由h ′(x )=﹣﹣1≤00在(0,+∞)上恒成立,得k ≥﹣x 2+x=(﹣x ﹣)2
+(x >0)恒成立,
∴k ≥(对k=,h ′(x )=0仅在x=时成立),
故k 的取值范围是[,+∞); (Ⅲ)由题可得k=e ,
因为M ∩P ≠∅,所以f (x )<在[e ,3]上有解,
即∃x ∈[e ,3],使f (x )<成立,
即∃x ∈[e ,3],使 m >xlnx+e 成立,所以m >(xlnx+e )min ,
令g (x )=xlnx+e ,g ′(x )=1+lnx >0,所以g (x )在[e ,3]上单调递增, g (x )min =g (e )=2e , 所以m >2e .
【点评】本题考查导数的运用:求切线的斜率和单调区间,主要考查函数的单调性的运用,考查不等式存在性和恒成立问题的解决方法,考查运算能力,属于中档题.
24.【答案】
【解析】解:(1)∵函数是奇函数,则f (﹣x )=﹣f (x )
∴
,
∵a ≠0,∴﹣x+b=﹣x ﹣b ,∴b=0(3分) 又函数f (x )的图象经过点(1,3), ∴f (1)=3,∴,∵b=0,
∴a=2(6分)
(2)由(1)知(7分) 当x >0时,,当且仅当
,
即
时取等号(10分)
当x <0时,
,∴
当且仅当,即时取等号(13分)
综上可知函数f(x)的值域为(12分)
【点评】本题主要考查函数的奇偶性和单调性的应用,转化函数研究性质是问题的关键.。