高一下册物理 机械能守恒定律单元测试卷附答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、第八章 机械能守恒定律易错题培优(难)
1.如图所示,ABC 为一弹性轻绳,一端固定于A 点,一端连接质量为m 的小球,小球穿
在竖直的杆上。

轻杆OB 一端固定在墙上,一端为定滑轮。

若绳自然长度等于AB ,初始时ABC 在一条水平线上,小球从C 点由静止释放滑到E 点时速度恰好为零。

已知C 、E
两点间距离为h ,D 为CE 的中点,小球在C 点时弹性绳的拉力为
2
mg
,小球与杆之间的动摩擦因数为0.5,弹性绳始终处在弹性限度内。

下列说法正确的是( )
A .小球在D 点时速度最大
B .若在E 点给小球一个向上的速度v ,小球恰好能回到
C 点,则2v gh = C .小球在C
D 阶段损失的机械能等于小球在D
E 阶段损失的机械能
D .若O 点没有固定,杆OB 在绳的作用下以O 为轴转动,在绳与B 点分离之前,B 的线速度等于小球的速度沿绳方向分量 【答案】AD 【解析】 【详解】
A .设当小球运动到某点P 时,弹性绳的伸长量是BP x ,小球受到如图所示的四个力作用:
其中
T BP F kx =
将T F 正交分解,则
N T sin sin 2
BP BC mg
F F kx kx θθ⋅====
f N 14
F F mg μ==
T F 的竖直分量
T T cos cos y BP CP F F kx kx θθ===
据牛顿第二定律得
f T y m
g F F ma --=
解得
T 33
44y CP F kx a g g m m
=
-=- 即小球的加速度先随下降的距离增大而减小到零,再随下降的距离增大而反向增大,据运动的对称性(竖直方向可以看作单程的弹簧振子模型)可知,小球运动到CE 的中点D 时,加速度为零,速度最大,A 正确;
B .对小球从
C 运动到E 的过程,应用动能定理得
T F 0104mgh W mgh ⎛⎫
-+-=- ⎪⎝⎭
若在E 点给小球一个向上的速度v ,小球恰能从E 点回到C 点,应用动能定理得
T 2F 11()042mgh W mgh mv ⎛⎫
-++-=- ⎪⎝⎭
联立解得
T F 3
4
W mgh =
,v gh = B 错误;
C .除重力之外的合力做功等于小球机械能的变化,小球在C
D 段所受绳子拉力竖直分量较小,则小球在CD 段时摩擦力和弹力做的负功比小球在D
E 段时摩擦力和弹力做的负功少,小球在CD 阶段损失的机械能小于小球在DE 阶段损失的机械能,C 错误; D .绳与B 点分离之前B 点做圆周运动,线速度(始终垂直于杆)大小等于小球的速度沿绳方向的分量,D 正确。

故选AD 。

2.如图,滑块a 、b 的质量均为m ,a 套在固定竖直杆上,与光滑水平地面相距,b 放在地面上.a 、b 通过铰链用刚性轻杆连接,由静止开始运动,不计摩擦,a 、b 可视为质点,重力加速度大小为,则
A .a 减少的重力势能等于b 增加的动能
B .轻杆对b 一直做正功,b 的速度一直增大
C.当a运动到与竖直墙面夹角为θ时,a、b的瞬时速度之比为tanθ
D.a落地前,当a的机械能最小时,b对地面的压力大小为mg
【答案】CD
【解析】
【分析】
【详解】
ab构成的系统机械能守恒,a减少的重力势能大于b增加的动能.当a落到地面时,b的速度为零,故b先加速后减速.轻杆对b先做正功,后做负功.由于沿杆方向的速度大小相等,则
cos sin
a b
v v
θθ
=

tan
a
b
v
v
θ
=
当a的机械能最小时,b动能最大,此时杆对b作用力为零,故b对地面的压力大小为mg.综上分析,CD正确,AB错误;
故选CD.
3.如图所示,固定在竖直平面内的圆管形轨道的外轨光滑,内轨粗糙。

一小球从轨道的最低点以初速度v0向右运动,球的直径略小于圆管的直径,球运动的轨道半径为R,空气阻力不计,重力加速度大小为g,下列说法一定正确的是()
A.若
5
v gR
<
B.若
2
v gR
<,小球不可能到达圆周最高点
C.若
2
v gR
<,小球运动过程中机械能守恒
D.若
5
v gR
>
【答案】BC
【解析】
【分析】
【详解】
AD. 小球如果不挤压内轨,则小球到达最高点速度最小时,小球的重力提供向心力,由牛顿第二定律,在最高点,有
2
v mg m R
=
由于小球不挤压内轨,则小球在整个运动过程中不受摩擦力作用,只有重力做功,机械能守恒,从最低点到最高点过程中,由机械能守恒定律,有
22
011222
mv mv mg R =+⋅ 解得
05v gR =
若小球速度05v gR <,小球也是有可能做完整的圆周运动的,可能到达圆周最高点,只是最终在圆心下方做往复运动,故A 错误;若小球速度05v gR >,则小球一定不挤压内轨,小球运动过程中机械能守恒,故D 错误;
B. 如果轨道内轨光滑,小球在运动过程中不受摩擦力,小球在运动过程中机械能守恒,如果小球运动到最高点时速度为0,由机械能守恒定律,有
2
0122
mv mg R =⋅ 解得
02v gR =
现在内轨粗糙,如果小球速度02v gR <,小球在到达最高点前一定受到摩擦力作用,即小球在到达最高点前速度已为零,小球不可能到达圆周最高点,故B 正确;
C.若小球上升到与圆心等高处时速度为零,此时小球只与外轨作用,不受摩擦力,只有重力做功,由机械能守恒定律,有
2
012
mv mgR = 解得
02v gR =
若02v gR <,小球只与外轨作用,不受摩擦力作用,小球运动过程中机械能守恒,故C 正确。

故选BC 。

4.如图所示,劲度数为k 的轻弹簧的一端固定在墙上,另一端与置于水平面上质量为m 的物体接触(未连接),弹簧水平且无形变.用水平力F 缓慢推动物体,在弹性限度内弹簧长度被压缩了0x ,此时物体静止.撤去F 后,物体开始向左运动,运动的最大距离为40x .物体与水平面间的动摩擦因数为μ,重力加速度为g .则( )
A .撤去F 后,物体先做匀加速运动,再做匀减速运动
B .撤去F 后,物体刚运动时的加速度大小为0
kx g m
μ-
C .物体做匀减速运动的时间为
D .物体开始向左运动到速度最大的过程中克服摩擦力做的功为0()mg
mg x k
μμ-
【答案】BD 【解析】 【分析】 【详解】
A .撤去F 后,物体水平方向上受到弹簧的弹力和滑动摩擦力,滑动摩擦力不变,而弹簧的弹力随着压缩量的减小而减小,弹力先大于滑动摩擦力,后小于滑动摩擦力,则物体向左先做加速运动后做减速运动,随着弹力的减小,合外力先减小后增大,则加速度先减小后增大,故物体先做变加速运动,再做变减速运动,最后物体离开弹簧后做匀减速运动,A 错误;
B .刚开始时,由牛顿第二定律有:
0kx mg ma μ-=
解得:0
kx a g m
μ=- B 正确;
C .由题意知,物体离开弹簧后通过的最大距离为3x 0,由牛顿第二定律得:
1a g μ=
将此运动看成向右的初速度为零的匀加速运动,则:
20112
3x a t =
联立解得:t =
C 错误;
D .当弹簧的弹力与滑动摩擦力大小相等、方向相反时,速度速度最大时合力为零,则有
F mg kx μ==
解得mg
x k
μ=
,所以物体开始向左运动到速度最大的过程中克服摩擦力做的功为:
()f 00(mg W mg x x mg x k μμμ=⎛
⎫=- ⎪⎝
⎭- D 正确。

故选BD 。

5.如图所示,一个半径和质量不计的定滑轮O 固定在天花板上,物块B 和A 通过轻弹簧栓接在一起,竖直放置在水平地面上保持静止后,再用不可伸长的轻绳绕过滑轮连接物块A 和C ,物块C 穿在竖直固定细杆上,OA 竖直,OC 间距3m l =且水平,此时A 、C 间轻绳恰好拉直而无张力作用。

已知物块A 、B 、C 质量均为2kg 。

不计一切摩擦,g 取10m/s 2.现将物块C 由静止释放,下滑h =4m 时物块B 刚好被提起,下列说法正确的是( )
A .弹簧劲度系数为20N/m
B .此过程中A 、
C 组成的系统机械能总和一直不变 C .此时物块C 的速度大小为10
8
m/s 41
D .此时物块A 的速度大小为10
8m/s 41
【答案】AD 【解析】 【分析】 【详解】
A .初态时,弹簧的压缩量
1mg
x k
=
根据勾股定理可知,C 下降h =4m 时,A 物体上升了2m ,根据题意可知
2kx mg =
122x x +=
整理可得
121m x x ==,20N/m k =
A 正确;
B .物体
C 开始下降时,弹簧处于压缩状态,弹力对物体A 做正功,系统机械能增加,后来弹簧处于伸长状态,弹力对物体A 做负功,系统的机械能减小,B 错误;
CD .由于弹簧的伸长量与压缩量相等,整个过程弹簧对A 物体做功等于零,因此A 、C 组成的系统,初态的机械能与末态的机械能相等
22
A C 1211()22
mgh mv mv mg x x =
+++ 设绳子与竖直方向夹角为θ ,由于A 、C 沿着绳的速度相等
C A cos v v θ=

4cos 5
h l θ=
=
整理得
C 1010
m/s 41
v =,A 108m/s 41v =
C 错误,
D 正确。

故选AD 。

6.如图所示,劲度系数k =40N/m 的轻质弹簧放置在光滑的水平面上,左端固定在竖直墙上,物块A 、B 在水平向左的推力F =10N 作用下,压迫弹簧处于静止状态,已知两物块不粘连,质量均为m =3kg 。

现突然撤去力F ,同时用水平向右的拉力F '作用在物块B 上,同时控制F '的大小使A 、B 一起以a =2m/s 2的加速度向右做匀加速运动,直到A 、B 分离,此过程弹簧对物块做的功为W 弹=0.8J 。

则下列说法正确的是( )
A .两物块刚开始向右匀加速运动时,拉力F '=2N
B .弹簧刚好恢复原长时,两物块正好分离
C .两物块一起匀加速运动经过
10
10
s 刚好分离 D .两物块一起匀加速运动到分离,拉力F '对物块做的功为0.6J 【答案】AC 【解析】 【分析】 【详解】
A .两物块刚开始向右匀加速运动时,对A
B 整体,由牛顿第二定律可知
2F F ma '+=
解得
2232N 10N 2N F ma F '=-=⨯⨯-=
故A 正确;
BC .两物体刚好分离的临界条件;两物体之间的弹力为零且加速度相等。

设此时弹簧的压缩量为x ,则有
kx ma =
代入数据,可得
32
m 0.15m 40
ma x k ⨯=
== 弹簧最初的压缩量
010
m=0.25m 40
F x k =
= 故两物块一起匀加速运动到分离的时间为
2
012
at x x =- 解得
02()2(0.250.15)10
s s 210
x x t a --=
== 故B 错误,C 正确;
D .对AB 整体,从一起匀加速运动到分离,由动能定理可得
21
22
F W W mv '+=⨯弹
10102m/s 105
v at ==⨯
= 解得
22
1110223()J 0.8J 0.4J 225
F W mv W '=⨯-=⨯⨯⨯-=弹
故D 错误。

故选AC 。

7.戽斗是古代最常见的提水器具,两人相对而立,用手牵拉绳子,从低处戽水上岸,假设戽斗装水后重20kg ,左右两根轻绳长均为2m ,最初绳子竖直下垂,戽水时两人均沿水平方向朝相反的方向做直线运动,戽斗以加速度21m /s 匀加速度直线上升,己知重力加速度
210m /s g =,(绳子可以看成轻质细绳)则戽斗上升1m 时( )
A .两绳的拉力大小均为200N
B 2m /s
C .两人对戽斗做的功均为110J
D .绳子拉力的总功率为2202W 【答案】CD 【解析】 【分析】
【详解】
A .此时戽斗已经向上移动了1m ,对戽斗进行受力分析如下
沿戽斗运动方向根据牛顿第二定律有
2cos T ABD mg ma ∠-=
其中1cos 2
ABD ∠=
带入数据解得
220N T =
故A 错误;
B .上升1m 的过程根据速度位移公式可得
202v ax -=戽
如下图,戽斗与人在沿绳方向的分速度相等
cos cos ABD v v BAD ∠=人戽
联立并带入数据解得
2m/s v =戽
2
m/s 3
v =
人 故B 错误;
C .戽斗上升过程根据动能定理有
2
122
W mgh mv -=戽人
带入数据解得每人对戽斗做的功W 人为110J ,故C 正确; D .上升1m 后的瞬时功率为
222c 2s 0W o P Fv T ABD v ===∠⨯戽
故D 正确。

故选CD 。

8.如图甲所示,质量为0.1 kg 的小球沿光滑的水平轨道从A 冲入竖直放置在水平地面上、半径为0.9 m 的圆轨道,小球从A 运动到C 的过程中其速度的平方与其高度的关系图象如图乙所示.已知小球恰能到达最高点C ,运动一周后从A 点离开圆轨道,圆轨道粗糙程度处处相同,空气阻力不计.g 取10 m/s 2,B 为AC 轨道中点.下列说法正确的是( )
A .图乙中x 的数值为9
B .小球从从A 点离开圆轨道时的动能为1.30J
C .小球从A 到C 合外力对其做的功为-2.75J
D .小球从B 到C 损失了0.475 J 的机械能 【答案】AC 【解析】 【分析】 【详解】
A.图乙中的点(1.8,)x 表示小球到达C 点速度的平方为x ;小球恰能到达最高点C ,则有:
x
mg m r
=,
代入数据得:
x =9,
故A 正确
B.物体从A 到C 的过程根据动能定理可知
22
11222
f C A W m
g R mv mv --=-,
解得
0.95J f W =
若从C 再次运动到A 克服摩擦力做功和从A 到C 一样,则再次回到A 时的动能为
2
12 1.30J 2
k A f E mv W =-= ,
但由于下降过程中的平均阻力小于上升过程中的平均阻力,所以再次回到A 点时的动能大于1.30J ,故B 错误
C. 根据动能定理可知小球从A 到C 合外力对其做的功为
22
11 2.75J 22
C A W mv mv =-=-
故C 正确
D.根据功能关系可知小球从A 到C 损失的机械能为
0.95J f W =,
若摩擦力做功恒定,则从小球从B 到C 损失了0.475 J 的机械能,但由于从A 到B 的平均摩擦力大于从B 到C 的平均摩擦力,所以从B 到C 损失的机械能小于0.475 J ,故D 错误;
9.如图所示,一根劲度系数为k 的轻弹簧竖直固定在水平地面上,轻弹簧上端正上方h 高度处A 点有一个质量为m 的小球。

现让小球由静止开始下落,在B 点接触轻弹簧的上端,在C 点时小球所受的弹力大小等于重力大小,在D 点时小球速度减为零,此后小球向上运动返回到最初点,已知小球在竖直方向上做周期性运动。

若轻弹簧储存的弹性势能与其形变量x 间的关系为2
12
p E kx =,不计空气阻力,重力加速度为g ,则下列说法正确的是( )
A .在D 点时小球的加速度大小大于重力加速度g 的大小
B .小球从B 点到D 点的过程中,其速度和加速度均先增大后减小
C .从A 点到C 点小球重力势能的减少量等于小球动能的增加量
D .小球在D (2)
mg mg mg kh ++
【答案】AD 【解析】 【分析】 【详解】
A .若小球从
B 点由静止释放,则最低点应该在D ′位置且满足B
C =C
D ′,由对称可知,在D ′点的加速度为向上的g ;若小球从A 点释放,则最低点的位置在D 点,则D 点应该在D ′点的下方,则在D 点时小球的加速度大小大于在D ′点的加速度,即大于重力加速度g 的大小,选项A 正确;
B .小球从B 点到D 点的过程中,在B
C 段重力大于弹力,加速度向下且逐渐减小,速度逐渐变大;在C
D 段,重力小于弹力,加速度向上且逐渐变大,速度逐渐减小,即小球从B 点到D 点的过程中,加速度先减小后增加,速度先增加后减小,选项B 错误; C .由能量守恒定律可知,从A 点到C 点小球重力势能的减少量等于小球动能的增加量与弹簧的弹性势能的增加量之和,选项C 错误; D .由能量关系可知从A 到D 满足
21()2
mg h x kx +=
解得小球在D 点时弹簧的压缩量为
(2)
mg mg mg kh x ++=
(另一值舍掉)选项D 正确。

故选AD 。

10.如图所示,质量为m 的物体静止在倾角为θ的斜面上,物体与斜面间的动摩擦因数为μ,现使斜面水平向左匀速移动距离l ,物体始终与斜面保持相对静止.则在斜面水平向左匀速运动距离l 的过程中( )
A .摩擦力对物体做的功为-μmglcos θ
B .斜面对物体的弹力做的功为mglsin θcos 2θ
C .重力对物体做的功为mgl
D .斜面对物体做的功为0 【答案】D 【解析】
试题分析:物体处于静止,对物体受力分析可得,在竖直方向 mg="Ncosθ+fsinθ" ; 在水平分析 Nsinθ=fcosθ
解得 N=mgcosθ;f=mgsinθ;支持力与竖直方向的夹角为θ,摩擦力做的功 W f =-fcosθ•l=-mglsinθcosθ,故A 错误;支持力做的功为W N =Nsinθ•s=mgssinθcosθ,支持力做功的功率为:mgcosθ•vsinθ,故B 错误;重力做功为零,故C 错误;由于匀速运动,所以斜面体对物体作用力的合力与速度方向垂直,则作用力做的总功为零,故D 正确;故选D .
考点:功
11.如图所示,特战队员在进行训练时抓住一不可伸长的绳索,绳索的另一端固定,特战队员从高度一定的平台由静止开始下摆,悬点与平台在同一水平而上,在下摆过程中绳索始终处于绷紧状态,由于悬点位置不同,每次下摆的绳长可以发生变化,在到达竖直状态时特战队员松开绳索,特战队员被水平抛出直到落地。

(不计绳索质量和空气阻力,特战
队员可看成质点,绳索与队员的运动轨迹在同一竖直面内)下列说法正确的是( )
A .绳索越长,特战队员落地时的水平位移越大
B .绳索越长,特战队员在到达竖直状态时绳索拉力越大
C .绳索越长,特战队员落地时的水平速度越大
D .绳索越长,特战队员落地时的速度越大 【答案】C 【解析】 【分析】 【详解】
A .设绳子长度为L ,总高度为H ,由动能定理可得特战员到达绳子最低点时的速度
212
mgL mv =
可得特战员到达绳子最低点时的速度2v gL =,而后特战队员做平抛运动
212
H L gt -=
()
()222H L x vt gL L H L g
-===-可知2
H
L =
时,水平位移最大,A 错误; B .特战队员在到达竖直状态时,由牛顿第二定律,可得
2
v T mg m L
-=
代入速度,可得3T mg =,B 错误;
C .特战队员落地时的水平速度为2v gL =,故绳索越长,特战队员落地时的水平速度越大,C 正确;
D .整个过程,由动能定理,可得
211
2
mgH mv =
特战队员落地时的速度与绳子长度无关,D 错误。

故选C 。

12.某汽车在平直公路上以功率P 、速度v 0匀速行驶时,牵引力为F 0.在t 1时刻,司机减
小油门,使汽车的功率减为P /2,此后保持该功率继续行驶,t 2时刻,汽车又恢复到匀速运动状态.下面是有关汽车牵引力F 、速度v 在此过程中随时间t 变化的图像,其中正确的是( )
A .
B .
C .
D .
【答案】A 【解析】 【分析】 【详解】
由题,汽车以功率P 、速度v 0匀速行驶时,牵引力与阻力平衡.当司机减小油门,使汽车的功率减为
P
2
时,根据P =Fv 得知,汽车的牵引力突然减小到原来的一半,即为012F F
,而阻力没有变化,则汽车开始做减速运动,由于功率保持为P
2
,随着速度的减小,牵引力逐渐增大,根据牛顿第二定律得知,汽车的加速度逐渐减小,做加速度减小的减速运动;当汽车再次匀速运动时,牵引力与阻力再次平衡,大小为0F ;由P =Fv 得知,此时汽车的速度为原来的一半.
AB .汽车功率变化后,做加速度减小的减速直至匀速;故A 正确,B 错误.
CD .汽车功率变化后,牵引力突然减小到原来的一半,然后牵引力逐渐增大(速度减小的越来越慢,牵引力增加的越来越慢),最终牵引力还原;故CD 错误.
13.一个小球从光滑固定的圆弧槽的A 点由静止释放后,经最低点B 运动到C 点的过程中,小球的动能E k 随时间t 的变化图像可能是( )
A .
B .
C .
D .
【答案】B 【解析】 【分析】 【详解】
动能k E 与时间t 的图像上的任意一点的斜率表示重力做功的瞬时功率,即
k E W
P t t
∆==∆∆ A 点与C 点处小球速度均为零,B 点处小球速度方向与重力方向垂直,所以A 、B 、C 三点处的重力做功功率为零,则小球由A 点运动到B 点的过程中力做功功率(k E -t 的斜率)是先增大再减小至零,小球由B 点运动到C 点的过程中,重力做功功率(k E -t 的斜率)也是先增大再减小至零,故B 正确,A 、C 、D 错误; 故选B 。

【点睛】
关键知道动能k E 与时间t 的图像上的任意一点的斜率表示重力做功的瞬时功率。

14.一质量为m 的小轿车以恒定功率P 启动,沿平直路面行驶,若行驶过程中受到的阻力大小不变,能够达到的最大速度为v 。

当小轿车的速度大小为23
v
时,它的加速度大小为( ) A .
P mv
B .
2P mv
C .
32P
mv
D .
4P mv
【答案】B 【解析】 【分析】 【详解】
汽车速度达到最大后,将匀速前进,此时有
P Fv =
F f =
当汽车的车速为
23
v
时,有 23
v P F '=⋅
根据牛顿第二定律有
F f ma '-=
联立解得
2P
a
mv
选项B正确,ACD错误。

故选B。

15.如图所示,一根不可伸长的轻绳两端分别系着小球A和物块B,跨过固定于斜面体顶端的小滑轮O,倾角为θ=30°的斜面体置于水平地面上.A的质量为m,B的质量为4m.开始时,用手托住A,使OA段绳恰处于水平伸直状态(绳中无拉力),OB绳平行于斜面,此时B静止不动.将A由静止释放,在其下摆过程中,斜面体始终保持静止,下列判断中错误的是()
A.物块B受到的摩擦力先减小后增大
B.地面对斜面体的摩擦力方向一直向右
C.小球A的机械能守恒,A、B系统的机械能守恒
D.地面对斜面体的支持力不变
【答案】D
【解析】
【详解】
A. A物体在最高点时,绳子拉力为零,对B进行受力分析可知,B受摩擦力
方向沿斜面向上,当小球A向下运动过程中,机械能守恒,则
在最低点时
整理得:
此时再对B进行受力分析可知,B受摩擦力沿斜面向下,大小等于mg,在A下摆的过程中,B受摩擦力先沿斜面向上,后沿斜面向下,所以物块B受到的摩擦力先减小后增大,故A正确,不符合题意;
B.在A下摆的过程中,将斜面体与B做为一个整体,细绳对整体始终有一个斜向左下方的拉力作用,因此地面对斜面体的摩擦力始终水平向右,故B正确,不符合题意;
C. 小球A摆下过程,只有重力做功,机械能守恒,B静止不动,机械能也守恒,所以A、B 系统的机械能守恒,故C正确,不符合题意;
D. 在A下摆的过程中,小球A在竖直方向上的加速度向上且不断增大,所以地面对斜面体的支持力是不断增大的,故D错误,符合题意。

相关文档
最新文档